In this paper, we provide and analyze a new scaled conjugate gradient method and its performance, based on the modified secant equation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and on a new modified nonmo...In this paper, we provide and analyze a new scaled conjugate gradient method and its performance, based on the modified secant equation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and on a new modified nonmonotone line search technique. The method incorporates the modified BFGS secant equation in an effort to include the second order information of the objective function. The new secant equation has both gradient and function value information, and its update formula inherits the positive definiteness of Hessian approximation for general convex function. In order to improve the likelihood of finding a global optimal solution, we introduce a new modified nonmonotone line search technique. It is shown that, for nonsmooth convex problems, the proposed algorithm is globally convergent. Numerical results show that this new scaled conjugate gradient algorithm is promising and efficient for solving not only convex but also some large scale nonsmooth nonconvex problems in the sense of the Dolan-Moré performance profiles.展开更多
In this paper, we present a nonmonotone smoothing Newton algorithm for solving the circular cone programming(CCP) problem in which a linear function is minimized or maximized over the intersection of an affine space w...In this paper, we present a nonmonotone smoothing Newton algorithm for solving the circular cone programming(CCP) problem in which a linear function is minimized or maximized over the intersection of an affine space with the circular cone. Based on the relationship between the circular cone and the second-order cone(SOC), we reformulate the CCP problem as the second-order cone problem(SOCP). By extending the nonmonotone line search for unconstrained optimization to the CCP, a nonmonotone smoothing Newton method is proposed for solving the CCP. Under suitable assumptions, the proposed algorithm is shown to be globally and locally quadratically convergent. Some preliminary numerical results indicate the effectiveness of the proposed algorithm for solving the CCP.展开更多
This paper discusses the global convergence of a class of nonmonotone conjugate gra- dient methods(NM methods) for nonconvex object functions.This class of methods includes the nonmonotone counterpart of modified Po...This paper discusses the global convergence of a class of nonmonotone conjugate gra- dient methods(NM methods) for nonconvex object functions.This class of methods includes the nonmonotone counterpart of modified Polak- Ribière method and modified Hestenes- Stiefel method as special cases展开更多
In this paper, an unconstrained optimization method using the nonmonotone second order Goldstein's line search is proposed. By using the negative curvature information from the Hessian,the sequence generated is sh...In this paper, an unconstrained optimization method using the nonmonotone second order Goldstein's line search is proposed. By using the negative curvature information from the Hessian,the sequence generated is shown to converge to a stationary point with the second order optimality conditions. Numerical tests on a set of standard test problems confirm the efficiency of our new method.展开更多
This paper proposes a filter secant method with nonmonotone line search for non-linearequality constrained optimization.The Hessian of the Lagrangian is approximated using the BFGSsecant update.This new method has mor...This paper proposes a filter secant method with nonmonotone line search for non-linearequality constrained optimization.The Hessian of the Lagrangian is approximated using the BFGSsecant update.This new method has more flexibility for the acceptance of the trial step and requires lesscomputational costs compared with the monotone one.The global and local convergence of the proposedmethod are given under some reasonable conditions.Further,two-step Q-superlinear convergence rateis established by introducing second order correction step.The numerical experiments are reported toshow the effectiveness of the proposed algorithm.展开更多
In this paper, an alternating direction nonmonotone approximate Newton algorithm (ADNAN) based on nonmonotone line search is developed for solving inverse problems. It is shown that ADNAN converges to a solution of th...In this paper, an alternating direction nonmonotone approximate Newton algorithm (ADNAN) based on nonmonotone line search is developed for solving inverse problems. It is shown that ADNAN converges to a solution of the inverse problems and numerical results provide the effectiveness of the proposed algorithm.展开更多
In this work we consider an extension of the classical scalar-valued projected gradient method for multiobjective problems on convex sets.As in Fazzio et al.(Optim Lett 13:1365-1379,2019)a parameter which controls the...In this work we consider an extension of the classical scalar-valued projected gradient method for multiobjective problems on convex sets.As in Fazzio et al.(Optim Lett 13:1365-1379,2019)a parameter which controls the step length is considered and an updating rule based on the spectral gradient method from the scalar case is proposed.In the present paper,we consider an extension of the traditional nonmonotone approach of Grippo et al.(SIAM J Numer Anal 23:707-716,1986)based on the maximum of some previous function values as suggested in Mita et al.(J Glob Optim 75:539-559,2019)for unconstrained multiobjective optimization problems.We prove the accumulation points of sequences generated by the proposed algorithm,if they exist,are stationary points of the original problem.Numerical experiments are reported.展开更多
The self-scaling quasi-Newton method solves an unconstrained optimization problem by scaling the Hessian approximation matrix before it is updated at each iteration to avoid the possible large eigenvalues in the Hessi...The self-scaling quasi-Newton method solves an unconstrained optimization problem by scaling the Hessian approximation matrix before it is updated at each iteration to avoid the possible large eigenvalues in the Hessian approximation matrices of the objective function. It has been proved in the literature that this method has the global and superlinear convergence when the objective function is convex (or even uniformly convex). We propose to solve unconstrained nonconvex optimization problems by a self-scaling BFGS algorithm with nonmonotone linear search. Nonmonotone line search has been recognized in numerical practices as a competitive approach for solving large-scale nonlinear problems. We consider two different nonmonotone line search forms and study the global convergence of these nonmonotone self-scale BFGS algorithms. We prove that, under some weaker condition than that in the literature, both forms of the self-scaling BFGS algorithm are globally convergent for unconstrained nonconvex optimization problems.展开更多
文摘In this paper, we provide and analyze a new scaled conjugate gradient method and its performance, based on the modified secant equation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and on a new modified nonmonotone line search technique. The method incorporates the modified BFGS secant equation in an effort to include the second order information of the objective function. The new secant equation has both gradient and function value information, and its update formula inherits the positive definiteness of Hessian approximation for general convex function. In order to improve the likelihood of finding a global optimal solution, we introduce a new modified nonmonotone line search technique. It is shown that, for nonsmooth convex problems, the proposed algorithm is globally convergent. Numerical results show that this new scaled conjugate gradient algorithm is promising and efficient for solving not only convex but also some large scale nonsmooth nonconvex problems in the sense of the Dolan-Moré performance profiles.
基金supported by the National Natural Science Foundation of China(11401126,71471140 and 11361018)Guangxi Natural Science Foundation(2016GXNSFBA380102 and 2014GXNSFFA118001)+2 种基金Guangxi Key Laboratory of Cryptography and Information Security(GCIS201618)Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(YQ15112 and YQ16112)China
文摘In this paper, we present a nonmonotone smoothing Newton algorithm for solving the circular cone programming(CCP) problem in which a linear function is minimized or maximized over the intersection of an affine space with the circular cone. Based on the relationship between the circular cone and the second-order cone(SOC), we reformulate the CCP problem as the second-order cone problem(SOCP). By extending the nonmonotone line search for unconstrained optimization to the CCP, a nonmonotone smoothing Newton method is proposed for solving the CCP. Under suitable assumptions, the proposed algorithm is shown to be globally and locally quadratically convergent. Some preliminary numerical results indicate the effectiveness of the proposed algorithm for solving the CCP.
基金Supported by the National Natural Science Foundation of China(1 0 1 6 1 0 0 2 ) and Guangxi Natural Sci-ence Foundation (0 1 3 5 0 0 4 )
文摘This paper discusses the global convergence of a class of nonmonotone conjugate gra- dient methods(NM methods) for nonconvex object functions.This class of methods includes the nonmonotone counterpart of modified Polak- Ribière method and modified Hestenes- Stiefel method as special cases
基金This work was supported by the National Natural Science Foundation of China(Grant No.10231060)the Specialized Research Fund of Doctoral Program of Higher Education of China(Grant No.20040319003)
文摘In this paper, an unconstrained optimization method using the nonmonotone second order Goldstein's line search is proposed. By using the negative curvature information from the Hessian,the sequence generated is shown to converge to a stationary point with the second order optimality conditions. Numerical tests on a set of standard test problems confirm the efficiency of our new method.
基金supported by the National Science Foundation of China under Grant No. 10871130the Ph.D. Foundation under Grant No. 20093127110005+1 种基金the Shanghai Leading Academic Discipline Project under Grant No. S30405the Shanghai Finance Budget Project under Grant Nos. 1139IA0013 and 1130IA15
文摘This paper proposes a filter secant method with nonmonotone line search for non-linearequality constrained optimization.The Hessian of the Lagrangian is approximated using the BFGSsecant update.This new method has more flexibility for the acceptance of the trial step and requires lesscomputational costs compared with the monotone one.The global and local convergence of the proposedmethod are given under some reasonable conditions.Further,two-step Q-superlinear convergence rateis established by introducing second order correction step.The numerical experiments are reported toshow the effectiveness of the proposed algorithm.
文摘In this paper, an alternating direction nonmonotone approximate Newton algorithm (ADNAN) based on nonmonotone line search is developed for solving inverse problems. It is shown that ADNAN converges to a solution of the inverse problems and numerical results provide the effectiveness of the proposed algorithm.
基金ANPCyT(Nos.PICT 2016-0921 and PICT 2019-02172),Argentina.
文摘In this work we consider an extension of the classical scalar-valued projected gradient method for multiobjective problems on convex sets.As in Fazzio et al.(Optim Lett 13:1365-1379,2019)a parameter which controls the step length is considered and an updating rule based on the spectral gradient method from the scalar case is proposed.In the present paper,we consider an extension of the traditional nonmonotone approach of Grippo et al.(SIAM J Numer Anal 23:707-716,1986)based on the maximum of some previous function values as suggested in Mita et al.(J Glob Optim 75:539-559,2019)for unconstrained multiobjective optimization problems.We prove the accumulation points of sequences generated by the proposed algorithm,if they exist,are stationary points of the original problem.Numerical experiments are reported.
基金supported by NSFC 10001031 and 70472074supported by NSERC Grant 283103
文摘The self-scaling quasi-Newton method solves an unconstrained optimization problem by scaling the Hessian approximation matrix before it is updated at each iteration to avoid the possible large eigenvalues in the Hessian approximation matrices of the objective function. It has been proved in the literature that this method has the global and superlinear convergence when the objective function is convex (or even uniformly convex). We propose to solve unconstrained nonconvex optimization problems by a self-scaling BFGS algorithm with nonmonotone linear search. Nonmonotone line search has been recognized in numerical practices as a competitive approach for solving large-scale nonlinear problems. We consider two different nonmonotone line search forms and study the global convergence of these nonmonotone self-scale BFGS algorithms. We prove that, under some weaker condition than that in the literature, both forms of the self-scaling BFGS algorithm are globally convergent for unconstrained nonconvex optimization problems.