Shock tubes create simulated blast waves which can be directed and measured lo study blast wave effects under laboratory conditions.It is desirable to increase available peak pressure from ~1 MPa to ~5 MPa to simulate...Shock tubes create simulated blast waves which can be directed and measured lo study blast wave effects under laboratory conditions.It is desirable to increase available peak pressure from ~1 MPa to ~5 MPa to simulate closer blast sources and facilitate development and testing of personal and vehicle armors.Three methods are experimentally investigated to increase peak simulated blast pressure produced by an oxyacetylene driven shock tube while maintaining suitability for laboratory studies.The first method is the addition of a Shchelkin spiral priming section which supports a deflagration to detonation transition.This approach increases the average peak pressure from 1.17 MPa to 5.33 MPa while maintaining a relevant pressure-time curve(near Friedlander waveform).The second method is a bottleneck between the driving and driven sections.Coupling a 79 mm diameter driving section to a 53 mm driven section increases the peak pressure from 1.17 MPa to 2.25 MPa.A 103 mm driving section is used to increase peak pressure to 2.64 MPa.The third method,adding solid fuel to the driving section with the oxyacetylene,results in a peak pressure increasing to 1.70 MPa.展开更多
Inwall shot blasting is a method of improving the surface hardness and high temperature oxidation resistance of the S30432 high-pressure boiler tube.The differences on residual stress,sub-grain size,micro-hardness and...Inwall shot blasting is a method of improving the surface hardness and high temperature oxidation resistance of the S30432 high-pressure boiler tube.The differences on residual stress,sub-grain size,micro-hardness and structure between the S30432 inwall shot-blasting tube produced by Baosteel with six technological process parameters and the imported super 304H were studied systematically by contrast test research.It has been demonstrated that the S30432 obtains a higher residual stress,a deeper distributed layer and a better sub-grain size of the inwall field shot-blasting layer;the martensite content of the shot-blasting surface was low;and micro-hardness and structure refinement were better.After 2000 h’ oxidation test under the 650℃/26MPa steam condition,steam oxidation resistance of the Baosteel steel tube shot-blasting surface was higher,the oxide layer was thinner,and was well combined with bulk material.展开更多
A newly designed shock-tube for biological testing has been built in our labo-ratory.This tube is 39.34 m long.It consists of several sections:high pressure section,divergent section,transitional section,test section ...A newly designed shock-tube for biological testing has been built in our labo-ratory.This tube is 39.34 m long.It consists of several sections:high pressure section,divergent section,transitional section,test section and wave-dissipated section.In theopen condition,the maximal overpressure is about 214,3 kPa,while in the closed condi-tion,the maximal overpressure may go up to 630.3 kPa.The energy source is compres-sed air.Using this equipment,we are able to inflict blast injuries with various degreesof severity in rabbits,dogs and sheep.展开更多
With recent increase of cars, the noise problem has been caused by the exhaust sounds released from exhaust pipes, which consist of weak and pulsed shock waves called blast waves. To diminish the noise, a silencer is ...With recent increase of cars, the noise problem has been caused by the exhaust sounds released from exhaust pipes, which consist of weak and pulsed shock waves called blast waves. To diminish the noise, a silencer is set up in front of the exhaust pipe. In the present study, reflectors were installed in the high-pressure section of the shock tube to generate blast waves, and three types of expansion region were investigated, combined with acoustic material of glass wool. The pressure decay was evaluated by transmission factor and reflection factor for the incident blast wave, together with pressure histories and high-speed Schlieren photography. As results, it was confirmed that the acoustic material greatly contributed to blast-wave attenuation: the one stage expansion model with glass wool recorded the highest decay of the peak over pressure for transmission, and other models with glass wool showed the second highest. The acoustic material also contributed to decay of reflected shock waves propagating toward an upstream duct.展开更多
文摘Shock tubes create simulated blast waves which can be directed and measured lo study blast wave effects under laboratory conditions.It is desirable to increase available peak pressure from ~1 MPa to ~5 MPa to simulate closer blast sources and facilitate development and testing of personal and vehicle armors.Three methods are experimentally investigated to increase peak simulated blast pressure produced by an oxyacetylene driven shock tube while maintaining suitability for laboratory studies.The first method is the addition of a Shchelkin spiral priming section which supports a deflagration to detonation transition.This approach increases the average peak pressure from 1.17 MPa to 5.33 MPa while maintaining a relevant pressure-time curve(near Friedlander waveform).The second method is a bottleneck between the driving and driven sections.Coupling a 79 mm diameter driving section to a 53 mm driven section increases the peak pressure from 1.17 MPa to 2.25 MPa.A 103 mm driving section is used to increase peak pressure to 2.64 MPa.The third method,adding solid fuel to the driving section with the oxyacetylene,results in a peak pressure increasing to 1.70 MPa.
文摘Inwall shot blasting is a method of improving the surface hardness and high temperature oxidation resistance of the S30432 high-pressure boiler tube.The differences on residual stress,sub-grain size,micro-hardness and structure between the S30432 inwall shot-blasting tube produced by Baosteel with six technological process parameters and the imported super 304H were studied systematically by contrast test research.It has been demonstrated that the S30432 obtains a higher residual stress,a deeper distributed layer and a better sub-grain size of the inwall field shot-blasting layer;the martensite content of the shot-blasting surface was low;and micro-hardness and structure refinement were better.After 2000 h’ oxidation test under the 650℃/26MPa steam condition,steam oxidation resistance of the Baosteel steel tube shot-blasting surface was higher,the oxide layer was thinner,and was well combined with bulk material.
文摘A newly designed shock-tube for biological testing has been built in our labo-ratory.This tube is 39.34 m long.It consists of several sections:high pressure section,divergent section,transitional section,test section and wave-dissipated section.In theopen condition,the maximal overpressure is about 214,3 kPa,while in the closed condi-tion,the maximal overpressure may go up to 630.3 kPa.The energy source is compres-sed air.Using this equipment,we are able to inflict blast injuries with various degreesof severity in rabbits,dogs and sheep.
文摘With recent increase of cars, the noise problem has been caused by the exhaust sounds released from exhaust pipes, which consist of weak and pulsed shock waves called blast waves. To diminish the noise, a silencer is set up in front of the exhaust pipe. In the present study, reflectors were installed in the high-pressure section of the shock tube to generate blast waves, and three types of expansion region were investigated, combined with acoustic material of glass wool. The pressure decay was evaluated by transmission factor and reflection factor for the incident blast wave, together with pressure histories and high-speed Schlieren photography. As results, it was confirmed that the acoustic material greatly contributed to blast-wave attenuation: the one stage expansion model with glass wool recorded the highest decay of the peak over pressure for transmission, and other models with glass wool showed the second highest. The acoustic material also contributed to decay of reflected shock waves propagating toward an upstream duct.