The heat transfer of hydrocarbon refrigerant across tube bundles have been widely used in refrigeration.Three-dimensional simulation model using volume of fluid(VOF) was presented to study the effects of tube shapes o...The heat transfer of hydrocarbon refrigerant across tube bundles have been widely used in refrigeration.Three-dimensional simulation model using volume of fluid(VOF) was presented to study the effects of tube shapes on flow pattern, film thickness and heat transfer of n-pentane across tube bundles, including circle, ellipse-shaped, egg-shaped and cam-shaped tube bundles. Simulation results agree well with experimental data in the literature. The liquid film thickness of sheet flow and heat transfer for different tube shapes were obtained numerically. The flow pattern transition occurs lower vapor quality for ellipse-shaped tube than other tube shapes. For sheet flow, the liquid film on circle tube and ellipseshaped tube is symmetrically distributed along the circumferential direction. However, the liquid film on egg-shaped tube at circumferential angles(θ) = 15°–60° is thicker than θ = 135°–165°. The liquid film on cam tube at θ = 15°–60° is slightly thinner than θ = 135°–165°. The liquid film thickness varies from thinner to thicker for ellipse-shaped, cam-shaped, egg-shape and circle within θ = 15°–60°. The effect of tube shape is insignificant on thin liquid film thickness. Ellipse-shaped tube has largest heat transfer coefficient for sheet flow. In practical engineering, the tube shape could be designed as ellipse to promote heat transfer.展开更多
The cross-sectional distortion usually appears during rotary-draw bending process of thin-walled rectangular tube with small bending radius.To study the cross-sectional distortion of the tube,a three-dimensional finit...The cross-sectional distortion usually appears during rotary-draw bending process of thin-walled rectangular tube with small bending radius.To study the cross-sectional distortion of the tube,a three-dimensional finite-element model of the process was developed based on ABAQUS/Explicit code and its reliability was validated by experiment.Then,the cross-sectional distortion behaviors of the tube were investigated.The results show that a zone of larger circumferential stress appears on the tube when bending angle reaches 30°.And in the larger circumferential stress zone,the sagging phenomenon is produced obviously.The maximum cross-sectional distortion is located in the larger circumferential stress zone and the angle between the plane of maximum cross-sectional distortion and the bending reference plane is about 50°.The position of the maximum cross-sectional distortion keeps almost unchanged with the variation of the clearances between dies and tube.展开更多
Out-of-plane microneedle structures are widely used in various applications such as transcutaneous drug delivery and neural signal recording for brain machine interface.This work presents a novel but simple method to ...Out-of-plane microneedle structures are widely used in various applications such as transcutaneous drug delivery and neural signal recording for brain machine interface.This work presents a novel but simple method to fabricate high-density silicon(Si)microneedle arrays with various heights and diverse cross-sectional shapes depending on photomask pattern designs.The proposed fabrication method is composed of a single photolithography and two subsequent deep reactive ion etching(DRIE)steps.First,a photoresist layer was patterned on a Si substrate to define areas to be etched,which will eventually determine the final location and shape of each individual microneedle.Then,the 1st DRIE step created deep trenches with a highly anisotropic etching of the Si substrate.Subsequently,the photoresist was removed for more isotropic etching;the 2nd DRIE isolated and sharpened microneedles from the predefined trench structures.Depending on diverse photomask designs,the 2nd DRIE formed arrays of microneedles that have various height distributions,as well as diverse cross-sectional shapes across the substrate.With these simple steps,high-aspect ratio microneedles were created in the high density of up to 625 microneedles mm^(-2)on a Si wafer.Insertion tests showed a small force as low as~172μN/microneedle is required for microneedle arrays to penetrate the dura mater of a mouse brain.To demonstrate a feasibility of drug delivery application,we also implemented silk microneedle arrays using molding processes.The fabrication method of the present study is expected to be broadly applicable to create microneedle structures for drug delivery,neuroprosthetic devices,and so on.展开更多
Incremental forming process is recently developed to form tubular parts.The fabrication cost and accuracy could be optimized if the effects of process parameters and the optimum values are specified.The aim of this re...Incremental forming process is recently developed to form tubular parts.The fabrication cost and accuracy could be optimized if the effects of process parameters and the optimum values are specified.The aim of this research is using incremental forming of copper tubes to convert a circular tube into a square cross-sectional part.An experimental setup,consisting of a spherical forming punch and a fixture for clamping the tube is designed.The forming punch movement is controlled by a CNC machine.Full factorial design of experiments is carried out in order to determine the effects of process parameters including linear velocity,radial feed,and axial feed of the tool on the thinning ratio and the maximum outer diameter of the square cross-sectional parts.Results show that the radial feed has the major influence on the thinning ratio,while the axial feed plays the major role for the final profile.Increase of radial feed results in higher thinning ratio,and decrease of axial feed results in better shape conformity.Linear velocity does not have a significant effect on thinning ratio.Regression models are also given for predicting the determined responses.展开更多
Rolling process plays an important role in the manufacture of Bi-based high temperature superconductor tapes, and the plastic flow regularities of the superconducting wires during deformation will directly affect the ...Rolling process plays an important role in the manufacture of Bi-based high temperature superconductor tapes, and the plastic flow regularities of the superconducting wires during deformation will directly affect the ultimate quality of the tapes. In order to investigate the effect of cross-sectional shapes before fiat rolling on the performance and homogeneity of the tapes, some numerical models of Bi-2223/Ag wires with different cross-sectional shapes including circular, square, elliptical and racetrack cross-sections are constructed during the rolling process. By comparing the relative density, logarithmic strain ratio and length-width ratio on the filaments, it is revealed that Bi-2223/Ag wire with special-shaped cross-section can achieve better conductivity than the round wire, in particular, the racetrack cross-sectional wire has the second best performance among four wires. Based on material processability and experimental condition, tri-pass racetrack drawing technique is employed to optimize the process and obtain racetrack cross-sectional wire. The rolling process of Bi-2223/Ag wire with racetrack cross-section causes more intensive deformation of filaments in the center of the tape and achieves the filaments with larger length-width ratio. Also, the deformation distribution of filaments verifies the numerical results. Consequently, the racetrack drawing technique can be utilized for a reference during the mechanical processing and to increase the current transmission capacities of Bi-2223/Ag tapes.展开更多
In industrial plants, ships, and buildings, a large amount of gas and air ducts are applied for equipment connection, HVAC, medium transport, and exhaust, etc. These ducts can be designed in varied cross-sectional sha...In industrial plants, ships, and buildings, a large amount of gas and air ducts are applied for equipment connection, HVAC, medium transport, and exhaust, etc. These ducts can be designed in varied cross-sectional shapes, such as round or rectangle. The author reveals through geometric calculation of the duct cross-sectional shapes and engineering experiences that the round cross-section is an optimal shape in the duct system. The round duct has the shorter perimeter than the other cross-sectional shape ducts and the stronger structure in the same working condition. The material saving of the round duct due to the shorter perimeter is quantitatively determined. In the pater, it is shown that the round duct is economically attractive. The economic analysis for the material cost saving is illustrated by an example. For a long duct system, the material and material cost savings are significant. It is suggested that the round duct in the gas and air duct system should have priority as long as the field conditions are allowed. In the paper, the material cost saving is also converted to PW, AW, and FW used for LCC economic analysis.展开更多
As a new attempt, equal channel angular extrusion (ECAE) of nickel-titanium shape memory alloy (NiTi SMA) tube was investigated by means of process experiment, finite element method (FEM) and microscopy. NiTi SM...As a new attempt, equal channel angular extrusion (ECAE) of nickel-titanium shape memory alloy (NiTi SMA) tube was investigated by means of process experiment, finite element method (FEM) and microscopy. NiTi SMA tube with the steel core in it was inserted into the steel can during ECAE of NiTi SMA tube. Based on rigid-viscoplastic FEM, multiple coupled boundary conditions and multiple constitutive models were used for finite element simulation of ECAE of NiTi SMA tube, where the effective stress field, the effective strain field and the velocity field were obtained. Finite element simulation results are in good accordance with the experimental ones. Finite element simulation results reveal that the velocity field shows the minimum value in the corner of NiTi SMA tube, where severe shear deformation occurs. Microstructural observation results reveal that severe plastic deformation leads to a certain grain orientation as well as occurrence of substructures in the grain interior and dynamic recovery occurs during ECAE of NiTi SMA tube. ECAE of NiTi SMA tube provides a new approach to manufacturing ultrafine-grained NiTi SMA tube.展开更多
As a new attempt,ball spinning was used to manufacture the nickel-titanium shape memory alloy(NiTi SMA) tube at elevated temperature.The NiTi bar with a nominal composition of Ni50.9Ti49.1(mole fraction,%) was sol...As a new attempt,ball spinning was used to manufacture the nickel-titanium shape memory alloy(NiTi SMA) tube at elevated temperature.The NiTi bar with a nominal composition of Ni50.9Ti49.1(mole fraction,%) was solution treated and was used as the original tube blank for ball spinning.Based on the variable temperature field and the constitutive equation,rigid-viscoplastic finite element method(FEM) was applied in order to simulate the ball spinning of NiTi SMA tube.The temperature field,the stress field,the strain field and the load prediction were obtained by means of FEM.FEM results reveal that there is a temperature increase of about 160 ℃ in the principal deformation zone of the spun part.It can be found from the stress fields and the strain fields that the outer wall of NiTi SMA tube is easier to meet the plastic yield criterion than the inner wall,and the plastic deformation zone is caused to be in a three-dimensional compressive stress state.The radial strain and the tangential strain are characterized by the compressive strain,while the axial strain belongs to the tensile strain.The variation of spinning loads with the progression of the ball is of great importance in predicting the stable flow of the spun part.展开更多
An experimental study on a bare flexible cylinder as well as cylinders fitted with two types of cross-sectioned helical strakes was carried out in a towing tank. The main purpose of this paper is to investigate the ef...An experimental study on a bare flexible cylinder as well as cylinders fitted with two types of cross-sectioned helical strakes was carried out in a towing tank. The main purpose of this paper is to investigate the effects of strakes’ cross-section on the vortex-induced vibrations (VIV) suppression of a flexible cylinder. The square-sectioned and round-sectioned helical strakes were selected in the experimental tests. The uniform current was generated by towing the cylinder models along the tank using a towing carriage. The Reynolds number was in the range of 800–16000. The strain responses were measured by the strain gages in cross-flow (CF) and in-line (IL) directions. A modal analysis method was adopted to obtain the displacement responses using the strain signals in different measurement positions. The comparison of the experimental results among the bare cylinder, square-sectioned straked cylinder and round-sectioned straked cylinder was performed. The helical strakes can effectively reduce the strain amplitude, displacement amplitude, response frequencies and dominant modes of a flexible cylinder excited by VIV. And the mean drag coefficients of straked cylinders were approximately consistent with each other. In addition, the square-sectioned and round-sectioned strakes nearly share the similar VIV reduction behaviors. Sometimes, the strakes with round-section represent more excellent effects on the VIV suppression of response frequency than those with square-section.展开更多
Debris flow drainage canal is one of the most widely used engineering measures to prevent and manage debris flow hazards.The shape and the sizes of the cross-section are important parameters when design debris flow dr...Debris flow drainage canal is one of the most widely used engineering measures to prevent and manage debris flow hazards.The shape and the sizes of the cross-section are important parameters when design debris flow drainage canal.Therefore,how to design the appropriate shape and sizes of the cross-section so that the drainage canal can have the optimal drainage capacity is very important and few researched at home and abroad.This study was conducted to analyze the hydraulic condition of a Trapezoid-V shaped drainage canal and optimize its cross-section.By assuming characteristic sizes of the cross-section,the paper deduced the configuration parameter of the cross-section of a Trapezoid-V shaped debris flow drainage canal.By theory analysis,it indicates that the optimal configuration parameter is only related to the side slope coefficient and the bottom transverse slope coefficient.For this study,the Heishui Gully,a first-order tributary of the lower Jinsha River,was used as an example to design the optimal cross-section of the drainage canal of debris flow.展开更多
Cross-section deformation is one of important factors affecting the quality of tube formation, and the tube's capability of transporting liquid and gas will be reduced because of the cross-section ellipse deformation...Cross-section deformation is one of important factors affecting the quality of tube formation, and the tube's capability of transporting liquid and gas will be reduced because of the cross-section ellipse deformation due to the effect of shear load in plastic bending process. When the tube is bent, the extrados-wall bears the tension stress and the intrados-wall bears the compression stress, synchronously the cross-section is affected by the circumferential stress. According to the above, the distribution function and curve of tangential stress can be obtained according to force balance differential equations on circumferential direction and Trasca rule. Subsequently the real state and virtual state moment equations were established, a new method was presented adopting the virtual principle of deformation system to calculate the x-axis and y-axis displacement of arbitrary point on cross-section. So the major and minor axes of deformed cross-section can be calculated according to the displacements of each point, and the variety value of major and minor axes will be obtained further. Finally the theoretical calculating result is compared with NC tube rotary-bending experiment results to verify the rationality of theoretical analysis, and the cross-section deformation rule of thin-walled tube can be received.展开更多
Among most traditional piezo water cooling systems, piezoelectric valve pumps are adopted as their driving sources. The valves in these pumps induce problems of shock and vibration and also make their structure compli...Among most traditional piezo water cooling systems, piezoelectric valve pumps are adopted as their driving sources. The valves in these pumps induce problems of shock and vibration and also make their structure complicated, which is uneasy to minimize and reduce their reliability and applicability of the whole system. In order to avoid these problems caused by valve structure, a novel valveless piezoelectric pump is developed, which integrates both functions of transforming and cooling. The pump’s Y-shape tree-like construction not only increases the efficiency of cooling but also the system reliability and applicability. Firstly, a multistage Y-shape treelike bifurcate tube is proposed, then a valveless piezoelectric pump with multistage Y-shape treelike bifurcate tubes is designed and its working principle is analyzed. Then, the theoretical analysis of flow resistance characteristics and the flow rate of the valveless piezoelectric pump are performed. Meanwhile, commercial software CFX is employed to perform the numerical simulation for the pump. Finally, this valveless piezoelectric pump is fabricated, the relationship between the flow rates and driving frequency, as well as the relationship between the back pressure and the driving frequency are experimentally investigated. The experimental results show that the maximum flow rate is 35.6 mL/min under 100 V peak-to-peak voltage (10.3 Hz) power supply, and the maximum back pressure is 55 mm H2O under 100 V (9 Hz) power supply, which validates the feasibility of the valveless piezoelectric pump with multistage Y-shape treelike bifurcate tubes. The proposed research provides certain references for the design of valveless piezoelectric pump and improves the reliability of piezo water cooling systems.展开更多
Microchannel heat sink with high heat transfer coefficients has been extensively investigated due to its wide application prospective in electronic cooling. However, this cooling system requires a separate pump to dri...Microchannel heat sink with high heat transfer coefficients has been extensively investigated due to its wide application prospective in electronic cooling. However, this cooling system requires a separate pump to drive the fluid transfer, which is uneasy to minimize and reduces their reliability and applicability of the whole system. In order to avoid these problems, valveless piezoelectric pump with fractal-like Y-shape branching tubes is proposed. Fractal-like Y-shape branching tube used in microchannel heat sinks is exploited as no-moving-part valve of the valveless piezoelectric pump. In order to obtain flow characteristics of the pump, the relationship between tube structure and flow rate of the pump is studied. Specifically, the flow resistances of fractal-like Y-shape branching tubes and flow rate of the pump are analyzed by using fractal theory. Then, finite element software is employed to simulate the flow field of the tube, and the relationships between pressure drop and flow rate along merging and dividing flows are obtained. Finally, valveless piezoelectric pumps with fractal-like Y-shape branching tubes with different fractal dimensions of diameter distribution are fabricated, and flow rate experiment is conducted. The experimental results show that the flow rate of the pump increases with the rise of fractal dimension of the tube diameter. When fractal dimension is 3, the maximum flow rate of the valveless pump is 29.16 mL/min under 100 V peak to peak (13 Hz) power supply, which reveals the relationship between flow rate and fractal dimensions of tube diameter distribution. This paper investigates the flow characteristics of valveless piezoelectric pump with fractal-like Y-shape branching tubes, which provides certain references for valveless piezoelectric pump with fractal-like Y-shape branching tubes in application on electronic chip cooling.展开更多
According to the rigid-viscoplasticity finite element method,the porthole die extrusion process of an aluminum harmonica-shaped tube was successfully simulated based on software Deform-3D. The distribution of stress f...According to the rigid-viscoplasticity finite element method,the porthole die extrusion process of an aluminum harmonica-shaped tube was successfully simulated based on software Deform-3D. The distribution of stress field,effective strain field,velocity field and temperature field during the extrusion process were discussed and the metal flow in welding extrusion was analyzed. The simulation results show that the material flow velocities in the bearing exit are non-uniform with the originally designed die and the forepart of the profile is not neat or even. Aiming at solving this problem,the modification method of die structure was improved. The result shows that the uniform material flow velocities in the die exit and a perfect extruded are obtained by modification bearing length.展开更多
The microstructures and interracial characteristics of matrices at the inwalls and the out-walls of the cold-rolled tube with different amounts of deformation were investigated by the scanning electronic microscope (...The microstructures and interracial characteristics of matrices at the inwalls and the out-walls of the cold-rolled tube with different amounts of deformation were investigated by the scanning electronic microscope (SEM), the optical microscope (OM), and the transmission electronic microscope (TEM) techniques. It was observed that as the amount of deformation increases, the flaws nucleate at the out-walls of the cold rolled tube, the stress-induced martensites change from (111 ) type Ⅰ twins to (011) type Ⅱ twins and then to (100) compound twins, nanocrystals and bulk amorphisation happen, the high density dislocation causes stress concentration at the out-walls of the Ti50Ni50 cold-rolled tube, and then precipitates its fracture, and the Ti2Ni particles strengthen the grain boundaries and curb the dislocation movements during plastic deformation. The inhomogeneity level of the grains in the Ti50Ni50 alloy plays an important role on the fracture of the Ti50Ni50 cold rolled tube.展开更多
Pure alumina ceramic tube and 95 alumina ceramic (the ceramic with 95.84% alumina) tube were prepared by using self-prepared alumina micrometer powder without agglomeration as raw material. The ceramic green was sha...Pure alumina ceramic tube and 95 alumina ceramic (the ceramic with 95.84% alumina) tube were prepared by using self-prepared alumina micrometer powder without agglomeration as raw material. The ceramic green was shaped by isostatic pressing and sintered at different temperature from 800 to 1 600 ℃ for 2 h. The 95 ceramic tube sintered at 1 550 ℃ for 2 h had mean particle size of 4 μm, bend strength of 437 MPa and volume density of 3.714 g/cm3. Shape memory effect during sintering was observed. XRD results showed that no phase transition occurred during shape memory process, which indicated that shape memory effect was not caused by phase transition. Several probable causes of the alumina ceramic shape memory effect were discussed in this paper.展开更多
In order to predict the flattening rate of the cross-section accurately during the tube ben- ding, the generation principle, the solution and the influence factor of the cross-section flattening were studied. On the b...In order to predict the flattening rate of the cross-section accurately during the tube ben- ding, the generation principle, the solution and the influence factor of the cross-section flattening were studied. On the basis of the plane-stress and the assumption that the plastic volume is con- stant, three-dimensionai strain formulas were established in consider of the cross-section flattening. Considering the wail-thickness change, the approximate calculation formulas of short axis flattening rate were deduced, with the outer diameter and the inner diameter as parameters. Because different materials have different cross-section flattening rates, a material correction factor was introduced to modify the formula based on experiments. Finally, the validity of the theoretical formulas was proved according to the calculation and the experiment results, which can provide a reference for the forming quality prediction in tube bending.展开更多
Using hybrid perturbatin_Galerkin technique,a crcular cross_section tube model with sinusoidal wall is studied.This technique can remove the limitation of small parameters for perturbation and the difficulty of select...Using hybrid perturbatin_Galerkin technique,a crcular cross_section tube model with sinusoidal wall is studied.This technique can remove the limitation of small parameters for perturbation and the difficulty of selecting good coordinate functions about Galerkin technique.The effects caused by the boundary conditions and the Reynolds number on the flow were discussed.The position of the separate and reattachment points was obtained.The tendency of the variation about the shear stress on the wall and friction factor along the axis direction were also analyzed.The results at a small parameter have good agreements with the perturbation ones.展开更多
As a successively and locally plastic deformation process, ball spinning is applied to manufacturing thin-walled Nickel-Titanium shape memory alloy (NiTi SMA) tube at high temperature. NiTi SMA tube blank belongs to...As a successively and locally plastic deformation process, ball spinning is applied to manufacturing thin-walled Nickel-Titanium shape memory alloy (NiTi SMA) tube at high temperature. NiTi SMA tube blank belongs to the as-cast state which consists of a lot of dendritic grains and a few equiaxed grains. The compression tests of NiTi SMA were carried out at various strain rates at high temperature in order to obtain the constitutive model of NiTi SMA. Because NiTi SMA is sensitive to the strain rates at high temperature, rigid-viscoplastic finite element method (FEM) is used to simulate ball spinning of thin-walled NiTi SMA tube in order to analyze the deformation behavior of ball spinning of NiTi SMA tube. Stress fields, strain fields as well as velocity fields is obtained by means of rigid-viscoplastic FEM, which lays the profound foundations for studying the metal flow rule in ball spinning and forming perfect spun NiTi SMA tube.展开更多
基金supported by National Natural Science Foundation of China (52006242)National Natural Science Foundation of China (52192623)+1 种基金Science Foundation of China University of Petroleum,Beijing (ZX20200126)Science and technology program for strategic cooperation of CNPC–China University of Petroleum (ZLZX2020-05)。
文摘The heat transfer of hydrocarbon refrigerant across tube bundles have been widely used in refrigeration.Three-dimensional simulation model using volume of fluid(VOF) was presented to study the effects of tube shapes on flow pattern, film thickness and heat transfer of n-pentane across tube bundles, including circle, ellipse-shaped, egg-shaped and cam-shaped tube bundles. Simulation results agree well with experimental data in the literature. The liquid film thickness of sheet flow and heat transfer for different tube shapes were obtained numerically. The flow pattern transition occurs lower vapor quality for ellipse-shaped tube than other tube shapes. For sheet flow, the liquid film on circle tube and ellipseshaped tube is symmetrically distributed along the circumferential direction. However, the liquid film on egg-shaped tube at circumferential angles(θ) = 15°–60° is thicker than θ = 135°–165°. The liquid film on cam tube at θ = 15°–60° is slightly thinner than θ = 135°–165°. The liquid film thickness varies from thinner to thicker for ellipse-shaped, cam-shaped, egg-shape and circle within θ = 15°–60°. The effect of tube shape is insignificant on thin liquid film thickness. Ellipse-shaped tube has largest heat transfer coefficient for sheet flow. In practical engineering, the tube shape could be designed as ellipse to promote heat transfer.
基金Projects(50575184,50975235) supported by the National Natural Science Foundation of ChinaProject(YF07057) supported by Science and Technology Development Program of Xi'an City,Shaanxi Province,China+1 种基金Project(NPU-FFR-200809) supported by Foundation for Fundamental Research of Northwestern Polytechnical University,ChinaProject(08-3) supported by State Key Laboratory of Materials Processing and Die & Mould Technology,Huazhong University of Science and Technology,China
文摘The cross-sectional distortion usually appears during rotary-draw bending process of thin-walled rectangular tube with small bending radius.To study the cross-sectional distortion of the tube,a three-dimensional finite-element model of the process was developed based on ABAQUS/Explicit code and its reliability was validated by experiment.Then,the cross-sectional distortion behaviors of the tube were investigated.The results show that a zone of larger circumferential stress appears on the tube when bending angle reaches 30°.And in the larger circumferential stress zone,the sagging phenomenon is produced obviously.The maximum cross-sectional distortion is located in the larger circumferential stress zone and the angle between the plane of maximum cross-sectional distortion and the bending reference plane is about 50°.The position of the maximum cross-sectional distortion keeps almost unchanged with the variation of the clearances between dies and tube.
基金This work was supported by KIST(Korea Institute of Science and Technology)institutional grants(2E30965,and 2V07360)the National R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(Nos.2020R1C1C1006065,2021M3F3A2A01037366)+1 种基金This work was also supported by the Korea Medical Device Development Fund grant funded by the Korea government(the Ministry of Science and ICT,the Ministry of Trade,Industry and Energy,the Ministry of Health&Welfarethe Ministry of Food and Drug Safety)(Project Number:9991006818,KMDF_PR_20200901_0145-2021).
文摘Out-of-plane microneedle structures are widely used in various applications such as transcutaneous drug delivery and neural signal recording for brain machine interface.This work presents a novel but simple method to fabricate high-density silicon(Si)microneedle arrays with various heights and diverse cross-sectional shapes depending on photomask pattern designs.The proposed fabrication method is composed of a single photolithography and two subsequent deep reactive ion etching(DRIE)steps.First,a photoresist layer was patterned on a Si substrate to define areas to be etched,which will eventually determine the final location and shape of each individual microneedle.Then,the 1st DRIE step created deep trenches with a highly anisotropic etching of the Si substrate.Subsequently,the photoresist was removed for more isotropic etching;the 2nd DRIE isolated and sharpened microneedles from the predefined trench structures.Depending on diverse photomask designs,the 2nd DRIE formed arrays of microneedles that have various height distributions,as well as diverse cross-sectional shapes across the substrate.With these simple steps,high-aspect ratio microneedles were created in the high density of up to 625 microneedles mm^(-2)on a Si wafer.Insertion tests showed a small force as low as~172μN/microneedle is required for microneedle arrays to penetrate the dura mater of a mouse brain.To demonstrate a feasibility of drug delivery application,we also implemented silk microneedle arrays using molding processes.The fabrication method of the present study is expected to be broadly applicable to create microneedle structures for drug delivery,neuroprosthetic devices,and so on.
文摘Incremental forming process is recently developed to form tubular parts.The fabrication cost and accuracy could be optimized if the effects of process parameters and the optimum values are specified.The aim of this research is using incremental forming of copper tubes to convert a circular tube into a square cross-sectional part.An experimental setup,consisting of a spherical forming punch and a fixture for clamping the tube is designed.The forming punch movement is controlled by a CNC machine.Full factorial design of experiments is carried out in order to determine the effects of process parameters including linear velocity,radial feed,and axial feed of the tool on the thinning ratio and the maximum outer diameter of the square cross-sectional parts.Results show that the radial feed has the major influence on the thinning ratio,while the axial feed plays the major role for the final profile.Increase of radial feed results in higher thinning ratio,and decrease of axial feed results in better shape conformity.Linear velocity does not have a significant effect on thinning ratio.Regression models are also given for predicting the determined responses.
基金supported by Major Program of National Natural Science Foundation of China (Grant No. 50635050)National Natural Science Foundation of China (Grant No. 50575124)
文摘Rolling process plays an important role in the manufacture of Bi-based high temperature superconductor tapes, and the plastic flow regularities of the superconducting wires during deformation will directly affect the ultimate quality of the tapes. In order to investigate the effect of cross-sectional shapes before fiat rolling on the performance and homogeneity of the tapes, some numerical models of Bi-2223/Ag wires with different cross-sectional shapes including circular, square, elliptical and racetrack cross-sections are constructed during the rolling process. By comparing the relative density, logarithmic strain ratio and length-width ratio on the filaments, it is revealed that Bi-2223/Ag wire with special-shaped cross-section can achieve better conductivity than the round wire, in particular, the racetrack cross-sectional wire has the second best performance among four wires. Based on material processability and experimental condition, tri-pass racetrack drawing technique is employed to optimize the process and obtain racetrack cross-sectional wire. The rolling process of Bi-2223/Ag wire with racetrack cross-section causes more intensive deformation of filaments in the center of the tape and achieves the filaments with larger length-width ratio. Also, the deformation distribution of filaments verifies the numerical results. Consequently, the racetrack drawing technique can be utilized for a reference during the mechanical processing and to increase the current transmission capacities of Bi-2223/Ag tapes.
文摘In industrial plants, ships, and buildings, a large amount of gas and air ducts are applied for equipment connection, HVAC, medium transport, and exhaust, etc. These ducts can be designed in varied cross-sectional shapes, such as round or rectangle. The author reveals through geometric calculation of the duct cross-sectional shapes and engineering experiences that the round cross-section is an optimal shape in the duct system. The round duct has the shorter perimeter than the other cross-sectional shape ducts and the stronger structure in the same working condition. The material saving of the round duct due to the shorter perimeter is quantitatively determined. In the pater, it is shown that the round duct is economically attractive. The economic analysis for the material cost saving is illustrated by an example. For a long duct system, the material and material cost savings are significant. It is suggested that the round duct in the gas and air duct system should have priority as long as the field conditions are allowed. In the paper, the material cost saving is also converted to PW, AW, and FW used for LCC economic analysis.
基金Project(51071056)supported by the National Natural Science Foundation of ChinaProjects(HEUCF121712,HEUCF201317002)supported by the Fundamental Research Funds for the Central Universities of China
文摘As a new attempt, equal channel angular extrusion (ECAE) of nickel-titanium shape memory alloy (NiTi SMA) tube was investigated by means of process experiment, finite element method (FEM) and microscopy. NiTi SMA tube with the steel core in it was inserted into the steel can during ECAE of NiTi SMA tube. Based on rigid-viscoplastic FEM, multiple coupled boundary conditions and multiple constitutive models were used for finite element simulation of ECAE of NiTi SMA tube, where the effective stress field, the effective strain field and the velocity field were obtained. Finite element simulation results are in good accordance with the experimental ones. Finite element simulation results reveal that the velocity field shows the minimum value in the corner of NiTi SMA tube, where severe shear deformation occurs. Microstructural observation results reveal that severe plastic deformation leads to a certain grain orientation as well as occurrence of substructures in the grain interior and dynamic recovery occurs during ECAE of NiTi SMA tube. ECAE of NiTi SMA tube provides a new approach to manufacturing ultrafine-grained NiTi SMA tube.
基金Project(51071056) supported by the National Natural Science Foundation of ChinaProject(HEUCF121712) supported by the Fundamental Research Funds for the Central Universities of China
文摘As a new attempt,ball spinning was used to manufacture the nickel-titanium shape memory alloy(NiTi SMA) tube at elevated temperature.The NiTi bar with a nominal composition of Ni50.9Ti49.1(mole fraction,%) was solution treated and was used as the original tube blank for ball spinning.Based on the variable temperature field and the constitutive equation,rigid-viscoplastic finite element method(FEM) was applied in order to simulate the ball spinning of NiTi SMA tube.The temperature field,the stress field,the strain field and the load prediction were obtained by means of FEM.FEM results reveal that there is a temperature increase of about 160 ℃ in the principal deformation zone of the spun part.It can be found from the stress fields and the strain fields that the outer wall of NiTi SMA tube is easier to meet the plastic yield criterion than the inner wall,and the plastic deformation zone is caused to be in a three-dimensional compressive stress state.The radial strain and the tangential strain are characterized by the compressive strain,while the axial strain belongs to the tensile strain.The variation of spinning loads with the progression of the ball is of great importance in predicting the stable flow of the spun part.
基金supported by the National Natural Science Foundation of China(Grant Nos.51479135,51525803 and 51679167)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51621092)+1 种基金the Major State Basic Research Development Program of China(973 Program,Grant No.2014CB046801)the Natural Science Foundation of Tianjin(Grant No.15JCQNJC07700)
文摘An experimental study on a bare flexible cylinder as well as cylinders fitted with two types of cross-sectioned helical strakes was carried out in a towing tank. The main purpose of this paper is to investigate the effects of strakes’ cross-section on the vortex-induced vibrations (VIV) suppression of a flexible cylinder. The square-sectioned and round-sectioned helical strakes were selected in the experimental tests. The uniform current was generated by towing the cylinder models along the tank using a towing carriage. The Reynolds number was in the range of 800–16000. The strain responses were measured by the strain gages in cross-flow (CF) and in-line (IL) directions. A modal analysis method was adopted to obtain the displacement responses using the strain signals in different measurement positions. The comparison of the experimental results among the bare cylinder, square-sectioned straked cylinder and round-sectioned straked cylinder was performed. The helical strakes can effectively reduce the strain amplitude, displacement amplitude, response frequencies and dominant modes of a flexible cylinder excited by VIV. And the mean drag coefficients of straked cylinders were approximately consistent with each other. In addition, the square-sectioned and round-sectioned strakes nearly share the similar VIV reduction behaviors. Sometimes, the strakes with round-section represent more excellent effects on the VIV suppression of response frequency than those with square-section.
基金supported by the National Science and Technology Supporting Plan (Grant No. 2009BAK56B05)Key Project of Chinese National Programs for Fundamental Research and Development (973 Program) (Grant No. 2008CB425803)
文摘Debris flow drainage canal is one of the most widely used engineering measures to prevent and manage debris flow hazards.The shape and the sizes of the cross-section are important parameters when design debris flow drainage canal.Therefore,how to design the appropriate shape and sizes of the cross-section so that the drainage canal can have the optimal drainage capacity is very important and few researched at home and abroad.This study was conducted to analyze the hydraulic condition of a Trapezoid-V shaped drainage canal and optimize its cross-section.By assuming characteristic sizes of the cross-section,the paper deduced the configuration parameter of the cross-section of a Trapezoid-V shaped debris flow drainage canal.By theory analysis,it indicates that the optimal configuration parameter is only related to the side slope coefficient and the bottom transverse slope coefficient.For this study,the Heishui Gully,a first-order tributary of the lower Jinsha River,was used as an example to design the optimal cross-section of the drainage canal of debris flow.
基金supported by "Eleven Five Years Plan" Basic Research Item of National Defense of China (Grant No. B2220060048)
文摘Cross-section deformation is one of important factors affecting the quality of tube formation, and the tube's capability of transporting liquid and gas will be reduced because of the cross-section ellipse deformation due to the effect of shear load in plastic bending process. When the tube is bent, the extrados-wall bears the tension stress and the intrados-wall bears the compression stress, synchronously the cross-section is affected by the circumferential stress. According to the above, the distribution function and curve of tangential stress can be obtained according to force balance differential equations on circumferential direction and Trasca rule. Subsequently the real state and virtual state moment equations were established, a new method was presented adopting the virtual principle of deformation system to calculate the x-axis and y-axis displacement of arbitrary point on cross-section. So the major and minor axes of deformed cross-section can be calculated according to the displacements of each point, and the variety value of major and minor axes will be obtained further. Finally the theoretical calculating result is compared with NC tube rotary-bending experiment results to verify the rationality of theoretical analysis, and the cross-section deformation rule of thin-walled tube can be received.
基金supported by National Natural Science Foundation of China (Grant Nos. 50775109, 50735002, 51075201)Open Fund of State Key Lab of Digital Manufacturing Equipment and Technology of Huazhong University of Science and Technology of China (Grant No.DMETKF2009002)
文摘Among most traditional piezo water cooling systems, piezoelectric valve pumps are adopted as their driving sources. The valves in these pumps induce problems of shock and vibration and also make their structure complicated, which is uneasy to minimize and reduce their reliability and applicability of the whole system. In order to avoid these problems caused by valve structure, a novel valveless piezoelectric pump is developed, which integrates both functions of transforming and cooling. The pump’s Y-shape tree-like construction not only increases the efficiency of cooling but also the system reliability and applicability. Firstly, a multistage Y-shape treelike bifurcate tube is proposed, then a valveless piezoelectric pump with multistage Y-shape treelike bifurcate tubes is designed and its working principle is analyzed. Then, the theoretical analysis of flow resistance characteristics and the flow rate of the valveless piezoelectric pump are performed. Meanwhile, commercial software CFX is employed to perform the numerical simulation for the pump. Finally, this valveless piezoelectric pump is fabricated, the relationship between the flow rates and driving frequency, as well as the relationship between the back pressure and the driving frequency are experimentally investigated. The experimental results show that the maximum flow rate is 35.6 mL/min under 100 V peak-to-peak voltage (10.3 Hz) power supply, and the maximum back pressure is 55 mm H2O under 100 V (9 Hz) power supply, which validates the feasibility of the valveless piezoelectric pump with multistage Y-shape treelike bifurcate tubes. The proposed research provides certain references for the design of valveless piezoelectric pump and improves the reliability of piezo water cooling systems.
基金Supported by National Natural Science Foundation of China(Grant Nos.51275235,51375227)Major Research Plan of National Natural Science Foundation of China(Grant No.91223201)Independent Projects Fund of State Key Lab of Mechanics and Control of Mechanical Structures of China(Grant No.0313G01)
文摘Microchannel heat sink with high heat transfer coefficients has been extensively investigated due to its wide application prospective in electronic cooling. However, this cooling system requires a separate pump to drive the fluid transfer, which is uneasy to minimize and reduces their reliability and applicability of the whole system. In order to avoid these problems, valveless piezoelectric pump with fractal-like Y-shape branching tubes is proposed. Fractal-like Y-shape branching tube used in microchannel heat sinks is exploited as no-moving-part valve of the valveless piezoelectric pump. In order to obtain flow characteristics of the pump, the relationship between tube structure and flow rate of the pump is studied. Specifically, the flow resistances of fractal-like Y-shape branching tubes and flow rate of the pump are analyzed by using fractal theory. Then, finite element software is employed to simulate the flow field of the tube, and the relationships between pressure drop and flow rate along merging and dividing flows are obtained. Finally, valveless piezoelectric pumps with fractal-like Y-shape branching tubes with different fractal dimensions of diameter distribution are fabricated, and flow rate experiment is conducted. The experimental results show that the flow rate of the pump increases with the rise of fractal dimension of the tube diameter. When fractal dimension is 3, the maximum flow rate of the valveless pump is 29.16 mL/min under 100 V peak to peak (13 Hz) power supply, which reveals the relationship between flow rate and fractal dimensions of tube diameter distribution. This paper investigates the flow characteristics of valveless piezoelectric pump with fractal-like Y-shape branching tubes, which provides certain references for valveless piezoelectric pump with fractal-like Y-shape branching tubes in application on electronic chip cooling.
基金Project(50674017) supported by the National Natural Science Foundation of China
文摘According to the rigid-viscoplasticity finite element method,the porthole die extrusion process of an aluminum harmonica-shaped tube was successfully simulated based on software Deform-3D. The distribution of stress field,effective strain field,velocity field and temperature field during the extrusion process were discussed and the metal flow in welding extrusion was analyzed. The simulation results show that the material flow velocities in the bearing exit are non-uniform with the originally designed die and the forepart of the profile is not neat or even. Aiming at solving this problem,the modification method of die structure was improved. The result shows that the uniform material flow velocities in the die exit and a perfect extruded are obtained by modification bearing length.
文摘The microstructures and interracial characteristics of matrices at the inwalls and the out-walls of the cold-rolled tube with different amounts of deformation were investigated by the scanning electronic microscope (SEM), the optical microscope (OM), and the transmission electronic microscope (TEM) techniques. It was observed that as the amount of deformation increases, the flaws nucleate at the out-walls of the cold rolled tube, the stress-induced martensites change from (111 ) type Ⅰ twins to (011) type Ⅱ twins and then to (100) compound twins, nanocrystals and bulk amorphisation happen, the high density dislocation causes stress concentration at the out-walls of the Ti50Ni50 cold-rolled tube, and then precipitates its fracture, and the Ti2Ni particles strengthen the grain boundaries and curb the dislocation movements during plastic deformation. The inhomogeneity level of the grains in the Ti50Ni50 alloy plays an important role on the fracture of the Ti50Ni50 cold rolled tube.
基金Funded by the Natural Science Foundation of Guangxi University for Nationalities(Nos.200702YJ19 and 2008ZD011)National Natural Science Foundation of China(No.51172049)+2 种基金Special Prophase Project of 973 Program Research of China(No.2012CB722804)Guangxi Higher Education Institutes Talent Highland Innovation Team Scheme(No.GJR201147-12)Construction Project of Key Laboratory of Chemical and Biological Transformation Process of Guangxi Higher Education Institutes(No.GJKY20129)
文摘Pure alumina ceramic tube and 95 alumina ceramic (the ceramic with 95.84% alumina) tube were prepared by using self-prepared alumina micrometer powder without agglomeration as raw material. The ceramic green was shaped by isostatic pressing and sintered at different temperature from 800 to 1 600 ℃ for 2 h. The 95 ceramic tube sintered at 1 550 ℃ for 2 h had mean particle size of 4 μm, bend strength of 437 MPa and volume density of 3.714 g/cm3. Shape memory effect during sintering was observed. XRD results showed that no phase transition occurred during shape memory process, which indicated that shape memory effect was not caused by phase transition. Several probable causes of the alumina ceramic shape memory effect were discussed in this paper.
基金Supported by the National Natural Science Foundation of China(50805009)Twelve Five-Year Plan Basic Research Item of National Defense of China(A2220110008)
文摘In order to predict the flattening rate of the cross-section accurately during the tube ben- ding, the generation principle, the solution and the influence factor of the cross-section flattening were studied. On the basis of the plane-stress and the assumption that the plastic volume is con- stant, three-dimensionai strain formulas were established in consider of the cross-section flattening. Considering the wail-thickness change, the approximate calculation formulas of short axis flattening rate were deduced, with the outer diameter and the inner diameter as parameters. Because different materials have different cross-section flattening rates, a material correction factor was introduced to modify the formula based on experiments. Finally, the validity of the theoretical formulas was proved according to the calculation and the experiment results, which can provide a reference for the forming quality prediction in tube bending.
文摘Using hybrid perturbatin_Galerkin technique,a crcular cross_section tube model with sinusoidal wall is studied.This technique can remove the limitation of small parameters for perturbation and the difficulty of selecting good coordinate functions about Galerkin technique.The effects caused by the boundary conditions and the Reynolds number on the flow were discussed.The position of the separate and reattachment points was obtained.The tendency of the variation about the shear stress on the wall and friction factor along the axis direction were also analyzed.The results at a small parameter have good agreements with the perturbation ones.
基金the National Natural Science Foundation of China(No.51071056)the Fundamental Research Funds for the Central Universities of China(No.HEUCF121712)
文摘As a successively and locally plastic deformation process, ball spinning is applied to manufacturing thin-walled Nickel-Titanium shape memory alloy (NiTi SMA) tube at high temperature. NiTi SMA tube blank belongs to the as-cast state which consists of a lot of dendritic grains and a few equiaxed grains. The compression tests of NiTi SMA were carried out at various strain rates at high temperature in order to obtain the constitutive model of NiTi SMA. Because NiTi SMA is sensitive to the strain rates at high temperature, rigid-viscoplastic finite element method (FEM) is used to simulate ball spinning of thin-walled NiTi SMA tube in order to analyze the deformation behavior of ball spinning of NiTi SMA tube. Stress fields, strain fields as well as velocity fields is obtained by means of rigid-viscoplastic FEM, which lays the profound foundations for studying the metal flow rule in ball spinning and forming perfect spun NiTi SMA tube.