The construction of grouting butt joints of bamboo tubes is simple and efficient.However,when the joint is bent,the low tensile strength of the mortar easily leads to cracking of the mortar prior to the failure of the...The construction of grouting butt joints of bamboo tubes is simple and efficient.However,when the joint is bent,the low tensile strength of the mortar easily leads to cracking of the mortar prior to the failure of the bamboo tube.In this paper,a comparative test of the bending capacity was performed on grouting butt joints reinforced by nonperforated,fully perforated,and semiperforated steel plates embedded in bamboo tubes to obtain the loaddisplacement curves and ultimate bearing capacity of various specimens.The strengthening effect of CFRP pasted on bamboo tubes was also studied.The results show that the opening at the end of the steel plate is beneficial to resist the slip between the mortar and steel plate,while the complete section in the middle of the steel plate is conducive to making full use of the tensile strength of the steel plate.Therefore,it is best to insert the semiperforated steel plate with openings in the end and without openings in the middle into the mortar to enhance the bending properties of the grouting butt joint,which can make the failure mode of the joint change from brittle failure of mortar to ductile compression failure of bamboo tube.In addition,pasting CFRP sheets on the external wall of the bamboo tube helps to reduce the tensile stress of the mortar,while increasing the width of the steel plate can increase the bending moment of inertia of the mixture of the steel plate and mortar.These two complementary measures are very effective in delaying the cracking of the bamboo tube and improving the bending capacity of the joint.展开更多
Titanium tube and stainless steel tube plate were welded by an innovative friction welding of tube to tube plate using an external tool (FWTPET). Copper was used as an interlayer for joining the dissimilar materials a...Titanium tube and stainless steel tube plate were welded by an innovative friction welding of tube to tube plate using an external tool (FWTPET). Copper was used as an interlayer for joining the dissimilar materials and also to minimize the effect of intermetallics formed at the joint interface. The process parameters that govern FWTPET process are plunge rate, rotational speed, plunge depth, axial load and flash trap profile. Among them, the flash trap profile of the tube has a significant influence on the joint integrity. Various flash trap profiles like vertical slots, holes, zig-zag holes, and petals were made on the titanium tube welded to the stainless steel tube plate. Macroscopic and microscopic studies reveal defect-free joints. The presence of copper interlayer and intermetallics was evident from X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) studies. The microhardness survey was presented across and along the interface. A novel test procedure called “plunge shear test” was developed to evaluate the joint properties of the welded joints. The highest shear fracture load of 31.58 kN was observed on the sample having petals as flash trap profile. The sheared surfaces were further characterized using SEM for fractography.展开更多
The out-of-plane distortion induced in a multi-pass circumferential fillet welding of tube to pipe under different weld sequences and directions was studied using Finite Element Method(FEM) based Sysweld software and ...The out-of-plane distortion induced in a multi-pass circumferential fillet welding of tube to pipe under different weld sequences and directions was studied using Finite Element Method(FEM) based Sysweld software and verified experimentally. The FEM analyses consisted of thermal and mechanical analyses.Thermal analysis was validated with experimental transient temperature measurements. In the mechanical analysis, three different weld sequences and directions were considered to understand the mechanism of out-of-plane distortion in the tube to pipe T-joints. It was learnt that the welding direction plays a major role in minimizing the out-of-plane distortion. Further, during circumferential fillet welding of the tube to pipe component, the out-of-plane distortion generated in the x direction was primarily influenced by heat input due to the start and stop points, whereas the distortion in the z direction was influenced by time lag and welding direction. The FEM predicted distortion was compared with experimental measurements and the mechanism of out-of-plane distortion was confirmed.展开更多
基金The authors are grateful for the financial support of the National Key Research and Development Program of China(2017YFC0703500).
文摘The construction of grouting butt joints of bamboo tubes is simple and efficient.However,when the joint is bent,the low tensile strength of the mortar easily leads to cracking of the mortar prior to the failure of the bamboo tube.In this paper,a comparative test of the bending capacity was performed on grouting butt joints reinforced by nonperforated,fully perforated,and semiperforated steel plates embedded in bamboo tubes to obtain the loaddisplacement curves and ultimate bearing capacity of various specimens.The strengthening effect of CFRP pasted on bamboo tubes was also studied.The results show that the opening at the end of the steel plate is beneficial to resist the slip between the mortar and steel plate,while the complete section in the middle of the steel plate is conducive to making full use of the tensile strength of the steel plate.Therefore,it is best to insert the semiperforated steel plate with openings in the end and without openings in the middle into the mortar to enhance the bending properties of the grouting butt joint,which can make the failure mode of the joint change from brittle failure of mortar to ductile compression failure of bamboo tube.In addition,pasting CFRP sheets on the external wall of the bamboo tube helps to reduce the tensile stress of the mortar,while increasing the width of the steel plate can increase the bending moment of inertia of the mixture of the steel plate and mortar.These two complementary measures are very effective in delaying the cracking of the bamboo tube and improving the bending capacity of the joint.
基金financial support provided by UGC-DAE-CSR (CSR-KN/CRS-04/201213/738) through fellowship
文摘Titanium tube and stainless steel tube plate were welded by an innovative friction welding of tube to tube plate using an external tool (FWTPET). Copper was used as an interlayer for joining the dissimilar materials and also to minimize the effect of intermetallics formed at the joint interface. The process parameters that govern FWTPET process are plunge rate, rotational speed, plunge depth, axial load and flash trap profile. Among them, the flash trap profile of the tube has a significant influence on the joint integrity. Various flash trap profiles like vertical slots, holes, zig-zag holes, and petals were made on the titanium tube welded to the stainless steel tube plate. Macroscopic and microscopic studies reveal defect-free joints. The presence of copper interlayer and intermetallics was evident from X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) studies. The microhardness survey was presented across and along the interface. A novel test procedure called “plunge shear test” was developed to evaluate the joint properties of the welded joints. The highest shear fracture load of 31.58 kN was observed on the sample having petals as flash trap profile. The sheared surfaces were further characterized using SEM for fractography.
文摘The out-of-plane distortion induced in a multi-pass circumferential fillet welding of tube to pipe under different weld sequences and directions was studied using Finite Element Method(FEM) based Sysweld software and verified experimentally. The FEM analyses consisted of thermal and mechanical analyses.Thermal analysis was validated with experimental transient temperature measurements. In the mechanical analysis, three different weld sequences and directions were considered to understand the mechanism of out-of-plane distortion in the tube to pipe T-joints. It was learnt that the welding direction plays a major role in minimizing the out-of-plane distortion. Further, during circumferential fillet welding of the tube to pipe component, the out-of-plane distortion generated in the x direction was primarily influenced by heat input due to the start and stop points, whereas the distortion in the z direction was influenced by time lag and welding direction. The FEM predicted distortion was compared with experimental measurements and the mechanism of out-of-plane distortion was confirmed.