In this study, rheological examination of the mixture of a tubular reactor in which methyl methacrylate was polymerized has been studied. The n(flow behavior index) value of Power Law Model of mixture contained in the...In this study, rheological examination of the mixture of a tubular reactor in which methyl methacrylate was polymerized has been studied. The n(flow behavior index) value of Power Law Model of mixture contained in the reactor has been determined within the span of 0.3492 to 0.9889 by curve fitting. Employing these numerical data for velocity profile, the reactor has been modeled. Moreover, the functions of the reactor have been compared in the three modes of plug, mixed and laminar flow. The results obtained in this research indicate that the polymethyl methacrylate mixture contained in the reactor is pseudo-plastic. Moreover, as the conversion grows, the velocity profile starts as a parabolic profile and approaches the plug mode; although it never reaches the plug. The other conclusions borne in this study indicate that when the reactor's radius is decreased, the conversion rate grows. However, as decreasing the radius would also reduce the productions rate, this procedure is not economical. Finally, in this modeling, the amount of conversion is equal to 56.47% at the end and according to its laboratory proportion which is 55.88%, it has reached the conclusion that the modeling duly undertaken is applicable and valid.展开更多
With the full treatment of the Helfrich model we theoretically study the symmetrical adhesion of two cylindrical colloids to a tubular membrane. The adhesion of the rigid cylinders with different radius from the membr...With the full treatment of the Helfrich model we theoretically study the symmetrical adhesion of two cylindrical colloids to a tubular membrane. The adhesion of the rigid cylinders with different radius from the membrane tube surface can produce both shallow wrapping with relatively small wrapping angle and deep wrapping with big wrapping angle. These significant structural behaviors can be obtained by analyzing the system energy. A second order adhesion transition from the desorbed to weakly adhered states is found, and a first order phase transition where the cylindrical colloids undergo an abrupt transition from weakly adhered to strongly adhered states can be obtained as well.展开更多
A coupled system simulating both firebox and reactor is established to study the naphtha pyrolysis in an industrial tubular furnace.The firebox model is based on zone method including combustion,radiation,and convecti...A coupled system simulating both firebox and reactor is established to study the naphtha pyrolysis in an industrial tubular furnace.The firebox model is based on zone method including combustion,radiation,and convection to simulate heat transfer in the furnace.A two-dimensional recirculation model is proposed to estimate the flow field in furnace.The reactor model integrates the feedstock reconstruction model,an auto-generator of detail kinetic schemes,and the reactor simulation model to simulate the reaction process in the tubular coil.The coupled simulation result is compared with industrial process and shows agreement within short computation time.展开更多
基金Supported by Iran Polymer and Petrochemical Institute
文摘In this study, rheological examination of the mixture of a tubular reactor in which methyl methacrylate was polymerized has been studied. The n(flow behavior index) value of Power Law Model of mixture contained in the reactor has been determined within the span of 0.3492 to 0.9889 by curve fitting. Employing these numerical data for velocity profile, the reactor has been modeled. Moreover, the functions of the reactor have been compared in the three modes of plug, mixed and laminar flow. The results obtained in this research indicate that the polymethyl methacrylate mixture contained in the reactor is pseudo-plastic. Moreover, as the conversion grows, the velocity profile starts as a parabolic profile and approaches the plug mode; although it never reaches the plug. The other conclusions borne in this study indicate that when the reactor's radius is decreased, the conversion rate grows. However, as decreasing the radius would also reduce the productions rate, this procedure is not economical. Finally, in this modeling, the amount of conversion is equal to 56.47% at the end and according to its laboratory proportion which is 55.88%, it has reached the conclusion that the modeling duly undertaken is applicable and valid.
基金Project supported by the National Natural Science Foundation of China(Grant No.11074151)the National Key Basic Research and Development Program of China(Grant No.2011CB808100)
文摘With the full treatment of the Helfrich model we theoretically study the symmetrical adhesion of two cylindrical colloids to a tubular membrane. The adhesion of the rigid cylinders with different radius from the membrane tube surface can produce both shallow wrapping with relatively small wrapping angle and deep wrapping with big wrapping angle. These significant structural behaviors can be obtained by analyzing the system energy. A second order adhesion transition from the desorbed to weakly adhered states is found, and a first order phase transition where the cylindrical colloids undergo an abrupt transition from weakly adhered to strongly adhered states can be obtained as well.
基金Supported by the National Natural Science Foundation of China(U1462206)
文摘A coupled system simulating both firebox and reactor is established to study the naphtha pyrolysis in an industrial tubular furnace.The firebox model is based on zone method including combustion,radiation,and convection to simulate heat transfer in the furnace.A two-dimensional recirculation model is proposed to estimate the flow field in furnace.The reactor model integrates the feedstock reconstruction model,an auto-generator of detail kinetic schemes,and the reactor simulation model to simulate the reaction process in the tubular coil.The coupled simulation result is compared with industrial process and shows agreement within short computation time.