Tazarotene-induced gene 1(TIG1)is induced by a derivative of vitamin A and is known to regulate many important biological processes and control the development of cancer.TIG1 is widely expressed in various tissues;yet...Tazarotene-induced gene 1(TIG1)is induced by a derivative of vitamin A and is known to regulate many important biological processes and control the development of cancer.TIG1 is widely expressed in various tissues;yet in many cancer tissues,it is not expressed because of the methylation of its promoter.Additionally,the expression of TIG1 in cancer cells inhibits their growth and invasion,suggesting that TIG1 acts as a tumor suppressor gene.However,in some cancers,poor prognosis is associated with TIG1 expression,indicating its protumor growth characteristics,especially in promoting the invasion of inflammatory breast cancer cells.This review comprehensively summarizes the roles of the TIG1 gene in cancer development and details the mechanisms through which TIG1 regulates cancer development,with the aim of understanding its various roles in cancer development.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is a major cause of cancer mortality worldwide,and metastasis is the main cause of early recurrence and poor prognosis.However,the mechanism of metastasis remains poorly underst...BACKGROUND Hepatocellular carcinoma(HCC)is a major cause of cancer mortality worldwide,and metastasis is the main cause of early recurrence and poor prognosis.However,the mechanism of metastasis remains poorly understood.AIM To determine the possible mechanism affecting HCC metastasis and provide a possible theoretical basis for HCC treatment.METHODS The candidate molecule lecithin-cholesterol acyltransferase(LCAT)was screened by gene microarray and bioinformatics analysis.The expression levels of LCAT in clinical cohort samples was detected by quantitative realtime polymerase chain reaction and western blotting.The proliferation,migration,invasion and tumor-forming ability were measured by Cell Counting Kit-8,Transwell cell migration,invasion,and clonal formation assays,respectively.Tumor formation was detected in nude mice after LCAT gene knockdown or overexpression.The immunohistochemistry for Ki67,E-cadherin,N-cadherin,matrix metalloproteinase 9 and vascular endothelial growth factor were performed in liver tissues to assess the effect of LCAT on HCC.Gene set enrichment analysis(GSEA)on various gene signatures were analyzed with GSEA version 3.0.Three machine-learning algorithms(random forest,support vector machine,and logistic regression)were applied to predict HCC metastasis in The Cancer Genome Atlas and GEO databases.RESULTS LCAT was identified as a novel gene relating to HCC metastasis by using gene microarray in HCC tissues.LCAT was significantly downregulated in HCC tissues,which is correlated with recurrence,metastasis and poor outcome of HCC patients.Functional analysis indicated that LCAT inhibited HCC cell proliferation,migration and invasion both in vitro and in vivo.Clinicopathological data showed that LCAT was negatively associated with HCC size and metastasis(HCC size≤3 cm vs 3-9 cm,P<0.001;3-9 cm vs>9 cm,P<0.01;metastatic-free HCC vs extrahepatic metastatic HCC,P<0.05).LCAT suppressed the growth,migration and invasion of HCC cell lines via PI3K/AKT/mTOR signaling.Our results indicated that the logistic regression model based on LCAT,TNM stage and the serum level of α-fetoprotein in HCC patients could effectively predict high metastatic risk HCC patients.CONCLUSION LCAT is downregulated at translational and protein levels in HCC and might inhibit tumor metastasis via attenuating PI3K/AKT/mTOR signaling.LCAT is a prognostic marker and potential therapeutic target for HCC.展开更多
Background:Lung adenocarcinoma is a very pervasive histological form of lung cancers,and inhibiting metastasis is crucial for effective treatment.In this investigation,we explored the functional interaction of miR-30a...Background:Lung adenocarcinoma is a very pervasive histological form of lung cancers,and inhibiting metastasis is crucial for effective treatment.In this investigation,we explored the functional interaction of miR-30a-5p and the putative transcription factor 2 of the homeodomain(PHTF2)in dictating the aggressiveness and metastasis of lung adenocarcinoma.Method:We collected clinical samples to evaluate the expression patterns of miR-30a-5p and PHTF2 in lung adenocarcinoma along with normal tissues.Cellular experiments including cell count kit(CCK)-8 growth assay,apoptosis analysis,migration and invasion examinations were performed to assess the aggressiveness of lung adenocarcinoma cells.Furthermore,we examined tumorigenesis and metastasis in a nude mouse model.Results:MiR-30a-5p exhibited downregulation pattern in lung adenocarcinoma samples.Transfection of miR-30a-5p mimic in lung adenocarcinoma cells resulted in the suppression of malignant characteristics.Notably,the administration of miR-30a-5p mimic also curbed tumorigenesis and metastasis of lung adenocarcinoma cells in animal model.Moreover,PHTF2 was found to be a molecular target of miR-30a-5p.Upregulating PHTF2 counteracted the tumor-suppressive effect of the miR-30a-5p mimic.Conclusion:miR-30a-5p functions as a tumor-suppressive molecule while PHTF2 acts as an oncogenic factor in the development and metastasis of lung adenocarcinoma.Therefore,targeting miR-30a-5p and PHTF2 could be developed into a promising therapeutic approach for inhibiting metastasis in lung adenocarcinoma.展开更多
Objective YAP1 plays a dual role as an oncogene and tumor suppressor gene in several tumors;differentiating between these roles may depend on the YAP1 phosphorylation pattern.The specific function of YAP1 in B cell ac...Objective YAP1 plays a dual role as an oncogene and tumor suppressor gene in several tumors;differentiating between these roles may depend on the YAP1 phosphorylation pattern.The specific function of YAP1 in B cell acute lymphoblastic leukemia(B-ALL),however,is currently unclear.Thus,in the present study,the role of YAP1 in B-ALL was investigated using relevant cell lines and patient datasets.Methods The effects of shRNA-mediated knockdown on YAP1 and LATS1 levels in the NALM6 and MOLT-4 cell lines were examined using Western blotting,quantitative real-time polymerase chain reaction,flow cytometry,immunostaining,and nude mouse subcutaneous tumorigenesis experiments.Gene expression levels of Hippo pathway-related molecules before and after verteporfin(VP)treatment were compared using RNA-Seq to identify significant Hippo pathway-related genes in NALM6 cells.Results Patients with ALL showing high YAP1 expression and low YAP1-Ser127 phosphorylation levels had worse prognoses than those with low YAP1 protein expression and high YAP1-Ser127 phosphorylation levels.YAP1-Ser127 phosphorylation levels were lower in NALM6 cells than in MOLT-4 and control cells;YAP1 was distributed in the nuclei in NALM6 cells.Knockdown of YAP1 inhibited MOLT-4 and NALM6 cell proliferation and arrested the NALM6 cell cycle in the G0/G1 phase.Before and after VP treatment,the expression of the upstream gene LATS1 was upregulated;its overexpression promoted YAP1-Ser127 phosphorylation.Further,YAP1 was distributed in the plasma.Conclusion LATS1 may downregulate YAP1-Ser127 phosphorylation and maintain B-ALL cell function;thus,VP,which targets this axis,may serve as a new therapeutic method for improving the outcomes for B-ALL patients.展开更多
Severe immunosuppression is a hallmark of colorectal cancer(CRC).Myeloid-derived suppressor cells(MDSCs),one of the most abundant components of the tumor stroma,play an important role in the invasion,metastasis,and im...Severe immunosuppression is a hallmark of colorectal cancer(CRC).Myeloid-derived suppressor cells(MDSCs),one of the most abundant components of the tumor stroma,play an important role in the invasion,metastasis,and immune escape of CRC.MDSCs create an immunosuppressive microenvironment by inhibiting the proliferation and activation of immunoreactive cells,including T and natural killer cells,as well as by inducing the proliferation of immunosuppressive cells,such as regulatory T cells and tumor-associated macrophages,which,in turn,promote the growth of cancer cells.Thus,MDSCs are key contributors to the emergence of an immunosup-pressive microenvironment in CRC and play an important role in the breakdown of antitumor immunity.In this narrative review,we explore the mechanisms through which MDSCs contribute to the immunosuppressive microenvironment,the current therapeutic approaches and technologies targeting MDSCs,and the therapeutic potential of modulating MDSCs in CRC treatment.This study provides ideas and methods to enhance survival rates in patients with CRC.展开更多
BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is a common cancer with increasing morbidity and mortality due to changes of social environment.AIM To evaluate the significance of serum carbohydrate antigen 19-9(CA19...BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is a common cancer with increasing morbidity and mortality due to changes of social environment.AIM To evaluate the significance of serum carbohydrate antigen 19-9(CA19-9)and tumor size changes pre-and post-neoadjuvant therapy(NAT).METHODS This retrospective study was conducted at the Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment,Chongqing University Cancer Hospital.This study specifically assessed CA19-9 levels and tumor size before and after NAT.RESULTS A total of 156 patients who completed NAT and subsequently underwent tumor resection were included in this study.The average age was 65.4±10.6 years and 72(46.2%)patients were female.Before survival analysis,we defined the post-NAT serum CA19-9 level/pre-NAT serum CA19-9 level as the CA19-9 ratio(CR).The patients were divided into three groups:CR<0.5,CR>0.5 and<1 and CR>1.With regard to tumor size measured by both computed tomography and magnetic resonance imaging,we defined the post-NAT tumor size/pre-NAT tumor size as the tumor size ratio(TR).The patients were then divided into three groups:TR<0.5,TR>0.5 and<1 and TR>1.Based on these groups divided according to CR and TR,we performed both overall survival(OS)and disease-free survival(DFS)analyses.Log-rank tests showed that both OS and DFS were significantly different among the groups according to CR and TR(P<0.05).CR and TR after NAT were associated with increased odds of achieving a complete or near-complete pathologic response.Moreover,CR(hazard ratio:1.721,95%CI:1.373-3.762;P=0.006),and TR(hazard ratio:1.435,95%CI:1.275-4.363;P=0.014)were identified as independent factors associated with OS.CONCLUSION This study demonstrated that post-NAT serum CA19-9 level/pre-NAT serum CA19-9 level and post-NAT tumor size/pre-NAT tumor size were independent factors associated with OS in patients with PDAC who received NAT and subsequent surgical resection.展开更多
AIM:To investigate the function and mechanism of mi R-133a in gastric cancer(GC)and its relationship with clinicopathological characteristics of GC.METHODS:A total of 105 GC patients who underwent surgical resection a...AIM:To investigate the function and mechanism of mi R-133a in gastric cancer(GC)and its relationship with clinicopathological characteristics of GC.METHODS:A total of 105 GC patients who underwent surgical resection as primary treatment were selected for this study.Real-time quantitative reverse transcriptase polymerase chain(q RT-PCR)was used to examine the expression levels of mi R-133a in human GC and adjacent non-tumor tissues,as well as in GC cell lines(SGC-7901,BGC-823,MGC-803,and AGS)and a human gastric mucosal epithelial cell line(GES-1).The biological role of mi RNA(mi R)-133a was assessed in the GC cell lines using MTT,apoptosis,migration and invasion,and colony formation assays,and xenograft tumorigenesis.q RT-PCR and western blot analyses were used to evaluate the potential target gene expression of mi R-133a.Pearson’s correlation was calculated to evaluate the correlation between mi R-133a and insulinlike growth factor 1 receptor(IGF1R)expression.The regulation of IGF1R by mi R-133a was verified using the luciferase reporter assay.RESULTS:In 80%of the 105 GC patients,the mean expression of mi R-133a was significantly downregulated in tumor tissues compared with adjacent normal tissues(1.215±0.1477 vs 3.093±0.4104,P<0.0001).Downregulation of mi R-133a was significantly correlated with the degree of differentiation(P=0.01),local invasion(P=0.001)and TNM stage(P=0.02)in GC patients.Compared with a control construct,forced expression of mi R-133a in GC cell lines inhibited proliferation(0.4787±0.0219 vs 0.7050±0.0147,P=0.0013 in SGC-7901 cells;and 0.5448±0.0085vs 0.7270±0.0084,P=0.001 in MGC-803 cells);migration(0.6333±0.0233 vs 1.037±0.0584,P=0.003 in SGC-7901 cells;0.6126±0.0311 vs 1.024±0.0456,P=0.0017 in MGC-803 cells);and invasion(0.613±0.0399 vs 1.033±0.0278,P=0.0013 in SGC-7901 cells;0.7433±0.0221 vs 1.017±0.0311,P=0.002 in MGC-803 cells).It also induced apoptosis(18.19%±0.2483%vs 5.887%±0.3837%,P<0.0001 in SGC-7901 cells;22.69%±0.7846%vs9.347%±0.3012%,P<0.0001 in MGC-803 cells).Furthermore,mi R-133a inhibited tumor growth and xenograft tumorigenesis of SGC-7901 cells in vivo.In addition,we identified IGF1R as a regulatory target of mi R-133a in GC.CONCLUSION:This study suggests that mi R-133a is downregulated in GC and functions as a tumor suppressor in vitro and in vivo partly by repressing IGF1R.展开更多
INTRODUCTIONHepatocellular carcinoma (HCC) is one of the mostcommon human malignancies worldwide[1,2], and isclosely associated with infection of HBV and HCVand contamination of aflatoxin B1[3-6]. Althoughthe molecula...INTRODUCTIONHepatocellular carcinoma (HCC) is one of the mostcommon human malignancies worldwide[1,2], and isclosely associated with infection of HBV and HCVand contamination of aflatoxin B1[3-6]. Althoughthe molecular mechanisms of hepatocarcinogenesisremain poorly understood, an increasing number ofgenetic abnormalities have been recognized[7-10],for example, the p16 gene[11,12] the p53gene[13-18], the E-cadherin gene[19], and the c-mycgene[20].展开更多
The tumor suppressor PTEN controls a variety of biological processes including cell proliferation, growth, migration, and death. As a master cellular regulator, PTEN itself is also subjected to deliberated regulation ...The tumor suppressor PTEN controls a variety of biological processes including cell proliferation, growth, migration, and death. As a master cellular regulator, PTEN itself is also subjected to deliberated regulation to ensure its proper function. Defects in PTEN regulation have a profound impact on carcinogenesis. In this review, we briefly discuss recent advances concerning PTEN regulation and how such knowledge facilitates our understanding and further exploration of PTEN biology. The carboxyl-tail of PTEN, which appears to be associated with multiple types of posttranslational regulation, will be under detailed scrutiny. Further, a comparative analysis of PTEN and p53 suggests while p53 needs to be activated to suppress tumorigenesis (a dormant gatekeeper), PTEN is probably a constitutive surveillant against cancer development, thus a default gatekeeper.展开更多
AIM To explore the effect of miR-382 on esophageal squamous cell carcinoma (ESCC) in vitro and its possible molecular mechanism. METHODS Eca 109 cells derived from human ESCC and Het-1A cells derived from human normal...AIM To explore the effect of miR-382 on esophageal squamous cell carcinoma (ESCC) in vitro and its possible molecular mechanism. METHODS Eca 109 cells derived from human ESCC and Het-1A cells derived from human normal esophageal epithelium were used. Lentivirus-mediated miR-382 was overexpressed in Eca109 cells. The effect of miR-382 on cell proliferation was evaluated by MTT and colony formation assay. For cell cycle analysis, cells were fixed and stained for 30 min with propidium iodide (PI) staining buffer containing 10 mg/mL PI and 100 mg/mL RNase A, and analyzed by BD FACSCalibur (TM) flow cytometer. For cell apoptosis assay, cells were stained with an Annexin V-FITC/PI Apoptosis Detection Kit according to the manufacturer's instructions and analyzed by a dual-laser flow cytometer. Cell invasion and migration abilities were determined through use of transwell chambers, non-coated or pre-coated with matrigel. Levels of proteins related to cell growth and migration were examined by western blotting. RESULTS Endogenous miR-382 was down-regulated in Eca109 cells compared with Het-1A. Introduction of miR-382 not only significantly inhibited proliferation and colony formation, but also arrested cell cycle at the G2/M phase, as well as promoted apoptosis and autophagy in Eca109 cells. Migration, invasion and epithelial-mesenchymal transition of Eca109 cells were suppressed by overexpressing miR-382. Western blotting results showed that miR-382 inhibited the phosphorylation of mTOR and 4E-BP1. CONCLUSION miR-382 functions as a tumor suppressor against ESCC development and metastasis, and could be considered as a potential drug source for the treatment of ESCC patients.展开更多
A number of tumor suppressor and tumor-related genes exhibit promoter hypermethylation with resultant gene silencing in human cancers.The frequencies of methylation differ among genes and genomic regions within CpG is...A number of tumor suppressor and tumor-related genes exhibit promoter hypermethylation with resultant gene silencing in human cancers.The frequencies of methylation differ among genes and genomic regions within CpG islands in different tissue types.Hypermethylation initially occurs at the edge of CpG islands and spreads to the transcription start site before ultimately shutting down gene expression.When the degree of methylation was quantitatively evaluated in neoplastic and non-neoplastic gastric epithelia using DNA microarray analysis,highlevel methylation around the transcription start site appeared to be a tumor-specific phenomenon,although multiple tumor suppressor genes became increasingly methylated with patient age in non-neoplastic gastric epithelia.Quantitative analysis of DNA methylation is a promising method for both cancer diagnosis and risk assessment.展开更多
Background and aim: The Krueppel-like transcription factor KLF6 is a novel tumor-suppressor gene. It was inactivated in human prostate cancer and other tumors tissue, as the result of frequent mutation and loss of he...Background and aim: The Krueppel-like transcription factor KLF6 is a novel tumor-suppressor gene. It was inactivated in human prostate cancer and other tumors tissue, as the result of frequent mutation and loss of heterozygosity (LOH). However, there is no data reporting the levels of KLF6 both mRNA and protein in hepatocellular carcinomas (HCCs). We therefore detected mutations and expression of KLF6 in HCC tissues and further observed the effect of it on cell growth in HCC cell lines. Methods: We analyzed the exon-2 ofKLF6 gene by direct DNA sequencing, and detected the expression of KLF6 by RT-PCR and Western blot in 23 HCC tissues and corresponding nontumorous tissues. Loss of growth suppressive effect of the HCC-derived KLF6 mutant was characterized by in vitro growth curves plotted, flow cytometry and Western blotting. Results: KLF6 mutations were found in 2 of 23 HCC tissues and one of mutations was missense. Expression ofKLF6 mRNA or protein was down-regulated in 8 (34.7%) or 9 (39.1%) of 23 HCC tissues. Wild-type KLF6 (wtKLF6) inhibited cellular proliferation and prolonged G1 -S transition by inducing the expression of p21WAF 1 following stable transfection into cultured HepG2 cells, but tumor-derived KLF6 mutant (mKLF6) had no effects. Conclusion: Our findings suggest that KLF6 may be involved in pathogenesis of HCC.展开更多
This study was designed to investigate the roles of RASAL2 in cervical cancer(CC).Methods:Fifty-four CC tissues and 33 adjacent tissues were obtained from CC patients admitted to our hospital between March 2012 and Ju...This study was designed to investigate the roles of RASAL2 in cervical cancer(CC).Methods:Fifty-four CC tissues and 33 adjacent tissues were obtained from CC patients admitted to our hospital between March 2012 and June 2014.Real-time polymerase chain reaction and western blotting were performed to analyze the expression of RASAL2 mRNA and protein in these tissues,CC cell lines,and normal cervical cells.Over-expression and silencing of RASAL2 were induced after transfection,and the migration,invasion,and proliferation of the CC cell lines were examined.Results:RASAL2 mRNA and protein expressions were significantly down-regulated in CC tissues and cell lines than in adjacent tissues and normal cervical cells,respectively.While low RASAL2 expression correlated with advanced stage and metastasis of CC,its over-expression significantly inhibited proliferation and metastasis of CC cells and induced apoptosis.Under in vitro conditions,silencing of RASAL2 expression could significantly increase the proliferation,invasion,and migration of CC cells.Conclusion:RASAL2 functioned as a tumor suppressor in CC,and was down-regulated in CC tissue samples and cell lines.展开更多
Objective: Oncogenes have been shown to be drivers of non-small cell lung cancer(NSCLC), yet the tumor suppressing genes involved in lung carcinogenesis remain to be systematically investigated. This study aimed to id...Objective: Oncogenes have been shown to be drivers of non-small cell lung cancer(NSCLC), yet the tumor suppressing genes involved in lung carcinogenesis remain to be systematically investigated. This study aimed to identify tumor suppressing ubiquitin pathway genes(UPGs) that were critical to lung tumorigenesis.Methods: The 696 UPGs were silenced by an siRNA screening in NSCLC cells;the potential tumor suppressing UPGs were analyzed, and their clinical significance was investigated.Results: We reported that silencing of 11 UPGs resulted in enhanced proliferation of NSCLC cells, and four UPGs(UBL3, TRIM22, UBE2 G2, and MARCH1) were significantly downregulated in tumor samples compared to that in normal lung tissues and their expression levels were positively associated with overall survival(OS) of NSCLC patients. Among these genes, UBL3 was the most significant one. UBL3 expression was decreased in tumor samples compared to that in paired normal lung tissues in 59/86(68.6%) NSCLCs, was correlated with TNM stage and sex of NSCLC patients, and was significantly higher in non-smoking patients than in smoking patients. Silencing UBL3 accelerated cell proliferation and ectopic expression of UBL3 suppressed NSCLC in vitro and in vivo.Conclusions: These results showed that UBL3 represented a tumor suppressor in NSCLC and may have potential for use in therapeutics and for the prediction of clinical outcome of patients.展开更多
DNA hypermethylation of tumor suppressor genes has been frequently observed in cancer patients, and therefore, may provide a valuable biomarker for cancer prevention and treatment. DNA hypermethylation may also provid...DNA hypermethylation of tumor suppressor genes has been frequently observed in cancer patients, and therefore, may provide a valuable biomarker for cancer prevention and treatment. DNA hypermethylation may also provide an important mechanism in cancer progression. Lung cancer is strongly associated with exposure to environmental carcinogens, especially tobacco smoke. DNA damage generated by tobacco smoke is believed to play an important role in lung cancer development. XPC is a DNA damage recognition protein required for DNA repair and other DNA damage responses and attenuated XPC protein levels have been detected in many lung cancer patients. We studied the role of XPC protein deficiency in tobacco smoke-caused DNA hypermethylation of important tumor suppressor genes. Using both normal human fibroblasts (NF) and XPC-deficient hu man fibroblasts (XPC), our DNA methylation studies demonstrated that the XPC deficiency caused elevated levels of DNA hypermethylation in both Brca1 and Mlh1 tumor suppressor genes following exposure to tobacco smoke condensate (TSC). The results of our ChIP studies revealed that the XPC deficiency led to an increased binding of DNA methyltransferase 3A (DNMT3A) at the promoter region CpG island-containing sequences of these genes under the TSC treatment;however, this increase was partially diminished with prior treatment with caffeine. The results of our immuno-precipitation (IP) studies demonstrated a protein-protein interaction of the ATR with DNMT3A. Our western blots revealed that the XPC deficiency caused an increase in TSC-induced ATR phosphorylation at serine 428, an indicator of ATR activation. All these results suggest that XPC deficiency causes an accelerated DNA hypermethylation in important tumor suppressor genes under tobacco smoke exposure and activation of the ATR signaling pathway is involved in this DNA hypermethylation process.展开更多
Objective Gastrointestinal stromal tumors(GISTs)can rapidly proliferate through angiogenesis.Previous studies indicated the potential influence of microRNA on the progression of tumor immature angiogenesis.This study ...Objective Gastrointestinal stromal tumors(GISTs)can rapidly proliferate through angiogenesis.Previous studies indicated the potential influence of microRNA on the progression of tumor immature angiogenesis.This study aimed to explore the specific mechanism by which microRNA-409-5p(miR-409-5p)contributes to GIST.Methods To identify genes potentially involved in the development and progression of GIST,the differences of miR-409-5p between tumors and adjacent tissues were first analyzed.Following this analysis,target genes were predicted.To further investigate the function of miRNA in GIST cells,two GIST cell lines(GIST-T1 and GIST882)were transfected with lentiviruses that stably expressed miR-409-5p and scrambled miRNA(negative control).Later,the cells were subjected to Western blotting and ELSA to determine any differences in angiogenesis-related genes.Results In GISTs,there was a decrease in the expression levels of miR-409-5p compared to the adjacent tissues.It was observed that the upregulation of miR-409-5p in GIST cell lines effectively inhibited the proteins hypoxia-inducible transcription factor 1β(HIF1β)and vascular endothelial growth factor A(VEGF-A).Further investigations revealed that miR-409-5p acted as an inhibitor of angiogenesis by binding to the 3′-UTR of Lysine-specific demethylase 4D(KDM4D)mRNA.Moreover,the combination of miR-409-5p with imatinib enhanced its inhibitory effect on angiogenesis.Conclusion This study demonstrated that the miRNA-409-5p/KDM4D/HIF1β/VEGF-A signaling pathway could serve as a novel target for the development of therapeutic strategies for the treatment of imatinib-resistance in GIST patients.展开更多
Anti-tumor angiogenesis therapy, targeting the suppression of blood vessel growth in tumors, presents a potent approach in the battle against cancer. Traditional therapies have primarily concentrated on single-target ...Anti-tumor angiogenesis therapy, targeting the suppression of blood vessel growth in tumors, presents a potent approach in the battle against cancer. Traditional therapies have primarily concentrated on single-target techniques, with a specific emphasis on targeting the vascular endothelial growth factor, but have not reached ideal therapeutic efficacy. In response to this issue, our study introduced a novel nanoparticle system known as CS-siRNA/PEITC&L-cRGD NPs. These chitosan-based nanoparticles have been recognized for their excellent biocompatibility and ability to deliver genes. To enhance their targeted delivery capability, they were combined with a cyclic RGD peptide (cRGD). Targeted co-delivery of gene and chemotherapeutic agents was achieved through the use of a negatively charged lipid shell and cRGD, which possesses high affinity for integrin αvβ3 overexpressed in tumor cells and neovasculature. In this multifaceted approach, co-delivery of VEGF siRNA and phenethyl isothiocyanate (PEITC) was employed to target both tumor vascular endothelial cells and tumor cells simultaneously. The co-delivery of VEGF siRNA and PEITC could achieve precise silencing of VEGF, inhibit the accumulation of HIF-1α under hypoxic conditions, and induce apoptosis in tumor cells. In summary, we have successfully developed a nanoparticle delivery platform that utilizes a dual mechanism of action of anti-tumor angiogenesis and pro-tumor apoptosis, which provides a robust and potent strategy for the delivery of anti-cancer therapeutics.展开更多
基金supported by the Taipei Tzu Chi Hospital through grants from the Buddhist Tzu Chi Medical Foundation under the Numbers TCRD-TPE-111-23(2/3)and TCRD-TPE-113-20,Taipei,Taiwan.
文摘Tazarotene-induced gene 1(TIG1)is induced by a derivative of vitamin A and is known to regulate many important biological processes and control the development of cancer.TIG1 is widely expressed in various tissues;yet in many cancer tissues,it is not expressed because of the methylation of its promoter.Additionally,the expression of TIG1 in cancer cells inhibits their growth and invasion,suggesting that TIG1 acts as a tumor suppressor gene.However,in some cancers,poor prognosis is associated with TIG1 expression,indicating its protumor growth characteristics,especially in promoting the invasion of inflammatory breast cancer cells.This review comprehensively summarizes the roles of the TIG1 gene in cancer development and details the mechanisms through which TIG1 regulates cancer development,with the aim of understanding its various roles in cancer development.
基金Supported by the National Natural Science Foundation of China,No.92159305National Key R&D Program of China,No.2023YFC2308104.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is a major cause of cancer mortality worldwide,and metastasis is the main cause of early recurrence and poor prognosis.However,the mechanism of metastasis remains poorly understood.AIM To determine the possible mechanism affecting HCC metastasis and provide a possible theoretical basis for HCC treatment.METHODS The candidate molecule lecithin-cholesterol acyltransferase(LCAT)was screened by gene microarray and bioinformatics analysis.The expression levels of LCAT in clinical cohort samples was detected by quantitative realtime polymerase chain reaction and western blotting.The proliferation,migration,invasion and tumor-forming ability were measured by Cell Counting Kit-8,Transwell cell migration,invasion,and clonal formation assays,respectively.Tumor formation was detected in nude mice after LCAT gene knockdown or overexpression.The immunohistochemistry for Ki67,E-cadherin,N-cadherin,matrix metalloproteinase 9 and vascular endothelial growth factor were performed in liver tissues to assess the effect of LCAT on HCC.Gene set enrichment analysis(GSEA)on various gene signatures were analyzed with GSEA version 3.0.Three machine-learning algorithms(random forest,support vector machine,and logistic regression)were applied to predict HCC metastasis in The Cancer Genome Atlas and GEO databases.RESULTS LCAT was identified as a novel gene relating to HCC metastasis by using gene microarray in HCC tissues.LCAT was significantly downregulated in HCC tissues,which is correlated with recurrence,metastasis and poor outcome of HCC patients.Functional analysis indicated that LCAT inhibited HCC cell proliferation,migration and invasion both in vitro and in vivo.Clinicopathological data showed that LCAT was negatively associated with HCC size and metastasis(HCC size≤3 cm vs 3-9 cm,P<0.001;3-9 cm vs>9 cm,P<0.01;metastatic-free HCC vs extrahepatic metastatic HCC,P<0.05).LCAT suppressed the growth,migration and invasion of HCC cell lines via PI3K/AKT/mTOR signaling.Our results indicated that the logistic regression model based on LCAT,TNM stage and the serum level of α-fetoprotein in HCC patients could effectively predict high metastatic risk HCC patients.CONCLUSION LCAT is downregulated at translational and protein levels in HCC and might inhibit tumor metastasis via attenuating PI3K/AKT/mTOR signaling.LCAT is a prognostic marker and potential therapeutic target for HCC.
基金This work was supported by the Basic Research Program of Yunnan Province-Joint Project of Kunming Medical University No.202101AY070001−169.
文摘Background:Lung adenocarcinoma is a very pervasive histological form of lung cancers,and inhibiting metastasis is crucial for effective treatment.In this investigation,we explored the functional interaction of miR-30a-5p and the putative transcription factor 2 of the homeodomain(PHTF2)in dictating the aggressiveness and metastasis of lung adenocarcinoma.Method:We collected clinical samples to evaluate the expression patterns of miR-30a-5p and PHTF2 in lung adenocarcinoma along with normal tissues.Cellular experiments including cell count kit(CCK)-8 growth assay,apoptosis analysis,migration and invasion examinations were performed to assess the aggressiveness of lung adenocarcinoma cells.Furthermore,we examined tumorigenesis and metastasis in a nude mouse model.Results:MiR-30a-5p exhibited downregulation pattern in lung adenocarcinoma samples.Transfection of miR-30a-5p mimic in lung adenocarcinoma cells resulted in the suppression of malignant characteristics.Notably,the administration of miR-30a-5p mimic also curbed tumorigenesis and metastasis of lung adenocarcinoma cells in animal model.Moreover,PHTF2 was found to be a molecular target of miR-30a-5p.Upregulating PHTF2 counteracted the tumor-suppressive effect of the miR-30a-5p mimic.Conclusion:miR-30a-5p functions as a tumor-suppressive molecule while PHTF2 acts as an oncogenic factor in the development and metastasis of lung adenocarcinoma.Therefore,targeting miR-30a-5p and PHTF2 could be developed into a promising therapeutic approach for inhibiting metastasis in lung adenocarcinoma.
文摘Objective YAP1 plays a dual role as an oncogene and tumor suppressor gene in several tumors;differentiating between these roles may depend on the YAP1 phosphorylation pattern.The specific function of YAP1 in B cell acute lymphoblastic leukemia(B-ALL),however,is currently unclear.Thus,in the present study,the role of YAP1 in B-ALL was investigated using relevant cell lines and patient datasets.Methods The effects of shRNA-mediated knockdown on YAP1 and LATS1 levels in the NALM6 and MOLT-4 cell lines were examined using Western blotting,quantitative real-time polymerase chain reaction,flow cytometry,immunostaining,and nude mouse subcutaneous tumorigenesis experiments.Gene expression levels of Hippo pathway-related molecules before and after verteporfin(VP)treatment were compared using RNA-Seq to identify significant Hippo pathway-related genes in NALM6 cells.Results Patients with ALL showing high YAP1 expression and low YAP1-Ser127 phosphorylation levels had worse prognoses than those with low YAP1 protein expression and high YAP1-Ser127 phosphorylation levels.YAP1-Ser127 phosphorylation levels were lower in NALM6 cells than in MOLT-4 and control cells;YAP1 was distributed in the nuclei in NALM6 cells.Knockdown of YAP1 inhibited MOLT-4 and NALM6 cell proliferation and arrested the NALM6 cell cycle in the G0/G1 phase.Before and after VP treatment,the expression of the upstream gene LATS1 was upregulated;its overexpression promoted YAP1-Ser127 phosphorylation.Further,YAP1 was distributed in the plasma.Conclusion LATS1 may downregulate YAP1-Ser127 phosphorylation and maintain B-ALL cell function;thus,VP,which targets this axis,may serve as a new therapeutic method for improving the outcomes for B-ALL patients.
基金Supported by National Natural Science Foundation of China,No.82320108022,No.82322076 and No.82104466.
文摘Severe immunosuppression is a hallmark of colorectal cancer(CRC).Myeloid-derived suppressor cells(MDSCs),one of the most abundant components of the tumor stroma,play an important role in the invasion,metastasis,and immune escape of CRC.MDSCs create an immunosuppressive microenvironment by inhibiting the proliferation and activation of immunoreactive cells,including T and natural killer cells,as well as by inducing the proliferation of immunosuppressive cells,such as regulatory T cells and tumor-associated macrophages,which,in turn,promote the growth of cancer cells.Thus,MDSCs are key contributors to the emergence of an immunosup-pressive microenvironment in CRC and play an important role in the breakdown of antitumor immunity.In this narrative review,we explore the mechanisms through which MDSCs contribute to the immunosuppressive microenvironment,the current therapeutic approaches and technologies targeting MDSCs,and the therapeutic potential of modulating MDSCs in CRC treatment.This study provides ideas and methods to enhance survival rates in patients with CRC.
基金Natural Science Foundation of Chongqing,China,No.cstc2021jcyj-msxmX0501Chongqing Medical Scientific Research Project(Joint Project of Chongqing Health Commission and Science and Technology Bureau),No.2022QNXM074.
文摘BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is a common cancer with increasing morbidity and mortality due to changes of social environment.AIM To evaluate the significance of serum carbohydrate antigen 19-9(CA19-9)and tumor size changes pre-and post-neoadjuvant therapy(NAT).METHODS This retrospective study was conducted at the Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment,Chongqing University Cancer Hospital.This study specifically assessed CA19-9 levels and tumor size before and after NAT.RESULTS A total of 156 patients who completed NAT and subsequently underwent tumor resection were included in this study.The average age was 65.4±10.6 years and 72(46.2%)patients were female.Before survival analysis,we defined the post-NAT serum CA19-9 level/pre-NAT serum CA19-9 level as the CA19-9 ratio(CR).The patients were divided into three groups:CR<0.5,CR>0.5 and<1 and CR>1.With regard to tumor size measured by both computed tomography and magnetic resonance imaging,we defined the post-NAT tumor size/pre-NAT tumor size as the tumor size ratio(TR).The patients were then divided into three groups:TR<0.5,TR>0.5 and<1 and TR>1.Based on these groups divided according to CR and TR,we performed both overall survival(OS)and disease-free survival(DFS)analyses.Log-rank tests showed that both OS and DFS were significantly different among the groups according to CR and TR(P<0.05).CR and TR after NAT were associated with increased odds of achieving a complete or near-complete pathologic response.Moreover,CR(hazard ratio:1.721,95%CI:1.373-3.762;P=0.006),and TR(hazard ratio:1.435,95%CI:1.275-4.363;P=0.014)were identified as independent factors associated with OS.CONCLUSION This study demonstrated that post-NAT serum CA19-9 level/pre-NAT serum CA19-9 level and post-NAT tumor size/pre-NAT tumor size were independent factors associated with OS in patients with PDAC who received NAT and subsequent surgical resection.
基金Supported by Nanjing Medical University institutional grant,No.11ZLKF06(to SYC and LMT)the Changzhou basic research program of science and technology,No.CJ20122014
文摘AIM:To investigate the function and mechanism of mi R-133a in gastric cancer(GC)and its relationship with clinicopathological characteristics of GC.METHODS:A total of 105 GC patients who underwent surgical resection as primary treatment were selected for this study.Real-time quantitative reverse transcriptase polymerase chain(q RT-PCR)was used to examine the expression levels of mi R-133a in human GC and adjacent non-tumor tissues,as well as in GC cell lines(SGC-7901,BGC-823,MGC-803,and AGS)and a human gastric mucosal epithelial cell line(GES-1).The biological role of mi RNA(mi R)-133a was assessed in the GC cell lines using MTT,apoptosis,migration and invasion,and colony formation assays,and xenograft tumorigenesis.q RT-PCR and western blot analyses were used to evaluate the potential target gene expression of mi R-133a.Pearson’s correlation was calculated to evaluate the correlation between mi R-133a and insulinlike growth factor 1 receptor(IGF1R)expression.The regulation of IGF1R by mi R-133a was verified using the luciferase reporter assay.RESULTS:In 80%of the 105 GC patients,the mean expression of mi R-133a was significantly downregulated in tumor tissues compared with adjacent normal tissues(1.215±0.1477 vs 3.093±0.4104,P<0.0001).Downregulation of mi R-133a was significantly correlated with the degree of differentiation(P=0.01),local invasion(P=0.001)and TNM stage(P=0.02)in GC patients.Compared with a control construct,forced expression of mi R-133a in GC cell lines inhibited proliferation(0.4787±0.0219 vs 0.7050±0.0147,P=0.0013 in SGC-7901 cells;and 0.5448±0.0085vs 0.7270±0.0084,P=0.001 in MGC-803 cells);migration(0.6333±0.0233 vs 1.037±0.0584,P=0.003 in SGC-7901 cells;0.6126±0.0311 vs 1.024±0.0456,P=0.0017 in MGC-803 cells);and invasion(0.613±0.0399 vs 1.033±0.0278,P=0.0013 in SGC-7901 cells;0.7433±0.0221 vs 1.017±0.0311,P=0.002 in MGC-803 cells).It also induced apoptosis(18.19%±0.2483%vs 5.887%±0.3837%,P<0.0001 in SGC-7901 cells;22.69%±0.7846%vs9.347%±0.3012%,P<0.0001 in MGC-803 cells).Furthermore,mi R-133a inhibited tumor growth and xenograft tumorigenesis of SGC-7901 cells in vivo.In addition,we identified IGF1R as a regulatory target of mi R-133a in GC.CONCLUSION:This study suggests that mi R-133a is downregulated in GC and functions as a tumor suppressor in vitro and in vivo partly by repressing IGF1R.
基金Project supported partly by the National Natural Science Foundation of China, No. 39870344
文摘INTRODUCTIONHepatocellular carcinoma (HCC) is one of the mostcommon human malignancies worldwide[1,2], and isclosely associated with infection of HBV and HCVand contamination of aflatoxin B1[3-6]. Althoughthe molecular mechanisms of hepatocarcinogenesisremain poorly understood, an increasing number ofgenetic abnormalities have been recognized[7-10],for example, the p16 gene[11,12] the p53gene[13-18], the E-cadherin gene[19], and the c-mycgene[20].
文摘The tumor suppressor PTEN controls a variety of biological processes including cell proliferation, growth, migration, and death. As a master cellular regulator, PTEN itself is also subjected to deliberated regulation to ensure its proper function. Defects in PTEN regulation have a profound impact on carcinogenesis. In this review, we briefly discuss recent advances concerning PTEN regulation and how such knowledge facilitates our understanding and further exploration of PTEN biology. The carboxyl-tail of PTEN, which appears to be associated with multiple types of posttranslational regulation, will be under detailed scrutiny. Further, a comparative analysis of PTEN and p53 suggests while p53 needs to be activated to suppress tumorigenesis (a dormant gatekeeper), PTEN is probably a constitutive surveillant against cancer development, thus a default gatekeeper.
基金Supported by Key Technologies R&D Program of Science and Technology Commission of Henan Province,No.152102310110 to Zhao BSKey Science and Technique Fund of Xinxiang,No.ZG15018 to Zhao BS
文摘AIM To explore the effect of miR-382 on esophageal squamous cell carcinoma (ESCC) in vitro and its possible molecular mechanism. METHODS Eca 109 cells derived from human ESCC and Het-1A cells derived from human normal esophageal epithelium were used. Lentivirus-mediated miR-382 was overexpressed in Eca109 cells. The effect of miR-382 on cell proliferation was evaluated by MTT and colony formation assay. For cell cycle analysis, cells were fixed and stained for 30 min with propidium iodide (PI) staining buffer containing 10 mg/mL PI and 100 mg/mL RNase A, and analyzed by BD FACSCalibur (TM) flow cytometer. For cell apoptosis assay, cells were stained with an Annexin V-FITC/PI Apoptosis Detection Kit according to the manufacturer's instructions and analyzed by a dual-laser flow cytometer. Cell invasion and migration abilities were determined through use of transwell chambers, non-coated or pre-coated with matrigel. Levels of proteins related to cell growth and migration were examined by western blotting. RESULTS Endogenous miR-382 was down-regulated in Eca109 cells compared with Het-1A. Introduction of miR-382 not only significantly inhibited proliferation and colony formation, but also arrested cell cycle at the G2/M phase, as well as promoted apoptosis and autophagy in Eca109 cells. Migration, invasion and epithelial-mesenchymal transition of Eca109 cells were suppressed by overexpressing miR-382. Western blotting results showed that miR-382 inhibited the phosphorylation of mTOR and 4E-BP1. CONCLUSION miR-382 functions as a tumor suppressor against ESCC development and metastasis, and could be considered as a potential drug source for the treatment of ESCC patients.
文摘A number of tumor suppressor and tumor-related genes exhibit promoter hypermethylation with resultant gene silencing in human cancers.The frequencies of methylation differ among genes and genomic regions within CpG islands in different tissue types.Hypermethylation initially occurs at the edge of CpG islands and spreads to the transcription start site before ultimately shutting down gene expression.When the degree of methylation was quantitatively evaluated in neoplastic and non-neoplastic gastric epithelia using DNA microarray analysis,highlevel methylation around the transcription start site appeared to be a tumor-specific phenomenon,although multiple tumor suppressor genes became increasingly methylated with patient age in non-neoplastic gastric epithelia.Quantitative analysis of DNA methylation is a promising method for both cancer diagnosis and risk assessment.
文摘Background and aim: The Krueppel-like transcription factor KLF6 is a novel tumor-suppressor gene. It was inactivated in human prostate cancer and other tumors tissue, as the result of frequent mutation and loss of heterozygosity (LOH). However, there is no data reporting the levels of KLF6 both mRNA and protein in hepatocellular carcinomas (HCCs). We therefore detected mutations and expression of KLF6 in HCC tissues and further observed the effect of it on cell growth in HCC cell lines. Methods: We analyzed the exon-2 ofKLF6 gene by direct DNA sequencing, and detected the expression of KLF6 by RT-PCR and Western blot in 23 HCC tissues and corresponding nontumorous tissues. Loss of growth suppressive effect of the HCC-derived KLF6 mutant was characterized by in vitro growth curves plotted, flow cytometry and Western blotting. Results: KLF6 mutations were found in 2 of 23 HCC tissues and one of mutations was missense. Expression ofKLF6 mRNA or protein was down-regulated in 8 (34.7%) or 9 (39.1%) of 23 HCC tissues. Wild-type KLF6 (wtKLF6) inhibited cellular proliferation and prolonged G1 -S transition by inducing the expression of p21WAF 1 following stable transfection into cultured HepG2 cells, but tumor-derived KLF6 mutant (mKLF6) had no effects. Conclusion: Our findings suggest that KLF6 may be involved in pathogenesis of HCC.
基金supported by the National Natural Science Foundation of China(Grant No.81572559)the Shandong Key Research and Development Plan(Grant No.2017CXGC1210).
文摘This study was designed to investigate the roles of RASAL2 in cervical cancer(CC).Methods:Fifty-four CC tissues and 33 adjacent tissues were obtained from CC patients admitted to our hospital between March 2012 and June 2014.Real-time polymerase chain reaction and western blotting were performed to analyze the expression of RASAL2 mRNA and protein in these tissues,CC cell lines,and normal cervical cells.Over-expression and silencing of RASAL2 were induced after transfection,and the migration,invasion,and proliferation of the CC cell lines were examined.Results:RASAL2 mRNA and protein expressions were significantly down-regulated in CC tissues and cell lines than in adjacent tissues and normal cervical cells,respectively.While low RASAL2 expression correlated with advanced stage and metastasis of CC,its over-expression significantly inhibited proliferation and metastasis of CC cells and induced apoptosis.Under in vitro conditions,silencing of RASAL2 expression could significantly increase the proliferation,invasion,and migration of CC cells.Conclusion:RASAL2 functioned as a tumor suppressor in CC,and was down-regulated in CC tissue samples and cell lines.
基金supported by the National Key Research and Development Program of China (Grant No. 2016YFC0905501)the National Natural Science Funds for Distinguished Young Scholar (Grant No. 81425025)+3 种基金the Key Project of the National Natural Science Foundation of China (Grant No. 81830093)the CAMS Innovation Fund for Medical Sciences (Grant No. CIFMS2019-I2M-1-003)the National Natural Science Foundation of China (Grant No. 81672765 and 81802796)。
文摘Objective: Oncogenes have been shown to be drivers of non-small cell lung cancer(NSCLC), yet the tumor suppressing genes involved in lung carcinogenesis remain to be systematically investigated. This study aimed to identify tumor suppressing ubiquitin pathway genes(UPGs) that were critical to lung tumorigenesis.Methods: The 696 UPGs were silenced by an siRNA screening in NSCLC cells;the potential tumor suppressing UPGs were analyzed, and their clinical significance was investigated.Results: We reported that silencing of 11 UPGs resulted in enhanced proliferation of NSCLC cells, and four UPGs(UBL3, TRIM22, UBE2 G2, and MARCH1) were significantly downregulated in tumor samples compared to that in normal lung tissues and their expression levels were positively associated with overall survival(OS) of NSCLC patients. Among these genes, UBL3 was the most significant one. UBL3 expression was decreased in tumor samples compared to that in paired normal lung tissues in 59/86(68.6%) NSCLCs, was correlated with TNM stage and sex of NSCLC patients, and was significantly higher in non-smoking patients than in smoking patients. Silencing UBL3 accelerated cell proliferation and ectopic expression of UBL3 suppressed NSCLC in vitro and in vivo.Conclusions: These results showed that UBL3 represented a tumor suppressor in NSCLC and may have potential for use in therapeutics and for the prediction of clinical outcome of patients.
文摘DNA hypermethylation of tumor suppressor genes has been frequently observed in cancer patients, and therefore, may provide a valuable biomarker for cancer prevention and treatment. DNA hypermethylation may also provide an important mechanism in cancer progression. Lung cancer is strongly associated with exposure to environmental carcinogens, especially tobacco smoke. DNA damage generated by tobacco smoke is believed to play an important role in lung cancer development. XPC is a DNA damage recognition protein required for DNA repair and other DNA damage responses and attenuated XPC protein levels have been detected in many lung cancer patients. We studied the role of XPC protein deficiency in tobacco smoke-caused DNA hypermethylation of important tumor suppressor genes. Using both normal human fibroblasts (NF) and XPC-deficient hu man fibroblasts (XPC), our DNA methylation studies demonstrated that the XPC deficiency caused elevated levels of DNA hypermethylation in both Brca1 and Mlh1 tumor suppressor genes following exposure to tobacco smoke condensate (TSC). The results of our ChIP studies revealed that the XPC deficiency led to an increased binding of DNA methyltransferase 3A (DNMT3A) at the promoter region CpG island-containing sequences of these genes under the TSC treatment;however, this increase was partially diminished with prior treatment with caffeine. The results of our immuno-precipitation (IP) studies demonstrated a protein-protein interaction of the ATR with DNMT3A. Our western blots revealed that the XPC deficiency caused an increase in TSC-induced ATR phosphorylation at serine 428, an indicator of ATR activation. All these results suggest that XPC deficiency causes an accelerated DNA hypermethylation in important tumor suppressor genes under tobacco smoke exposure and activation of the ATR signaling pathway is involved in this DNA hypermethylation process.
基金supported by the National Natural Science Foundation of China(No.81372323 and No.81802426).
文摘Objective Gastrointestinal stromal tumors(GISTs)can rapidly proliferate through angiogenesis.Previous studies indicated the potential influence of microRNA on the progression of tumor immature angiogenesis.This study aimed to explore the specific mechanism by which microRNA-409-5p(miR-409-5p)contributes to GIST.Methods To identify genes potentially involved in the development and progression of GIST,the differences of miR-409-5p between tumors and adjacent tissues were first analyzed.Following this analysis,target genes were predicted.To further investigate the function of miRNA in GIST cells,two GIST cell lines(GIST-T1 and GIST882)were transfected with lentiviruses that stably expressed miR-409-5p and scrambled miRNA(negative control).Later,the cells were subjected to Western blotting and ELSA to determine any differences in angiogenesis-related genes.Results In GISTs,there was a decrease in the expression levels of miR-409-5p compared to the adjacent tissues.It was observed that the upregulation of miR-409-5p in GIST cell lines effectively inhibited the proteins hypoxia-inducible transcription factor 1β(HIF1β)and vascular endothelial growth factor A(VEGF-A).Further investigations revealed that miR-409-5p acted as an inhibitor of angiogenesis by binding to the 3′-UTR of Lysine-specific demethylase 4D(KDM4D)mRNA.Moreover,the combination of miR-409-5p with imatinib enhanced its inhibitory effect on angiogenesis.Conclusion This study demonstrated that the miRNA-409-5p/KDM4D/HIF1β/VEGF-A signaling pathway could serve as a novel target for the development of therapeutic strategies for the treatment of imatinib-resistance in GIST patients.
基金supported by Guangdong Basic and Applied Basic Research Foundation(2023A1515010969)Natural Science Foundation of Top Talent of SZTU(GDRC202305).
文摘Anti-tumor angiogenesis therapy, targeting the suppression of blood vessel growth in tumors, presents a potent approach in the battle against cancer. Traditional therapies have primarily concentrated on single-target techniques, with a specific emphasis on targeting the vascular endothelial growth factor, but have not reached ideal therapeutic efficacy. In response to this issue, our study introduced a novel nanoparticle system known as CS-siRNA/PEITC&L-cRGD NPs. These chitosan-based nanoparticles have been recognized for their excellent biocompatibility and ability to deliver genes. To enhance their targeted delivery capability, they were combined with a cyclic RGD peptide (cRGD). Targeted co-delivery of gene and chemotherapeutic agents was achieved through the use of a negatively charged lipid shell and cRGD, which possesses high affinity for integrin αvβ3 overexpressed in tumor cells and neovasculature. In this multifaceted approach, co-delivery of VEGF siRNA and phenethyl isothiocyanate (PEITC) was employed to target both tumor vascular endothelial cells and tumor cells simultaneously. The co-delivery of VEGF siRNA and PEITC could achieve precise silencing of VEGF, inhibit the accumulation of HIF-1α under hypoxic conditions, and induce apoptosis in tumor cells. In summary, we have successfully developed a nanoparticle delivery platform that utilizes a dual mechanism of action of anti-tumor angiogenesis and pro-tumor apoptosis, which provides a robust and potent strategy for the delivery of anti-cancer therapeutics.