BACKGROUND Sorafenib is the first-line treatment for patients with advanced hepatocellular carcinoma(HCC).Y-box binding protein 1(YB-1)is closely correlated with tumors and drug resistance.However,the relationship bet...BACKGROUND Sorafenib is the first-line treatment for patients with advanced hepatocellular carcinoma(HCC).Y-box binding protein 1(YB-1)is closely correlated with tumors and drug resistance.However,the relationship between YB-1 and sorafenib resistance and the underlying mechanism in HCC remain unknown.AIM To explore the role and related mechanisms of YB-1 in mediating sorafenib resistance in HCC.METHODS The protein expression levels of YB-1 were assessed in human HCC tissues and adjacent nontumor tissues.Next,we constructed YB-1 overexpression and knockdown hepatocarcinoma cell lines with lentiviruses and stimulated these cell lines with different concentrations of sorafenib.Then,we detected the proliferation and apoptosis in these cells by terminal deoxynucleotidyl transferase dUTP nick end labeling,flow cytometry and Western blotting assays.We also constructed a xenograft tumor model to explore the effect of YB-1 on the efficacy of sorafenib in vivo.Moreover,we studied and verified the specific molecular mechanism of YB-1 mediating sorafenib resistance in hepatoma cells by digital gene expression sequencing(DGE-seq).RESULTS YB-1 protein levels were found to be higher in HCC tissues than in corresponding nontumor tissues.YB-1 suppressed the effect of sorafenib on cell proliferation and apoptosis.Consistently,the efficacy of sorafenib in vivo was enhanced after YB-1 was knocked down.Furthermore,KEGG pathway enrichment analysis of DGEseq demonstrated that the phosphoinositide-3-kinase(PI3K)/protein kinase B(Akt)signaling pathway was essential for the sorafenib resistance induced by YB-1.Subsequently,YB-1 interacted with two key proteins of the PI3K/Akt signaling pathway(Akt1 and PIK3R1)as shown by searching the BioGRID and HitPredict websites.Finally,YB-1 suppressed the inactivation of the PI3K/Akt signaling pathway induced by sorafenib,and the blockade of the PI3K/Akt signaling pathway by LY294002 mitigated YB-1-induced sorafenib resistance.CONCLUSION Overall,we concluded that YB-1 augments sorafenib resistance through the PI3K/Akt signaling pathway in HCC and suggest that YB-1 is a key drug resistance-related gene,which is of great significance for the application of sorafenib in advanced-stage HCC.展开更多
Objective:To investigate whether Buthus martensii karsch(Scorpiones),Scolopendra subspinipes mutilans L.Koch(Scolopendra)and Gekko gecko Linnaeus(Gekko)could ameliorate the hypoxic tumor microenvironment and inhibit l...Objective:To investigate whether Buthus martensii karsch(Scorpiones),Scolopendra subspinipes mutilans L.Koch(Scolopendra)and Gekko gecko Linnaeus(Gekko)could ameliorate the hypoxic tumor microenvironment and inhibit lung cancer growth and metastasis by regulating phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin/hypoxia-inducible factor-1α(PI3K/AKT/mTOR/HIF-1α)signaling pathway.Methods:Male C57BL/6J mice were inoculated with luciferase labeled LL/2-luc-M38 cell suspension to develop lung cancer models,with rapamycin and cyclophosphamide as positive controls.Carboxy methyl cellulose solutions of Scorpiones,Scolopendra and Gekko were administered intragastrically as 0.33,0.33,and 0.83 g/kg,respectively once daily for 21 days.Fluorescent expression were detected every 7 days after inoculation,and tumor growth curves were plotted.Immunohistochemistry was performed to determine CD31 and HIF-1αexpressions in tumor tissue and microvessel density(MVD)was analyzed.Western blot was performed to detect the expression of PI3K/AKT/mTOR/HIF-1αsignaling pathway-related proteins.Enzyme-linked immunosorbent assay was performed to detect serum basic fibroblast growth factor(bFGF),transforming growth factor-β1(TGF-β1)and vascular endothelial growth factor(VEGF)in mice.Results:Scorpiones,Scolopendra and Gekko prolonged the survival time and inhibited lung cancer metastasis and expression of HIF-1α(all P<0.01).Moreover,Scorpiones,Scolopendra and Gekko inhibited the phosphorylation of AKT and ribosomal protein S6 kinase(p70S6K)(P<0.05 or P<0.01).In addition,they also decreased the expression of CD31,MVD,bFGF,TGF-β1 and VEGF compared with the model group(P<0.05 or P<0.01).Conclusion:Scorpiones,Scolopendra and Gekko all showed beneficial effects on lung cancer by ameliorating the hypoxic tumor microenvironment via PI3K/AKT/mTOR/HIF-1αsignaling pathway.展开更多
Viruses have been shown to be responsible for 10%-15% of cancer cases. Epstein-Barr virus(EBV) is the first virus to be associated with human malignancies. EBV can cause many cancers, including Burkett's lymphoma,...Viruses have been shown to be responsible for 10%-15% of cancer cases. Epstein-Barr virus(EBV) is the first virus to be associated with human malignancies. EBV can cause many cancers, including Burkett's lymphoma, Hodgkin's lymphoma, post-transplant lymphoproliferative disorders, nasopharyngeal carcinoma and gastric cancer. Evidence shows that phosphoinositide 3-kinase/protein kinase B(PI3K/Akt) plays a key role in EBV-induced malignancies. The main EBV oncoproteins latent membrane proteins(LMP) 1 and LMP2 A can activate the PI3K/Akt pathway, which, in turn, affects cell survival, apoptosis, proliferation and genomic instability via its downstream target proteins to cause cancer. It has also been demonstrated that the activation of the PI3K/Akt pathway can result in drug resistance to chemotherapy. Thus, the inhibition of this pathway can increase the therapeutic efficacy of EBV-associated cancers. For example, PI3 K inhibitor Ly294002 has been shown to increase the effect of 5-fluorouracil in an EBV-associated gastric cancer cell line. At present, dual inhibitors of PI3 K and its downstream target mammalian target of rapamycin have been used in clinical trials and may be included in treatment regimens for EBV-associated cancers.展开更多
Pancreatic cancer is a highly aggressive tumour that is very resistant to treatments and it is rarely diagnosed early because of absence of specific symptoms. Therefore, the prognosis for this disease is very poor and...Pancreatic cancer is a highly aggressive tumour that is very resistant to treatments and it is rarely diagnosed early because of absence of specific symptoms. Therefore, the prognosis for this disease is very poor and it has the grim supremacy in terms of unfavourable survival rates. There have been great advances in survival rates for many types of cancers over the past few decades but hardly any change for pancreatic cancer. Mutations of the Ras oncogene are the most frequent oncogenic alterations in human cancers. The frequency of KRAS mutations in pancreatic cancer is around 90%. Given the well-established role of KRAS in cancer it is not surprising that it is one of the most attractive targets for cancer therapy. Nevertheless, during the last thirty years all attempts to target directly KRAS protein have failed. Therefore, it is crucial to identify downstream KRAS effectors in order to develop specific drugs able to counteract activation of this pathway. Among the different signalling pathways activated by oncogenic KRAS, the phosphoinositide 3-Kinase(PI3K) pathway is emerging as one of the most critical KRAS effector. In turn, PI3 K activates several parallel pathways making the identification of the precise effectors activated by KRAS/PI3 K more difficult. Recent data identify 3-phosphoinositide-dependent protein kinase 1 as a key tumour-initiating event downstream KRAS interaction with PI3 K in pancreatic cancer.展开更多
Tongluojiunao (TLJN) is an herbal medicine consisting of two main components, geniposide and ginsenoside Rg1. TLJN has been shown to protect primary cultured hippocampal neurons. How-ever, its mechanism of action re...Tongluojiunao (TLJN) is an herbal medicine consisting of two main components, geniposide and ginsenoside Rg1. TLJN has been shown to protect primary cultured hippocampal neurons. How-ever, its mechanism of action remains unclear. In the present study, primary cultured hippocampal neurons treated with Aβ1-42 (10 μmol/L) signiifcantly increased the release of lactate dehydroge-nase, which was markedly reduced by TLJN (2 μL/mL), speciifcally by the component geniposide (26 μmol/L), but not ginsenoside Rg1 (2.5 μmol/L). hTe estrogen receptor inhibitor, ICI182780 (1 μmol/L), did not block TLJN-or geniposide-mediated decrease of lactate dehydrogenase under Aβ1-42-exposed conditions. However, the phosphatidyl inositol 3-kinase or mitogen-activated protein kinase pathway inhibitor, LY294002 (50 μmol/L) or U0126 (10 μmol/L), respectively blo cked the decrease of lactate dehydrogenase mediated by TLJN or geniposide. hTerefore, these results suggest that the non-classical estrogen pathway (i.e., phosphatidyl inositol 3-kinase or mitogen-activated protein kinase) is involved in the neuroprotective effect of TLJN, speciifcally its component, geniposide, against Aβ1-42-mediated cell death in primary cultured hippocampal neurons.展开更多
Objective Our previous study showed that tumor tissue-derived formaldehyde at low concentrations plays an important role in bone cancer pain through activating transient receptor potential vanilloid subfamily member 1...Objective Our previous study showed that tumor tissue-derived formaldehyde at low concentrations plays an important role in bone cancer pain through activating transient receptor potential vanilloid subfamily member 1 (TRPV 1). The present study further explored whether this tumor tissue-derived endogenous formaldehyde regulates TRPV1 expres- sion in a rat model of bone cancer pain, and if so, what the possible signal pathways are during the development of this type of pain. Methods A rat model of bone cancer pain was established by injecting living MRMT-1 tumor cells into the tibia. The formaldehyde levels were determined by high performance liquid chromatography, and the expression of TRPV1 was examined with Western blot and RT-PCR. In primary cultured dorsal root ganglion (DRG) neurons, the ex- pression of TRPV1 was assessed after treatment with 100 ~tmol/L formaldehyde with or without pre-addition of PD98059 [an inhibitor for extracellular signal-regulated kinase], SB203580 (a p38 inhibitor), SP600125 [an inhibitor for c-Jun N- terminal kinase], BIM [a protein kinase C (PKC) inhibitor] or LY294002 [a phosphatidylinositol 3-kinase (PI3K) inhibi- tor]. Results In the rat model of bone cancer pain, formaldehyde concentration increased in blood plasma, bone marrow and the spinal cord. TRPV1 protein expression was also increased in the DRG. In primary cultured DRG neurons, 100 p^mol/L formaldehyde significantly increased the TRPV1 expression level. Pre-incubation with PD98059, SB203580, SP600125 or LY294002, but not BIM, inhibited the formaldehyde-induced increase of TRPV1 expression. Conclusion Formaldehyde at a very low concentration up-regulates TRPV1 expression through mitogen-activated protein kinase and PI3K, but not PKC, signaling pathways. These results further support our previous finding that TRPV1 in peripheral after- ents plays a role in bone cancer pain.展开更多
AIM:To analyze the effect of chemotherapeutic drugs and specific kinase inhibitors,in combination with the death receptor ligand tumor necrosis factor-related apoptosis inducing ligand(TRAIL),on overcoming TRAIL resis...AIM:To analyze the effect of chemotherapeutic drugs and specific kinase inhibitors,in combination with the death receptor ligand tumor necrosis factor-related apoptosis inducing ligand(TRAIL),on overcoming TRAIL resistance in hepatocellular carcinoma(HCC)and to study the efficacy of agonistic TRAIL antibodies,as well as the commitment of antiapoptotic BCL-2 proteins, in TRAIL-induced apoptosis. METHODS:Surface expression of TRAIL receptors (TRAIL-R1-4)and expression levels of the antiapoptotic BCL-2 proteins MCL-1 and BCL-xL were analyzed by flow cytometry and Western blotting,respectively. Knock-down of MCL-1 and BCL-xL was performed by transfecting specific small interfering RNAs.HCC cellswere treated with kinase inhibitors and chemotherapeutic drugs.Apoptosis induction and cell viability were analyzed via flow cytometry and 3-(4,5-Dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. RESULTS:TRAIL-R1 and-R2 were profoundly expressed on the HCC cell lines Huh7 and Hep-G2. However,treatment of Huh7 and Hep-G2 with TRAIL and agonistic antibodies only induced minor apoptosis rates.Apoptosis resistance towards TRAIL could be considerably reduced by adding the chemotherapeutic drugs 5-fluorouracil and doxorubicin as well as the kinase inhibitors LY294002[inhibition of phosphoinositol- 3-kinase(PI3K)],AG1478(epidermal growth factor receptor kinase),PD98059(MEK1),rapamycin(mam- malian target of rapamycin)and the multi-kinase inhibitor Sorafenib.Furthermore,the antiapoptotic BCL-2 proteins MCL-1 and BCL-xL play a major role in TRAIL resistance:knock-down by RNA interference increased TRAIL-induced apoptosis of HCC cells.Additionally, knock-down of MCL-1 and BCL-xL led to a significant sensitization of HCC cells towards inhibition of both c-Jun N-terminal kinase and PI3K.CONCLUSION:Our data identify the blockage of survival kinases,combination with chemotherapeutic drugs and targeting of antiapoptotic BCL-2 proteins as promising ways to overcome TRAIL resistance in HCC.展开更多
Throughout the globe,diabetes mellitus(DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder.DM impacts multiple organs and af...Throughout the globe,diabetes mellitus(DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder.DM impacts multiple organs and affects all components of the central and peripheral nervous systems that can range from dementia to diabetic neuropathy.The mechanistic target of rapamycin(m TOR) is a promising agent for the development of novel regenerative strategies for the treatment of DM.m TOR and its related signaling pathways impact multiple metabolic parameters that include cellular metabolic homeostasis,insulin resistance,insulin secretion,stem cell proliferation and differentiation,pancreatic β-cell function,and programmed cell death with apoptosis and autophagy.m TOR is central element for the protein complexes m TOR Complex 1(m TORC1) and m TOR Complex 2(m TORC2) and is a critical component for a number of signaling pathways that involve phosphoinositide 3-kinase(PI 3-K),protein kinase B(Akt),AMP activated protein kinase(AMPK),silent mating type information regulation 2 homolog 1(Saccharomyces cerevisiae)(SIRT1),Wnt1 inducible signaling pathway protein 1(WISP1),and growth factors.As a result,m TOR represents an exciting target to offer new clinical avenues for the treatment of DM and the complications of this disease.Future studies directed to elucidate the delicate balance m TOR holds over cellular metabolism and the impact of its broad signaling pathways should foster the translation of these targets into effective clinical regimens for DM.展开更多
基金Supported by National Natural Science Foundation of China,No.81770601,No.81702324,and No.81602529Natural Science Foundation of Hebei Province,No.H2018206176 and No.H2017206141Post-graduate’s Innovation Fund Project of Hebei Province,No.CXZZBS2019121.
文摘BACKGROUND Sorafenib is the first-line treatment for patients with advanced hepatocellular carcinoma(HCC).Y-box binding protein 1(YB-1)is closely correlated with tumors and drug resistance.However,the relationship between YB-1 and sorafenib resistance and the underlying mechanism in HCC remain unknown.AIM To explore the role and related mechanisms of YB-1 in mediating sorafenib resistance in HCC.METHODS The protein expression levels of YB-1 were assessed in human HCC tissues and adjacent nontumor tissues.Next,we constructed YB-1 overexpression and knockdown hepatocarcinoma cell lines with lentiviruses and stimulated these cell lines with different concentrations of sorafenib.Then,we detected the proliferation and apoptosis in these cells by terminal deoxynucleotidyl transferase dUTP nick end labeling,flow cytometry and Western blotting assays.We also constructed a xenograft tumor model to explore the effect of YB-1 on the efficacy of sorafenib in vivo.Moreover,we studied and verified the specific molecular mechanism of YB-1 mediating sorafenib resistance in hepatoma cells by digital gene expression sequencing(DGE-seq).RESULTS YB-1 protein levels were found to be higher in HCC tissues than in corresponding nontumor tissues.YB-1 suppressed the effect of sorafenib on cell proliferation and apoptosis.Consistently,the efficacy of sorafenib in vivo was enhanced after YB-1 was knocked down.Furthermore,KEGG pathway enrichment analysis of DGEseq demonstrated that the phosphoinositide-3-kinase(PI3K)/protein kinase B(Akt)signaling pathway was essential for the sorafenib resistance induced by YB-1.Subsequently,YB-1 interacted with two key proteins of the PI3K/Akt signaling pathway(Akt1 and PIK3R1)as shown by searching the BioGRID and HitPredict websites.Finally,YB-1 suppressed the inactivation of the PI3K/Akt signaling pathway induced by sorafenib,and the blockade of the PI3K/Akt signaling pathway by LY294002 mitigated YB-1-induced sorafenib resistance.CONCLUSION Overall,we concluded that YB-1 augments sorafenib resistance through the PI3K/Akt signaling pathway in HCC and suggest that YB-1 is a key drug resistance-related gene,which is of great significance for the application of sorafenib in advanced-stage HCC.
基金Supported by the Special Scientific Research Project of the Chinese Medicine Industry of the State Administration of Traditional Chinese Medicine of China(No.201307006)National Natural Science Foundation of China(No.82104656,82004179,82074405)Fundamental Research Funds for the Central Public Welfare Research Institutes(No.ZZ14-YQ-013,ZZ15-YQ-024)。
文摘Objective:To investigate whether Buthus martensii karsch(Scorpiones),Scolopendra subspinipes mutilans L.Koch(Scolopendra)and Gekko gecko Linnaeus(Gekko)could ameliorate the hypoxic tumor microenvironment and inhibit lung cancer growth and metastasis by regulating phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin/hypoxia-inducible factor-1α(PI3K/AKT/mTOR/HIF-1α)signaling pathway.Methods:Male C57BL/6J mice were inoculated with luciferase labeled LL/2-luc-M38 cell suspension to develop lung cancer models,with rapamycin and cyclophosphamide as positive controls.Carboxy methyl cellulose solutions of Scorpiones,Scolopendra and Gekko were administered intragastrically as 0.33,0.33,and 0.83 g/kg,respectively once daily for 21 days.Fluorescent expression were detected every 7 days after inoculation,and tumor growth curves were plotted.Immunohistochemistry was performed to determine CD31 and HIF-1αexpressions in tumor tissue and microvessel density(MVD)was analyzed.Western blot was performed to detect the expression of PI3K/AKT/mTOR/HIF-1αsignaling pathway-related proteins.Enzyme-linked immunosorbent assay was performed to detect serum basic fibroblast growth factor(bFGF),transforming growth factor-β1(TGF-β1)and vascular endothelial growth factor(VEGF)in mice.Results:Scorpiones,Scolopendra and Gekko prolonged the survival time and inhibited lung cancer metastasis and expression of HIF-1α(all P<0.01).Moreover,Scorpiones,Scolopendra and Gekko inhibited the phosphorylation of AKT and ribosomal protein S6 kinase(p70S6K)(P<0.05 or P<0.01).In addition,they also decreased the expression of CD31,MVD,bFGF,TGF-β1 and VEGF compared with the model group(P<0.05 or P<0.01).Conclusion:Scorpiones,Scolopendra and Gekko all showed beneficial effects on lung cancer by ameliorating the hypoxic tumor microenvironment via PI3K/AKT/mTOR/HIF-1αsignaling pathway.
文摘Viruses have been shown to be responsible for 10%-15% of cancer cases. Epstein-Barr virus(EBV) is the first virus to be associated with human malignancies. EBV can cause many cancers, including Burkett's lymphoma, Hodgkin's lymphoma, post-transplant lymphoproliferative disorders, nasopharyngeal carcinoma and gastric cancer. Evidence shows that phosphoinositide 3-kinase/protein kinase B(PI3K/Akt) plays a key role in EBV-induced malignancies. The main EBV oncoproteins latent membrane proteins(LMP) 1 and LMP2 A can activate the PI3K/Akt pathway, which, in turn, affects cell survival, apoptosis, proliferation and genomic instability via its downstream target proteins to cause cancer. It has also been demonstrated that the activation of the PI3K/Akt pathway can result in drug resistance to chemotherapy. Thus, the inhibition of this pathway can increase the therapeutic efficacy of EBV-associated cancers. For example, PI3 K inhibitor Ly294002 has been shown to increase the effect of 5-fluorouracil in an EBV-associated gastric cancer cell line. At present, dual inhibitors of PI3 K and its downstream target mammalian target of rapamycin have been used in clinical trials and may be included in treatment regimens for EBV-associated cancers.
文摘Pancreatic cancer is a highly aggressive tumour that is very resistant to treatments and it is rarely diagnosed early because of absence of specific symptoms. Therefore, the prognosis for this disease is very poor and it has the grim supremacy in terms of unfavourable survival rates. There have been great advances in survival rates for many types of cancers over the past few decades but hardly any change for pancreatic cancer. Mutations of the Ras oncogene are the most frequent oncogenic alterations in human cancers. The frequency of KRAS mutations in pancreatic cancer is around 90%. Given the well-established role of KRAS in cancer it is not surprising that it is one of the most attractive targets for cancer therapy. Nevertheless, during the last thirty years all attempts to target directly KRAS protein have failed. Therefore, it is crucial to identify downstream KRAS effectors in order to develop specific drugs able to counteract activation of this pathway. Among the different signalling pathways activated by oncogenic KRAS, the phosphoinositide 3-Kinase(PI3K) pathway is emerging as one of the most critical KRAS effector. In turn, PI3 K activates several parallel pathways making the identification of the precise effectors activated by KRAS/PI3 K more difficult. Recent data identify 3-phosphoinositide-dependent protein kinase 1 as a key tumour-initiating event downstream KRAS interaction with PI3 K in pancreatic cancer.
基金supported by the National Natural Science Foundation of China No.81072901the New Teacher Fund for Doctor Station,Ministry of Education,No.20120013110013+1 种基金grants from the Nautical Traditional Chinese Medicine Discipline,No.522/0100604054grants from the Nautical Traditional Chinese Medicine Collaborative Innovation Center,No.522/0100604299
文摘Tongluojiunao (TLJN) is an herbal medicine consisting of two main components, geniposide and ginsenoside Rg1. TLJN has been shown to protect primary cultured hippocampal neurons. How-ever, its mechanism of action remains unclear. In the present study, primary cultured hippocampal neurons treated with Aβ1-42 (10 μmol/L) signiifcantly increased the release of lactate dehydroge-nase, which was markedly reduced by TLJN (2 μL/mL), speciifcally by the component geniposide (26 μmol/L), but not ginsenoside Rg1 (2.5 μmol/L). hTe estrogen receptor inhibitor, ICI182780 (1 μmol/L), did not block TLJN-or geniposide-mediated decrease of lactate dehydrogenase under Aβ1-42-exposed conditions. However, the phosphatidyl inositol 3-kinase or mitogen-activated protein kinase pathway inhibitor, LY294002 (50 μmol/L) or U0126 (10 μmol/L), respectively blo cked the decrease of lactate dehydrogenase mediated by TLJN or geniposide. hTerefore, these results suggest that the non-classical estrogen pathway (i.e., phosphatidyl inositol 3-kinase or mitogen-activated protein kinase) is involved in the neuroprotective effect of TLJN, speciifcally its component, geniposide, against Aβ1-42-mediated cell death in primary cultured hippocampal neurons.
基金supported by grants from the National Natural Science Foundation of China (81070893, 81171042 and 31171063)Beijing Municipal Commission of Education "Grants for Outstanding Ph.D. Program Tutors"+2 种基金the "111" Project of the Ministry of Education of ChinaThe Ministry of Education(BMU20100014)the China Postdoctoral Science Foundation (20090450266)
文摘Objective Our previous study showed that tumor tissue-derived formaldehyde at low concentrations plays an important role in bone cancer pain through activating transient receptor potential vanilloid subfamily member 1 (TRPV 1). The present study further explored whether this tumor tissue-derived endogenous formaldehyde regulates TRPV1 expres- sion in a rat model of bone cancer pain, and if so, what the possible signal pathways are during the development of this type of pain. Methods A rat model of bone cancer pain was established by injecting living MRMT-1 tumor cells into the tibia. The formaldehyde levels were determined by high performance liquid chromatography, and the expression of TRPV1 was examined with Western blot and RT-PCR. In primary cultured dorsal root ganglion (DRG) neurons, the ex- pression of TRPV1 was assessed after treatment with 100 ~tmol/L formaldehyde with or without pre-addition of PD98059 [an inhibitor for extracellular signal-regulated kinase], SB203580 (a p38 inhibitor), SP600125 [an inhibitor for c-Jun N- terminal kinase], BIM [a protein kinase C (PKC) inhibitor] or LY294002 [a phosphatidylinositol 3-kinase (PI3K) inhibi- tor]. Results In the rat model of bone cancer pain, formaldehyde concentration increased in blood plasma, bone marrow and the spinal cord. TRPV1 protein expression was also increased in the DRG. In primary cultured DRG neurons, 100 p^mol/L formaldehyde significantly increased the TRPV1 expression level. Pre-incubation with PD98059, SB203580, SP600125 or LY294002, but not BIM, inhibited the formaldehyde-induced increase of TRPV1 expression. Conclusion Formaldehyde at a very low concentration up-regulates TRPV1 expression through mitogen-activated protein kinase and PI3K, but not PKC, signaling pathways. These results further support our previous finding that TRPV1 in peripheral after- ents plays a role in bone cancer pain.
基金Supported by Research grants from Merck KGaA,Darmstadt,Germany,to Schulze-Bergkamen H
文摘AIM:To analyze the effect of chemotherapeutic drugs and specific kinase inhibitors,in combination with the death receptor ligand tumor necrosis factor-related apoptosis inducing ligand(TRAIL),on overcoming TRAIL resistance in hepatocellular carcinoma(HCC)and to study the efficacy of agonistic TRAIL antibodies,as well as the commitment of antiapoptotic BCL-2 proteins, in TRAIL-induced apoptosis. METHODS:Surface expression of TRAIL receptors (TRAIL-R1-4)and expression levels of the antiapoptotic BCL-2 proteins MCL-1 and BCL-xL were analyzed by flow cytometry and Western blotting,respectively. Knock-down of MCL-1 and BCL-xL was performed by transfecting specific small interfering RNAs.HCC cellswere treated with kinase inhibitors and chemotherapeutic drugs.Apoptosis induction and cell viability were analyzed via flow cytometry and 3-(4,5-Dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. RESULTS:TRAIL-R1 and-R2 were profoundly expressed on the HCC cell lines Huh7 and Hep-G2. However,treatment of Huh7 and Hep-G2 with TRAIL and agonistic antibodies only induced minor apoptosis rates.Apoptosis resistance towards TRAIL could be considerably reduced by adding the chemotherapeutic drugs 5-fluorouracil and doxorubicin as well as the kinase inhibitors LY294002[inhibition of phosphoinositol- 3-kinase(PI3K)],AG1478(epidermal growth factor receptor kinase),PD98059(MEK1),rapamycin(mam- malian target of rapamycin)and the multi-kinase inhibitor Sorafenib.Furthermore,the antiapoptotic BCL-2 proteins MCL-1 and BCL-xL play a major role in TRAIL resistance:knock-down by RNA interference increased TRAIL-induced apoptosis of HCC cells.Additionally, knock-down of MCL-1 and BCL-xL led to a significant sensitization of HCC cells towards inhibition of both c-Jun N-terminal kinase and PI3K.CONCLUSION:Our data identify the blockage of survival kinases,combination with chemotherapeutic drugs and targeting of antiapoptotic BCL-2 proteins as promising ways to overcome TRAIL resistance in HCC.
基金supported by American Diabetes Association,American Heart Association,NIH NIEHS,NIH NIA,NIH NINDS,and NIH ARRA
文摘Throughout the globe,diabetes mellitus(DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder.DM impacts multiple organs and affects all components of the central and peripheral nervous systems that can range from dementia to diabetic neuropathy.The mechanistic target of rapamycin(m TOR) is a promising agent for the development of novel regenerative strategies for the treatment of DM.m TOR and its related signaling pathways impact multiple metabolic parameters that include cellular metabolic homeostasis,insulin resistance,insulin secretion,stem cell proliferation and differentiation,pancreatic β-cell function,and programmed cell death with apoptosis and autophagy.m TOR is central element for the protein complexes m TOR Complex 1(m TORC1) and m TOR Complex 2(m TORC2) and is a critical component for a number of signaling pathways that involve phosphoinositide 3-kinase(PI 3-K),protein kinase B(Akt),AMP activated protein kinase(AMPK),silent mating type information regulation 2 homolog 1(Saccharomyces cerevisiae)(SIRT1),Wnt1 inducible signaling pathway protein 1(WISP1),and growth factors.As a result,m TOR represents an exciting target to offer new clinical avenues for the treatment of DM and the complications of this disease.Future studies directed to elucidate the delicate balance m TOR holds over cellular metabolism and the impact of its broad signaling pathways should foster the translation of these targets into effective clinical regimens for DM.