BACKGROUND Vessels encapsulating tumor clusters(VETC)represent a recently discovered vascular pattern associated with novel metastasis mechanisms in hepatocellular carcinoma(HCC).However,it seems that no one have focu...BACKGROUND Vessels encapsulating tumor clusters(VETC)represent a recently discovered vascular pattern associated with novel metastasis mechanisms in hepatocellular carcinoma(HCC).However,it seems that no one have focused on predicting VETC status in small HCC(sHCC).This study aimed to develop a new nomogram for predicting VETC positivity using preoperative clinical data and image features in sHCC(≤3 cm)patients.AIM To construct a nomogram that combines preoperative clinical parameters and image features to predict patterns of VETC and evaluate the prognosis of sHCC patients.METHODS A total of 309 patients with sHCC,who underwent segmental resection and had their VETC status confirmed,were included in the study.These patients were recruited from three different hospitals:Hospital 1 contributed 177 patients for the training set,Hospital 2 provided 78 patients for the test set,and Hospital 3 provided 54 patients for the validation set.Independent predictors of VETC were identified through univariate and multivariate logistic analyses.These independent predictors were then used to construct a VETC prediction model for sHCC.The model’s performance was evaluated using the area under the curve(AUC),calibration curve,and clinical decision curve.Additionally,Kaplan-Meier survival analysis was performed to confirm whether the predicted VETC status by the model is associated with early recurrence,just as it is with the actual VETC status and early recurrence.RESULTS Alpha-fetoprotein_lg10,carbohydrate antigen 199,irregular shape,non-smooth margin,and arterial peritumoral enhancement were identified as independent predictors of VETC.The model incorporating these predictors demonstrated strong predictive performance.The AUC was 0.811 for the training set,0.800 for the test set,and 0.791 for the validation set.The calibration curve indicated that the predicted probability was consistent with the actual VETC status in all three sets.Furthermore,the decision curve analysis demonstrated the clinical benefits of our model for patients with sHCC.Finally,early recurrence was more likely to occur in the VETC-positive group compared to the VETC-negative group,regardless of whether considering the actual or predicted VETC status.CONCLUSION Our novel prediction model demonstrates strong performance in predicting VETC positivity in sHCC(≤3 cm)patients,and it holds potential for predicting early recurrence.This model equips clinicians with valuable information to make informed clinical treatment decisions.展开更多
BACKGROUND Recently,vessels encapsulating tumor clusters(VETC)was considered as a distinct pattern of tumor vascularization which can primarily facilitate the entry of the whole tumor cluster into the bloodstream in a...BACKGROUND Recently,vessels encapsulating tumor clusters(VETC)was considered as a distinct pattern of tumor vascularization which can primarily facilitate the entry of the whole tumor cluster into the bloodstream in an invasion independent manner,and was regarded as an independent risk factor for poor prognosis in hepatocellular carcinoma(HCC).AIM To develop and validate a preoperative nomogram using contrast-enhanced computed tomography(CECT)to predict the presence of VETC+in HCC.METHODS We retrospectively evaluated 190 patients with pathologically confirmed HCC who underwent CECT scanning and immunochemical staining for cluster of differentiation 34 at two medical centers.Radiomics analysis was conducted on intratumoral and peritumoral regions in the portal vein phase.Radiomics features,essential for identifying VETC+HCC,were extracted and utilized to develop a radiomics model using machine learning algorithms in the training set.The model’s performance was validated on two separate test sets.Receiver operating characteristic(ROC)analysis was employed to compare the identified performance of three models in predicting the VETC status of HCC on both training and test sets.The most predictive model was then used to constructed a radiomics nomogram that integrated the independent clinical-radiological features.ROC and decision curve analysis were used to assess the performance characteristics of the clinical-radiological features,the radiomics features and the radiomics nomogram.RESULTS The study included 190 individuals from two independent centers,with the majority being male(81%)and a median age of 57 years(interquartile range:51-66).The area under the curve(AUC)for the combined radiomics features selected from the intratumoral and peritumoral areas were 0.825,0.788,and 0.680 in the training set and the two test sets.A total of 13 features were selected to construct the Rad-score.The nomogram,combining clinicalradiological and combined radiomics features could accurately predict VETC+in all three sets,with AUC values of 0.859,0.848 and 0.757.Decision curve analysis revealed that the radiomics nomogram was more clinically useful than both the clinical-radiological feature and the combined radiomics models.CONCLUSION This study demonstrates the potential utility of a CECT-based radiomics nomogram,incorporating clinicalradiological features and combined radiomics features,in the identification of VETC+HCC.展开更多
Objective Isocitrate dehydrogenase gene(IDH)mutations are associated with tumor angiogenesis and therefore play an important role in glioma management.This study compared the performance of tumor blood vessels counted...Objective Isocitrate dehydrogenase gene(IDH)mutations are associated with tumor angiogenesis and therefore play an important role in glioma management.This study compared the performance of tumor blood vessels counted from contrast-enhanced 3D brain volume(3D-BRAVO)sequence and dynamic contrast-enhanced(DCE)MRI in differentiating IDH1 status in gliomas.Methods Forty-four glioma patients[16 with IDH1 mutant-type(IDH1-MT),28 with IDH1 wild-type(IDH1-WT)]were retrospectively analyzed.A blood vessel entering a tumor was defined as an intratumoral vessel;a blood vessel adjacent to the edge of a tumor was defined as a peritumoral vessel.Combined vessels were defined as the sum of the intratumoral and peritumoral vessels.DCE-derived metrics of tumor were normalized to the contralateral normal-appearing white matter.Results Intratumoral,peritumoral,and combined tumor blood vessels were all significantly different between IDH1-MT and IDH1-WT gliomas,and the range of area under curves(AUCs)was 0.816–0.855.For DCE-derived parameters,cerebral blood volume,cerebral blood flow,mean transit time,and volume transfer constant were significantly different between IDH1-MT and IDH1-WT gliomas,and the range of AUCs was 0.703–0.756.Combined vessels possessed the best performance for identifying IDH1 mutations in gliomas(AUC:0.855,sensitivity:0.857,specificity:0.812,P<0.001).Conclusion The number of tumor blood vessels has comparable diagnostic performance with DCE-derived parameters for differentiating IDH1 mutations and can serve as a potential imaging biomarker to reflect IDH1 mutations in gliomas.展开更多
Epithelial glioma is the most common brain cancer,accounting for 35.26%-60.69%of intracranial tumors with an average of 44.69%,and it remains the greatest challenge in the field of neurosurgery.The median survival tim...Epithelial glioma is the most common brain cancer,accounting for 35.26%-60.69%of intracranial tumors with an average of 44.69%,and it remains the greatest challenge in the field of neurosurgery.The median survival time of patients with advanced glioma is only 12 to 18 months due to the characteristics of high aggression,and the therapeutic effect was poor though surgery,chemotherapy,and targeted drug therapy being treated.Because of the presence of heterogeneity and the differentiation disorder,only a small number of glioma cells are the source of tumor growth and metastasis,which are highly resistant to traditional treatments.They are deemed as the“seed”tumor cells as they could get rid of the effect of the treatment and reconstruct the organization of tumor.They are also termed as brain tumor stem cell(BTSC)or glioma stem cells(GSCs)since neural stem cells share similar features with them.Recent data reveal that they are directly related with invasion,angiogenesis,tolerance,chemotherapy,recurrence of glioma.Based on the research result by the team,the paper elaborates the characteristics of GSCs and the relationship with the tumor angiogenesis.展开更多
BACKGROUND In traditional Chinese medicine(TCM),frankincense and myrrh are the main components of the antitumor drug Xihuang Pill.These compounds show anticancer activity in other biological systems.However,whether fr...BACKGROUND In traditional Chinese medicine(TCM),frankincense and myrrh are the main components of the antitumor drug Xihuang Pill.These compounds show anticancer activity in other biological systems.However,whether frankincense and/or myrrh can inhibit the occurrence of hepatocellular carcinoma(HCC)is unknown,and the potential molecular mechanism(s)has not yet been determined.AIM To predict and determine latent anti-HCC therapeutic targets and molecular mechanisms of frankincense and myrrh in vivo.METHODS In the present study,which was based on the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(http://tcmspw.com/tcmsp.php),Universal Protein database(http://www.uniprot.org),GeneCards:The Human Gene Database(http://www.genecards.org/)and Comparative Toxicogenomics Database(http://www.ctdbase.org/),the efficacy of and mechanism by which frankincense and myrrh act as anti-HCC compounds were predicted.The core prediction targets were screened by molecular docking.In vivo,SMMC-7721 human liver cancer cells were transplanted as xenografts into nude mice to establish a subcutaneous tumor model,and two doses of frankincense plus myrrh or one dose of an EGFR inhibitor was administered to these mice continuously for 14 d.The tumors were collected and evaluated:the tumor volume and growth rate were gauged to evaluate tumor growth;hematoxylineosin staining was performed to estimate histopathological changes;immunofluorescence(IF)was performed to detect the expression of CD31,α-SMA and collagen IV;transmission electron microscopy(TEM)was conducted to observe the morphological structure of vascular cells;enzyme-linked immunosorbent assay(ELISA)was performed to measure the levels of secreted HIF-1αand TNF-α;reverse transcription-polymerase chain reaction(RT-qPCR)was performed to measure the mRNA expression of HIF-1α,TNF-α,VEGF and MMP-9;and Western blot(WB)was performed to determine the levels of proteins expressed in the EGFR-mediated PI3K/Akt and MAPK signaling pathways.RESULTS The results of the network pharmacology analysis showed that there were 35 active components in the frankincense and myrrh extracts targeting 151 key targets.The molecular docking analysis showed that both boswellic acid and stigmasterol showed strong affinity for the targets,with the greatest affinity for EGFR.Frankincense and myrrh treatment may play a role in the treatment of HCC by regulating hypoxia responses and vascular system-related pathological processes,such as cytokine-receptor binding,and pathways,such as those involving serine/threonine protein kinase complexes and MAPK,HIF-1 and ErbB signaling cascades.The animal experiment results were verified.First,we found that,through frankincense and/or myrrh treatment,the volume of subcutaneously transplanted HCC tumors was significantly reduced,and the pathological morphology was attenuated.Then,IF and TEM showed that frankincense and/or myrrh treatment reduced CD31 and collagen IV expression,increased the coverage of perivascular cells,tightened the connection between cells,and improved the shape of blood vessels.In addition,ELISA,RT-qPCR and WB analyses showed that frankincense and/or myrrh treatment inhibited the levels of hypoxia-inducible factors,inflammatory factors and angiogenesis-related factors,namely,HIF-1α,TNF-α,VEGF and MMP-9.Furthermore,mechanistic experiments illustrated that the effect of frankincense plus myrrh treatment was similar to that of an EGFR inhibitor with regard to controlling EGFR activation,thereby inhibiting the phosphorylation activity of its downstream targets:the PI3K/Akt and MAPK(ERK,p38 and JNK)pathways.CONCLUSION In summary,frankincense and myrrh treatment targets tumor blood vessels to exert anti-HCC effects via EGFR-activated PI3K/Akt and MAPK signaling pathways,highlighting the potential of this dual TCM compound as an anti-HCC candidate.展开更多
OBJECTIVE Our previous studies demonstrated that various ingredients from the traditional Chinese medicine(TCM)for promoting blood circulation and removing blood stasis,as exemplified by cryptotanshinone and salvianol...OBJECTIVE Our previous studies demonstrated that various ingredients from the traditional Chinese medicine(TCM)for promoting blood circulation and removing blood stasis,as exemplified by cryptotanshinone and salvianolic acid B,exerted striking effects on modulating angiogenesis and vascular permeability,which suggests that they may be effective in treating vascular leak-driven diseases(e.g.tumor,cerebral cavernous malformation and diabetic retinopathy).However,the lack of reliable and advanced technologies and models sets up difficult hurdles for better understanding the role of TCM for promoting blood circulation and removing blood stasis.To this end,this study is to outline numerous cutting-edge platforms that can be utilized for exploring the function of TCM for promoting blood circulation and removing blood stasis in vascular leak-driven diseases.METHODS Two-photon laser scanning fluorescence microscopy was used to observe the interactions between neutrophils and blood vessels in a real-time manner.Dynamic flow system was employed to mimic the in vivo behaviors of neutrophils.RIP1-Tag5 spontaneous pancreatic cancer model was used to study the function of tumor blood vessels.CCM2ECKO(deletion of CCM2 in endothelial cells)mice were employed to establish the cerebral cavernous malformation(CCM)animal model.Micro-computed tomography(micro-CT)was utilized to assess the CCM lesion.Müller cell-knockout mouse model was used to study the progression of diabetic retinopathy.Vascular permeability in this model was assessed by fluorescein angiography.RESULTS The interactions between neutrophils and endothelial cells involve a series of complicated processes,including rolling,adhesion,intraluminal crawling and transmigration,which were all monitored in vivo by two-photon laser scanning fluorescence microscopy in a real-time manner.Dynamic flow system was capable of recapitulating the biological behaviors of neutrophils in vitro.Tumor vascular function in particular vascular perfusion could be assessed in the RIP1-Tag5 spontaneous pancreatic cancer model.In terms of CCM studies,specific deletion of CCM2 in endothelial cells resulted in the initiation of CCM lesion.The size and number of CCM lesions could be visualized and quantified by micro-CT.Furthermore,the Müller cell-knockout mouse model was able to precisely reflect the clinical symptoms of diabetic retinopathy.Vascular leak could be monitored at different time points using fluorescein angiography.CONCLUSION An array of high technologies and animal models can be used in investigating the occurrence and progression of multiple vascular leak-driven diseases.The pre-clinical and clinical studies of TCM for promoting blood circulation and removing blood stasis provide fundamental support for the application of the above-mentioned platforms,with the purpose of uncovering the scientific basis of TCM for promoting blood circulation and removing blood stasis.展开更多
As a promising modality for cancer therapy, photodynamic therapy(PDT) still acquired limited success in clinical nowadays due to the extremely serious hypoxia and immunosuppression tumor microenvironment. To ameliorat...As a promising modality for cancer therapy, photodynamic therapy(PDT) still acquired limited success in clinical nowadays due to the extremely serious hypoxia and immunosuppression tumor microenvironment. To ameliorate such a situation, we rationally designed and prepared cascade two-stage re-oxygenation and immune re-sensitization BSA-MHI148@SRF nanoparticles via hydrophilic and hydrophobic self-assembly strategy by using near-infrared photodynamic dye MHI148 chemically modified bovine serum albumin(BSA-MHI148) and multi-kinase inhibitor Sorafenib(SRF) as a novel tumor oxygen and immune microenvironment regulation drug. Benefiting from the accumulation of SRF in tumors, BSA-MHI148@SRF nanoparticles dramatically enhanced the PDT efficacy by promoting cascade two-stage tumor re-oxygenation mechanisms:(i) SRF decreased tumor oxygen consumption via inhibiting mitochondria respiratory.(ii) SRF increased the oxygen supply via inducing tumor vessel normalization. Meanwhile, the immunosuppression micro-environment was also obviously reversed by two-stage immune re-sensitization as follows:(i) Enhanced immunogenic cell death(ICD) production amplified by BSA-MHI148@SRF induced reactive oxygen species(ROS) generation enhanced T cell infiltration and improve its tumor cell killing ability.(ii) BSA-MHI148@SRF amplified tumor vessel normalization by VEGF inhibition also obviously reversed the tumor immune-suppression microenvironment. Finally, the growth of solid tumors was significantly depressed by such well-designed BSAMHI148@SRF nanoparticles, which could be potential for clinical cancer therapy.展开更多
Background:Microvascular invasion(MVI)can only be assessed on a full surgical specimen.We aimed at evaluating,whether the histology of the primary tumor is predictive of MVI in a hepatocellular carcinoma(HCC)recurrenc...Background:Microvascular invasion(MVI)can only be assessed on a full surgical specimen.We aimed at evaluating,whether the histology of the primary tumor is predictive of MVI in a hepatocellular carcinoma(HCC)recurrence.Methods:Patients,who underwent liver resection or orthotopic liver transplantation(OLT)for recurrent HCC from January 2001 until June 2018 were eligible for this retrospective analysis.Resected specimens were evaluated for HCC subtype/morphology,vessels encapsulating tumor clusters(VETC)-pattern and MVI.Dichotomous parameters were analyzed using χ^(2)-test andϕ-values,with P values<0.05 being considered significant.Results:Of 230 HCC recurrences,37(16.1%)underwent repeated liver resection(n=22)or OLT(n=15).Of these,67.6%initially exceeded the Milan criteria.MVI correlated Milan criteria(P=0.005),tumor size(P=0.015)and VETC-pattern(P=0.034)in the primary specimen.The recurrences shared many features of the primary HCC such as tumor grade(P=0.002),VETC-pattern(P=0.035),and MVI(P=0.046).In recurrences,however,only the concordance with the Milan criteria correlated with MVI(P=0.018).No patient without MVI in the primary HCC revealed MVI on early recurrence(<2 years)(P=0.035).Conclusions:HCC recurrences share many biological features of the primary tumor.Moreover,early recurrences of MVI-negative HCC never revealed MVI.This finding offers novel concepts,e.g.,patient selection for salvage OLT.展开更多
基金Supported by the Project of Shanghai Municipal Commission of Health,No.2022LJ024.
文摘BACKGROUND Vessels encapsulating tumor clusters(VETC)represent a recently discovered vascular pattern associated with novel metastasis mechanisms in hepatocellular carcinoma(HCC).However,it seems that no one have focused on predicting VETC status in small HCC(sHCC).This study aimed to develop a new nomogram for predicting VETC positivity using preoperative clinical data and image features in sHCC(≤3 cm)patients.AIM To construct a nomogram that combines preoperative clinical parameters and image features to predict patterns of VETC and evaluate the prognosis of sHCC patients.METHODS A total of 309 patients with sHCC,who underwent segmental resection and had their VETC status confirmed,were included in the study.These patients were recruited from three different hospitals:Hospital 1 contributed 177 patients for the training set,Hospital 2 provided 78 patients for the test set,and Hospital 3 provided 54 patients for the validation set.Independent predictors of VETC were identified through univariate and multivariate logistic analyses.These independent predictors were then used to construct a VETC prediction model for sHCC.The model’s performance was evaluated using the area under the curve(AUC),calibration curve,and clinical decision curve.Additionally,Kaplan-Meier survival analysis was performed to confirm whether the predicted VETC status by the model is associated with early recurrence,just as it is with the actual VETC status and early recurrence.RESULTS Alpha-fetoprotein_lg10,carbohydrate antigen 199,irregular shape,non-smooth margin,and arterial peritumoral enhancement were identified as independent predictors of VETC.The model incorporating these predictors demonstrated strong predictive performance.The AUC was 0.811 for the training set,0.800 for the test set,and 0.791 for the validation set.The calibration curve indicated that the predicted probability was consistent with the actual VETC status in all three sets.Furthermore,the decision curve analysis demonstrated the clinical benefits of our model for patients with sHCC.Finally,early recurrence was more likely to occur in the VETC-positive group compared to the VETC-negative group,regardless of whether considering the actual or predicted VETC status.CONCLUSION Our novel prediction model demonstrates strong performance in predicting VETC positivity in sHCC(≤3 cm)patients,and it holds potential for predicting early recurrence.This model equips clinicians with valuable information to make informed clinical treatment decisions.
基金The study was reviewed and approved by the Second Hospital of Shandong University Institutional Review Board,IRB No.KYLL-2023LW044.
文摘BACKGROUND Recently,vessels encapsulating tumor clusters(VETC)was considered as a distinct pattern of tumor vascularization which can primarily facilitate the entry of the whole tumor cluster into the bloodstream in an invasion independent manner,and was regarded as an independent risk factor for poor prognosis in hepatocellular carcinoma(HCC).AIM To develop and validate a preoperative nomogram using contrast-enhanced computed tomography(CECT)to predict the presence of VETC+in HCC.METHODS We retrospectively evaluated 190 patients with pathologically confirmed HCC who underwent CECT scanning and immunochemical staining for cluster of differentiation 34 at two medical centers.Radiomics analysis was conducted on intratumoral and peritumoral regions in the portal vein phase.Radiomics features,essential for identifying VETC+HCC,were extracted and utilized to develop a radiomics model using machine learning algorithms in the training set.The model’s performance was validated on two separate test sets.Receiver operating characteristic(ROC)analysis was employed to compare the identified performance of three models in predicting the VETC status of HCC on both training and test sets.The most predictive model was then used to constructed a radiomics nomogram that integrated the independent clinical-radiological features.ROC and decision curve analysis were used to assess the performance characteristics of the clinical-radiological features,the radiomics features and the radiomics nomogram.RESULTS The study included 190 individuals from two independent centers,with the majority being male(81%)and a median age of 57 years(interquartile range:51-66).The area under the curve(AUC)for the combined radiomics features selected from the intratumoral and peritumoral areas were 0.825,0.788,and 0.680 in the training set and the two test sets.A total of 13 features were selected to construct the Rad-score.The nomogram,combining clinicalradiological and combined radiomics features could accurately predict VETC+in all three sets,with AUC values of 0.859,0.848 and 0.757.Decision curve analysis revealed that the radiomics nomogram was more clinically useful than both the clinical-radiological feature and the combined radiomics models.CONCLUSION This study demonstrates the potential utility of a CECT-based radiomics nomogram,incorporating clinicalradiological features and combined radiomics features,in the identification of VETC+HCC.
基金the National Natural Science Foundation of China(No.81730049 and No.81801666)the Fundamental Research Funds for the Central Universities,HUST(No.2019JYCXJJ044).
文摘Objective Isocitrate dehydrogenase gene(IDH)mutations are associated with tumor angiogenesis and therefore play an important role in glioma management.This study compared the performance of tumor blood vessels counted from contrast-enhanced 3D brain volume(3D-BRAVO)sequence and dynamic contrast-enhanced(DCE)MRI in differentiating IDH1 status in gliomas.Methods Forty-four glioma patients[16 with IDH1 mutant-type(IDH1-MT),28 with IDH1 wild-type(IDH1-WT)]were retrospectively analyzed.A blood vessel entering a tumor was defined as an intratumoral vessel;a blood vessel adjacent to the edge of a tumor was defined as a peritumoral vessel.Combined vessels were defined as the sum of the intratumoral and peritumoral vessels.DCE-derived metrics of tumor were normalized to the contralateral normal-appearing white matter.Results Intratumoral,peritumoral,and combined tumor blood vessels were all significantly different between IDH1-MT and IDH1-WT gliomas,and the range of area under curves(AUCs)was 0.816–0.855.For DCE-derived parameters,cerebral blood volume,cerebral blood flow,mean transit time,and volume transfer constant were significantly different between IDH1-MT and IDH1-WT gliomas,and the range of AUCs was 0.703–0.756.Combined vessels possessed the best performance for identifying IDH1 mutations in gliomas(AUC:0.855,sensitivity:0.857,specificity:0.812,P<0.001).Conclusion The number of tumor blood vessels has comparable diagnostic performance with DCE-derived parameters for differentiating IDH1 mutations and can serve as a potential imaging biomarker to reflect IDH1 mutations in gliomas.
文摘Epithelial glioma is the most common brain cancer,accounting for 35.26%-60.69%of intracranial tumors with an average of 44.69%,and it remains the greatest challenge in the field of neurosurgery.The median survival time of patients with advanced glioma is only 12 to 18 months due to the characteristics of high aggression,and the therapeutic effect was poor though surgery,chemotherapy,and targeted drug therapy being treated.Because of the presence of heterogeneity and the differentiation disorder,only a small number of glioma cells are the source of tumor growth and metastasis,which are highly resistant to traditional treatments.They are deemed as the“seed”tumor cells as they could get rid of the effect of the treatment and reconstruct the organization of tumor.They are also termed as brain tumor stem cell(BTSC)or glioma stem cells(GSCs)since neural stem cells share similar features with them.Recent data reveal that they are directly related with invasion,angiogenesis,tolerance,chemotherapy,recurrence of glioma.Based on the research result by the team,the paper elaborates the characteristics of GSCs and the relationship with the tumor angiogenesis.
基金the National Natural Science Foundation of China,No.U20A20408(Major Program)and No.82074450(General Program)Natural Science Foundation of Hunan Province,No.2020JJ4066+2 种基金Hunan Province Research and innovation projects for Postgraduates,No.CX20190541Hunan Province"domestic firstclass cultivation discipline"Integrated Traditional Chinese and Western medicine open fund project,No.2018ZXYJH03Hunan University Undergraduate Research Learning and Innovative Experiment Project,No.201609030114.
文摘BACKGROUND In traditional Chinese medicine(TCM),frankincense and myrrh are the main components of the antitumor drug Xihuang Pill.These compounds show anticancer activity in other biological systems.However,whether frankincense and/or myrrh can inhibit the occurrence of hepatocellular carcinoma(HCC)is unknown,and the potential molecular mechanism(s)has not yet been determined.AIM To predict and determine latent anti-HCC therapeutic targets and molecular mechanisms of frankincense and myrrh in vivo.METHODS In the present study,which was based on the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(http://tcmspw.com/tcmsp.php),Universal Protein database(http://www.uniprot.org),GeneCards:The Human Gene Database(http://www.genecards.org/)and Comparative Toxicogenomics Database(http://www.ctdbase.org/),the efficacy of and mechanism by which frankincense and myrrh act as anti-HCC compounds were predicted.The core prediction targets were screened by molecular docking.In vivo,SMMC-7721 human liver cancer cells were transplanted as xenografts into nude mice to establish a subcutaneous tumor model,and two doses of frankincense plus myrrh or one dose of an EGFR inhibitor was administered to these mice continuously for 14 d.The tumors were collected and evaluated:the tumor volume and growth rate were gauged to evaluate tumor growth;hematoxylineosin staining was performed to estimate histopathological changes;immunofluorescence(IF)was performed to detect the expression of CD31,α-SMA and collagen IV;transmission electron microscopy(TEM)was conducted to observe the morphological structure of vascular cells;enzyme-linked immunosorbent assay(ELISA)was performed to measure the levels of secreted HIF-1αand TNF-α;reverse transcription-polymerase chain reaction(RT-qPCR)was performed to measure the mRNA expression of HIF-1α,TNF-α,VEGF and MMP-9;and Western blot(WB)was performed to determine the levels of proteins expressed in the EGFR-mediated PI3K/Akt and MAPK signaling pathways.RESULTS The results of the network pharmacology analysis showed that there were 35 active components in the frankincense and myrrh extracts targeting 151 key targets.The molecular docking analysis showed that both boswellic acid and stigmasterol showed strong affinity for the targets,with the greatest affinity for EGFR.Frankincense and myrrh treatment may play a role in the treatment of HCC by regulating hypoxia responses and vascular system-related pathological processes,such as cytokine-receptor binding,and pathways,such as those involving serine/threonine protein kinase complexes and MAPK,HIF-1 and ErbB signaling cascades.The animal experiment results were verified.First,we found that,through frankincense and/or myrrh treatment,the volume of subcutaneously transplanted HCC tumors was significantly reduced,and the pathological morphology was attenuated.Then,IF and TEM showed that frankincense and/or myrrh treatment reduced CD31 and collagen IV expression,increased the coverage of perivascular cells,tightened the connection between cells,and improved the shape of blood vessels.In addition,ELISA,RT-qPCR and WB analyses showed that frankincense and/or myrrh treatment inhibited the levels of hypoxia-inducible factors,inflammatory factors and angiogenesis-related factors,namely,HIF-1α,TNF-α,VEGF and MMP-9.Furthermore,mechanistic experiments illustrated that the effect of frankincense plus myrrh treatment was similar to that of an EGFR inhibitor with regard to controlling EGFR activation,thereby inhibiting the phosphorylation activity of its downstream targets:the PI3K/Akt and MAPK(ERK,p38 and JNK)pathways.CONCLUSION In summary,frankincense and myrrh treatment targets tumor blood vessels to exert anti-HCC effects via EGFR-activated PI3K/Akt and MAPK signaling pathways,highlighting the potential of this dual TCM compound as an anti-HCC candidate.
文摘OBJECTIVE Our previous studies demonstrated that various ingredients from the traditional Chinese medicine(TCM)for promoting blood circulation and removing blood stasis,as exemplified by cryptotanshinone and salvianolic acid B,exerted striking effects on modulating angiogenesis and vascular permeability,which suggests that they may be effective in treating vascular leak-driven diseases(e.g.tumor,cerebral cavernous malformation and diabetic retinopathy).However,the lack of reliable and advanced technologies and models sets up difficult hurdles for better understanding the role of TCM for promoting blood circulation and removing blood stasis.To this end,this study is to outline numerous cutting-edge platforms that can be utilized for exploring the function of TCM for promoting blood circulation and removing blood stasis in vascular leak-driven diseases.METHODS Two-photon laser scanning fluorescence microscopy was used to observe the interactions between neutrophils and blood vessels in a real-time manner.Dynamic flow system was employed to mimic the in vivo behaviors of neutrophils.RIP1-Tag5 spontaneous pancreatic cancer model was used to study the function of tumor blood vessels.CCM2ECKO(deletion of CCM2 in endothelial cells)mice were employed to establish the cerebral cavernous malformation(CCM)animal model.Micro-computed tomography(micro-CT)was utilized to assess the CCM lesion.Müller cell-knockout mouse model was used to study the progression of diabetic retinopathy.Vascular permeability in this model was assessed by fluorescein angiography.RESULTS The interactions between neutrophils and endothelial cells involve a series of complicated processes,including rolling,adhesion,intraluminal crawling and transmigration,which were all monitored in vivo by two-photon laser scanning fluorescence microscopy in a real-time manner.Dynamic flow system was capable of recapitulating the biological behaviors of neutrophils in vitro.Tumor vascular function in particular vascular perfusion could be assessed in the RIP1-Tag5 spontaneous pancreatic cancer model.In terms of CCM studies,specific deletion of CCM2 in endothelial cells resulted in the initiation of CCM lesion.The size and number of CCM lesions could be visualized and quantified by micro-CT.Furthermore,the Müller cell-knockout mouse model was able to precisely reflect the clinical symptoms of diabetic retinopathy.Vascular leak could be monitored at different time points using fluorescein angiography.CONCLUSION An array of high technologies and animal models can be used in investigating the occurrence and progression of multiple vascular leak-driven diseases.The pre-clinical and clinical studies of TCM for promoting blood circulation and removing blood stasis provide fundamental support for the application of the above-mentioned platforms,with the purpose of uncovering the scientific basis of TCM for promoting blood circulation and removing blood stasis.
基金supported by the National Natural Science Foundation of China(82003697 and 21977081)the Zhejiang Provincial Natural Science of Foundation of China(LZ19H180001)+2 种基金Wenzhou Medical University(KYYW201901,China)Wenzhou Science and Technology Plan Project(Grant No.Y2020827,China)Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province(Grant No:2018E10008,China).
文摘As a promising modality for cancer therapy, photodynamic therapy(PDT) still acquired limited success in clinical nowadays due to the extremely serious hypoxia and immunosuppression tumor microenvironment. To ameliorate such a situation, we rationally designed and prepared cascade two-stage re-oxygenation and immune re-sensitization BSA-MHI148@SRF nanoparticles via hydrophilic and hydrophobic self-assembly strategy by using near-infrared photodynamic dye MHI148 chemically modified bovine serum albumin(BSA-MHI148) and multi-kinase inhibitor Sorafenib(SRF) as a novel tumor oxygen and immune microenvironment regulation drug. Benefiting from the accumulation of SRF in tumors, BSA-MHI148@SRF nanoparticles dramatically enhanced the PDT efficacy by promoting cascade two-stage tumor re-oxygenation mechanisms:(i) SRF decreased tumor oxygen consumption via inhibiting mitochondria respiratory.(ii) SRF increased the oxygen supply via inducing tumor vessel normalization. Meanwhile, the immunosuppression micro-environment was also obviously reversed by two-stage immune re-sensitization as follows:(i) Enhanced immunogenic cell death(ICD) production amplified by BSA-MHI148@SRF induced reactive oxygen species(ROS) generation enhanced T cell infiltration and improve its tumor cell killing ability.(ii) BSA-MHI148@SRF amplified tumor vessel normalization by VEGF inhibition also obviously reversed the tumor immune-suppression microenvironment. Finally, the growth of solid tumors was significantly depressed by such well-designed BSAMHI148@SRF nanoparticles, which could be potential for clinical cancer therapy.
文摘Background:Microvascular invasion(MVI)can only be assessed on a full surgical specimen.We aimed at evaluating,whether the histology of the primary tumor is predictive of MVI in a hepatocellular carcinoma(HCC)recurrence.Methods:Patients,who underwent liver resection or orthotopic liver transplantation(OLT)for recurrent HCC from January 2001 until June 2018 were eligible for this retrospective analysis.Resected specimens were evaluated for HCC subtype/morphology,vessels encapsulating tumor clusters(VETC)-pattern and MVI.Dichotomous parameters were analyzed using χ^(2)-test andϕ-values,with P values<0.05 being considered significant.Results:Of 230 HCC recurrences,37(16.1%)underwent repeated liver resection(n=22)or OLT(n=15).Of these,67.6%initially exceeded the Milan criteria.MVI correlated Milan criteria(P=0.005),tumor size(P=0.015)and VETC-pattern(P=0.034)in the primary specimen.The recurrences shared many features of the primary HCC such as tumor grade(P=0.002),VETC-pattern(P=0.035),and MVI(P=0.046).In recurrences,however,only the concordance with the Milan criteria correlated with MVI(P=0.018).No patient without MVI in the primary HCC revealed MVI on early recurrence(<2 years)(P=0.035).Conclusions:HCC recurrences share many biological features of the primary tumor.Moreover,early recurrences of MVI-negative HCC never revealed MVI.This finding offers novel concepts,e.g.,patient selection for salvage OLT.