The aim of this study is to assess the effects of DNA methylation and historic acetylation, alone or in combination, on the expression of several tumor-associated genes and cell cycle progression in two established hu...The aim of this study is to assess the effects of DNA methylation and historic acetylation, alone or in combination, on the expression of several tumor-associated genes and cell cycle progression in two established human colon cancer cell lines: Colo-320 and SW1116. Treatments with 5-aza-2'-deoxycytidine (5-aza-dC) and trichostatin A, alone or in combination, were applied respectively. The methylation status of the CDKN2A promoter was determined by methyla-tion-specific PCR, and the acetylated status of the histones associated with the p21WAF1 and CDKN2A genes was examined by chromatin immunoprecipitation. The expression of the CDKN2A, p21WAF1, p53, p73, APC, c-myc, c-Ki-ras and survivin genes was detected by real-time RT-PCR and RT-PCR. The cell cycle profile was established by flow cytometry. We found that along with the demethylation of the CDKN2A gene promoter in both cell lines induced by 5-aza-dC alone or in combination with TSA, the expression of both CDKN2A and APC genes increased. The treatment of TSA or sodium butyrate up-regulated the transcription of p21WAF1 significantly by inducing the acetylation of histones H4 and H3, but failed to alter the acetylation level of CDKN2A-associated histones. No changes in transcription of p53, p73, c-myc, c-Ki-ras and survivin genes were observed. In addition, TSA or sodium butyrate was shown to arrest cells at the G1 phase. However, 5-aza-dC was not able to affect the cell cycle progression. In conclusion, regulation by epigenetic modification of the transcription of tumor-associated genes and the cell cycle progression in both human colon cancer cell lines Colo-320 and SW1116 is gene-specific.展开更多
AIM: To study at transcriptional level the similarities and differences of the physiological and biochemical activities between liver tumor (LT) and regenerating liver cells. METHODS: LT-associated genes and their exp...AIM: To study at transcriptional level the similarities and differences of the physiological and biochemical activities between liver tumor (LT) and regenerating liver cells. METHODS: LT-associated genes and their expression changes in LT were obtained from databases and scientific articles, and their expression profiles in rat liver regeneration (LR) were detected using Rat Genome 230 2.0 array. Subsequently their expression changes in LT and LR were compared and analyzed. RESULTS: One hundred and twenty one LT-associated genes were found to be LR-associated. Thirty four genes were up-regulated, and 14 genes were down-regulated in both LT and regenerating liver; 20 genes up-regulated in LT were down-regulated in regenerating liver; 21 up-regulated genes and 16 down-regulated genes in LT were up-regulated at some time points and down-regulated at others during LR. CONCLUSION: Results suggested that apoptosis activity suppressed in LT was still active in regenerating liver, and there are lots of similarities and differences between the LT and regenerating liver at the aspects of cell growth, proliferation, differentiation, migration and angiogenesis.展开更多
Tumor-associated macrophages(TAMs)are emerging as targets for tumor therapy because of their primary role in promoting tumor progression.Several studies have been conducted to target TAMs by reducing their infiltratio...Tumor-associated macrophages(TAMs)are emerging as targets for tumor therapy because of their primary role in promoting tumor progression.Several studies have been conducted to target TAMs by reducing their infiltration,depleting their numbers,and reversing their phenotypes to suppress tumor progression,leading to the development of drugs in preclinical and clinical trials.However,the heterogeneous characteristics of TAMs,including their ontogenetic and functional heterogeneity,limit their targeting.Therefore,in-depth exploration of the heterogeneity of TAMs,combined with immune checkpoint therapy or other therapeutic modalities could improve the efficiency of tumor treatment.This review focuses on the heterogeneous ontogeny and function of TAMs,as well as the current development of tumor therapies targeting TAMs and combination strategies.展开更多
This letter comments on the recently published manuscript by Huang et al in the World Journal of Gastroenterology,which focused on the immunomodulatory effect of Calculus bovis on hepatocellular carcinoma(HCC)tumor mi...This letter comments on the recently published manuscript by Huang et al in the World Journal of Gastroenterology,which focused on the immunomodulatory effect of Calculus bovis on hepatocellular carcinoma(HCC)tumor microenvironments(TME)by inhibiting M2-tumor-associated macrophage(M2-TAM)polarization via Wnt/β-catenin pathway modulation.Recent research highlights the crucial role of TAMs and their polarization towards the M2 phenotype in promoting HCC progression.Epigenetic regulation,particularly through microRNAs(miR),has emerged as a key factor in modulating immune responses and TAM polarization in the TME,influencing treatment responses and tumor progression.This editorial focuses on miR-206,which has been found to inhibit HCC cell proliferation and migration and promote apoptosis.Moreover,miR-206 enhances anti-tumor immune responses by promoting M1-polarization of Kupffer cells,facilitating CD8+T cell recruitment and suppressing liver cancer stem cell expansion.However,challenges remain in understanding the precise mechanisms regulating miR-206 and its potential as a therapeutic agent.Targeting epigenetic mechanisms and improving strategies,whether through pharmacological or genetic approaches,offer promising avenues to sensitize tumor cells to chemotherapy.Understanding the intricate interactions between cancer and non-coding RNA regulation opens new avenues for developing targeted therapies,potentially improving HCC prognosis.展开更多
BACKGROUND Calculus bovis(CB),used in traditional Chinese medicine,exhibits anti-tumor effects in various cancer models.It also constitutes an integral component of a compound formulation known as Pien Tze Huang,which...BACKGROUND Calculus bovis(CB),used in traditional Chinese medicine,exhibits anti-tumor effects in various cancer models.It also constitutes an integral component of a compound formulation known as Pien Tze Huang,which is indicated for the treatment of liver cancer.However,its impact on the liver cancer tumor microenvironment,particularly on tumor-associated macrophages(TAMs),is not well understood.AIM To elucidate the anti-liver cancer effect of CB by inhibiting M2-TAM polarization via Wnt/β-catenin pathway modulation.METHODS This study identified the active components of CB using UPLC-Q-TOF-MS,evaluated its anti-neoplastic effects in a nude mouse model,and elucidated the underlying mechanisms via network pharmacology,transcriptomics,and molecular docking.In vitro assays were used to investigate the effects of CB-containing serum on HepG2 cells and M2-TAMs,and Wnt pathway modulation was validated by real-time reverse transcriptase-polymerase chain reaction and Western blot analysis.RESULTS This study identified 22 active components in CB,11 of which were detected in the bloodstream.Preclinical investigations have demonstrated the ability of CB to effectively inhibit liver tumor growth.An integrated approach employing network pharmacology,transcriptomics,and molecular docking implicated the Wnt signaling pathway as a target of the antineoplastic activity of CB by suppressing M2-TAM polarization.In vitro and in vivo experiments further confirmed that CB significantly hinders M2-TAM polarization and suppresses Wnt/β-catenin pathway activation.The inhibitory effect of CB on M2-TAMs was reversed when treated with the Wnt agonist SKL2001,confirming its pathway specificity.CONCLUSION This study demonstrated that CB mediates inhibition of M2-TAM polarization through the Wnt/β-catenin pathway,contributing to the suppression of liver cancer growth.展开更多
The relevant mechanism of tumor-associated macrophages(TAMs)in the treatment of colorectal cancer patients with immune checkpoint inhibitors(ICIs)is discussed,and the application prospects of TAMs in reversing the tre...The relevant mechanism of tumor-associated macrophages(TAMs)in the treatment of colorectal cancer patients with immune checkpoint inhibitors(ICIs)is discussed,and the application prospects of TAMs in reversing the treatment tolerance of ICIs are discussed to provide a reference for related studies.As a class of drugs widely used in clinical tumor immunotherapy,ICIs can act on regulatory molecules on cells that play an inhibitory role-immune checkpoints-and kill tumors in the form of an immune response by activating a variety of immune cells in the immune system.The sensitivity of patients with different types of colorectal cancer to ICI treatment varies greatly.The phenotype and function of TAMs in the colorectal cancer microenvironment are closely related to the efficacy of ICIs.ICIs can regulate the phenotypic function of TAMs,and TAMs can also affect the tolerance of colorectal cancer to ICI therapy.TAMs play an important role in ICI resistance,and making full use of this target as a therapeutic strategy is expected to improve the immunotherapy efficacy and prognosis of patients with colorectal cancer.展开更多
In this article,we comment on the article by Huang et al.The urgent development of new therapeutic strategies targeting macrophage polarization is critical in the fight against liver cancer.Tumor-associated macrophage...In this article,we comment on the article by Huang et al.The urgent development of new therapeutic strategies targeting macrophage polarization is critical in the fight against liver cancer.Tumor-associated macrophages(TAMs),primarily of the M2 subtype,are instrumental in cellular communication within the tumor microenvironment and are influenced by various signaling pathways,including the wingless/integrated(Wnt)pathway.Activation of the Wnt signaling pathway is pivotal in promoting M2 TAMs polarization,which in turn can exacerbate hepatocarcinoma cell proliferation and migration.This manuscript emphasizes the burgeoning significance of the Wnt signaling pathway and M2 TAMs polarization in the pathogenesis and progression of liver cancer,highlighting the potential therapeutic benefits of inhibiting the Wnt pathway.Lastly,we point out areas in Huang et al’s study that require further research,providing guidance and new directions for similar studies.展开更多
Effective management of malignant tumor-induced bone defects remains challenging due to severe systemic side effects,substantial tumor recurrence,and long-lasting bone reconstruction post tumor resection.Magnesium and...Effective management of malignant tumor-induced bone defects remains challenging due to severe systemic side effects,substantial tumor recurrence,and long-lasting bone reconstruction post tumor resection.Magnesium and its alloys have recently emerged in clinics as orthopedics implantable metals but mostly restricted to mechanical devices.Here,by deposition of calcium-based bilayer coating on the surface,a Mg-based composite implant platform is developed with tailored degradation characteristics,simultaneously integrated with chemotherapeutic(Taxol)loading capacity.The delicate modulation of Mg degradation occurring in aqueous environment is observed to play dual roles,not only in eliciting desirable osteoinductivity,but allows for modification of tumor microenvironment(TME)owing to the continuous release of degradation products.Specifically,the sustainable H2 evolution and Ca2+from the implant is distinguished to cooperate with local Taxol delivery to achieve superior antineoplastic activity through activating Cyt-c pathway to induce mitochondrial dysfunction,which in turn leads to significant tumor-growth inhibition in vivo.In addition,the local chemotherapeutic delivery of the implant minimizes toxicity and side effects,but markedly fosters osteogenesis and bone repair with appropriate structure degradation in rat femoral defect model.Taken together,a promising intraosseous administration strategy with biodegradable Mg-based implants to facilitate tumor-associated bone defect is proposed.展开更多
BACKGROUND Colorectal cancer(CRC)is a prevalent global malignancy with complex prognostic factors.Tumor-associated macrophages(TAMs)have shown paradoxical associations with CRC survival,particularly concerning the M2 ...BACKGROUND Colorectal cancer(CRC)is a prevalent global malignancy with complex prognostic factors.Tumor-associated macrophages(TAMs)have shown paradoxical associations with CRC survival,particularly concerning the M2 subset.AIM We aimed to establish a simplified protocol for quantifying M2-like TAMs and explore their correlation with clinicopathological factors.METHODS A cross-sectional study included histopathological assessment of paraffinembedded tissue blocks obtained from 43 CRC patients.Using CD68 and CD163 immunohistochemistry,we quantified TAMs in tumor stroma and front,focusing on M2 proportion.Demographic,histopathological,and clinical parameters were collected.RESULTS TAM density was significantly higher at the tumor front,with the M2 proportion three times greater in both zones.The tumor front had a higher M2 proportion,which correlated significantly with advanced tumor stage(P=0.04),pathological nodal involvement(P=0.04),and lymphovascular invasion(LVI,P=0.01).However,no significant association was found between the M2 proportion in the tumor stroma and clinicopathological factors.CONCLUSION Our study introduces a simplified protocol for quantifying M2-like TAMs in CRC tissue samples.We demonstrated a significant correlation between an increased M2 proportion at the tumor front and advanced tumor stage,nodal involvement,and LVI.This suggests that M2-like TAMs might serve as potential indicators of disease progression in CRC,warranting further investigation and potential clinical application.展开更多
The problem of liver cancer is becoming increasingly important due to the epi-demic of metabolic diseases and persistent high alcohol consumption.This deter-mines great attention to the development and improvement of ...The problem of liver cancer is becoming increasingly important due to the epi-demic of metabolic diseases and persistent high alcohol consumption.This deter-mines great attention to the development and improvement of methods for early diagnosis and treatment of liver cancer.Huang et al presented a study in the World Journal of Gastroenterology,in which they showed that the use of the traditional Chinese medicine Calculus bovis(CB)can suppress tumor growth in mice by inhibiting M2 tumor-associated macrophages(TAM)through modulating the activity of the Wnt/β-catenin pathway.The interaction of CB components with the Wnt/β-catenin pathway,M2 TAM polarization,and tumor dynamics were studied using network pharmacology,transcriptomics,and molecular docking.It is now generally accepted that the polarization of TAM and the differentiation of the functions of M1 and M2 phagocytes are of great importance for the progression of neoplasms.It is assumed that M2 TAM promote proliferation and migration of tumor cells.Attempts to medicinally influence the Wnt/β-catenin pathway in order to modulate phagocyte polarization now belong to one of the most promising areas of immunotherapy of oncological diseases.Undoubtedly,the work of the Chinese authors deserves attention and further development.展开更多
Many digestive system malignant tumors are characterized by high incidence and mortality rate.Increasing evidence has revealed that the tumor microenvironment(TME)is involved in cancer initiation and tumor progression...Many digestive system malignant tumors are characterized by high incidence and mortality rate.Increasing evidence has revealed that the tumor microenvironment(TME)is involved in cancer initiation and tumor progression.Tumor-associated macrophages(TAMs)are a predominant constituent of the TME,and participate in the regulation of various biological behaviors and influence the prognosis of digestive system cancer.TAMs can be mainly classified into the antitumor M1 phenotype and protumor M2 phenotype.The latter especially are crucial drivers of tumor invasion,growth,angiogenesis,metastasis,immunosuppression,and resistance to therapy.TAMs are of importance in the occurrence,development,diagnosis,prognosis,and treatment of common digestive system malignant tumors.In this review,we summarize the role of TAMs in common digestive system malignant tumors,including esophageal,gastric,colorectal,pancreatic and liver cancers.How TAMs promote the development of tumors,and how they act as potential therapeutic targets and their clinical applications are also described.展开更多
BACKGROUND Validation of the reference gene(RG)stability during experimental analyses is essential for correct quantitative real-time polymerase chain reaction(RT-qPCR)data normalisation.Commonly,in an unreliable way,...BACKGROUND Validation of the reference gene(RG)stability during experimental analyses is essential for correct quantitative real-time polymerase chain reaction(RT-qPCR)data normalisation.Commonly,in an unreliable way,several studies use genes involved in essential cellular functions[glyceraldehyde-3-phosphate dehydro-genase(GAPDH),18S rRNA,andβ-actin]without paying attention to whether they are suitable for such experimental conditions or the reason for choosing such genes.Furthermore,such studies use only one gene when Minimum Information for Publication of Quantitative Real-Time PCR Experiments guidelines recom-mend two or more genes.It impacts the credibility of these studies and causes dis-tortions in the gene expression findings.For tissue engineering,the accuracy of gene expression drives the best experimental or therapeutical approaches.We cultivated DPSCs under two conditions:Undifferentiated and osteogenic dif-ferentiation,both for 35 d.We evaluated the gene expression of 10 candidates for RGs[ribosomal protein,large,P0(RPLP0),TATA-binding protein(TBP),GAPDH,actin beta(ACTB),tubulin(TUB),aminolevulinic acid synthase 1(ALAS1),tyro-sine 3-monooxygenase/tryptophan 5-monooxygenase activation protein,zeta(YWHAZ),eukaryotic translational elongation factor 1 alpha(EF1a),succinate dehydrogenase complex,subunit A,flavoprotein(SDHA),and beta-2-micro-globulin(B2M)]every 7 d(1,7,14,21,28,and 35 d)by RT-qPCR.The data were analysed by the four main algorithms,ΔCt method,geNorm,NormFinder,and BestKeeper and ranked by the RefFinder method.We subdivided the samples into eight subgroups.RESULTS All of the data sets from clonogenic and osteogenic samples were analysed using the RefFinder algorithm.The final ranking showed RPLP0/TBP as the two most stable RGs and TUB/B2M as the two least stable RGs.Either theΔCt method or NormFinder analysis showed TBP/RPLP0 as the two most stable genes.However,geNorm analysis showed RPLP0/EF1αin the first place.These algorithms’two least stable RGs were B2M/GAPDH.For BestKeeper,ALAS1 was ranked as the most stable RG,and SDHA as the least stable RG.The pair RPLP0/TBP was detected in most subgroups as the most stable RGs,following the RefFinfer ranking.CONCLUSION For the first time,we show that RPLP0/TBP are the most stable RGs,whereas TUB/B2M are unstable RGs for long-term osteogenic differentiation of human DPSCs in traditional monolayers.展开更多
Grain weight is one of the key components of wheat(Triticum aestivum L.)yield.Genetic manipulation of grain weight is an efficient approach for improving yield potential in breeding programs.A recombinant inbred line(...Grain weight is one of the key components of wheat(Triticum aestivum L.)yield.Genetic manipulation of grain weight is an efficient approach for improving yield potential in breeding programs.A recombinant inbred line(RIL)population derived from a cross between W7268 and Chuanyu 12(CY12)was employed to detect quantitative trait loci(QTLs)for thousand-grain weight(TGW),grain length(GL),grain width(GW),and the ratio of grain length to width(GLW)in six environments.Seven major QTLs,QGl.cib-2D,QGw.cib-2D,QGw.cib-3B,QGw.cib-4B.1,QGlw.cib-2D.1,QTgw.cib-2D.1 and QTgw.cib-3B.1,were consistently identified in at least four environments and the best linear unbiased estimation(BLUE)datasets,and they explained 2.61 to 34.85%of the phenotypic variance.Significant interactions were detected between the two major TGW QTLs and three major GW loci.In addition,QTgw.cib-3B.1 and QGw.cib-3B were co-located,and the improved TGW at this locus was contributed by GW.Unlike other loci,QTgw.cib-3B.1/QGw.cib-3B had no effect on grain number per spike(GNS).They were further validated in advanced lines using Kompetitive Allele Specific PCR(KASP)markers,and a comparison analysis indicated that QTgw.cib-3B.1/QGw.cib-3B is likely a novel locus.Six haplotypes were identified in the region of this QTL and their distribution frequencies varied between the landraces and cultivars.According to gene annotation,spatial expression patterns,ortholog analysis and sequence variation,the candidate gene of QTgw.cib-3B.1/QGw.cib-3B was predicted.Collectively,the major QTLs and KASP markers reported here provide valuable information for elucidating the genetic architecture of grain weight and for molecular marker-assisted breeding in grain yield improvement.展开更多
Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults.Pathogenic factors,such as oxidative stress,an increase in acetylcholinester...Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults.Pathogenic factors,such as oxidative stress,an increase in acetylcholinesterase activity,mitochondrial dysfunction,genotoxicity,and neuroinflammation are present in this syndrome,which leads to neurodegeneration.Neurodegenerative pathologies such as Alzheimer’s disease are considered late-onset diseases caused by the complex combination of genetic,epigenetic,and environmental factors.There are two main types of Alzheimer’s disease,known as familial Alzheimer’s disease(onset<65 years)and late-onset or sporadic Alzheimer’s disease(onset≥65 years).Patients with familial Alzheimer’s disease inherit the disease due to rare mutations on the amyloid precursor protein(APP),presenilin 1 and 2(PSEN1 and PSEN2)genes in an autosomaldominantly fashion with closely 100%penetrance.In contrast,a different picture seems to emerge for sporadic Alzheimer’s disease,which exhibits numerous non-Mendelian anomalies suggesting an epigenetic component in its etiology.Importantly,the fundamental pathophysiological mechanisms driving Alzheimer’s disease are interfaced with epigenetic dysregulation.However,the dynamic nature of epigenetics seems to open up new avenues and hope in regenerative neurogenesis to improve brain repair in Alzheimer’s disease or following injury or stroke in humans.In recent years,there has been an increase in interest in using natural products for the treatment of neurodegenerative illnesses such as Alzheimer’s disease.Through epigenetic mechanisms,such as DNA methylation,non-coding RNAs,histone modification,and chromatin conformation regulation,natural compounds appear to exert neuroprotective effects.While we do not purport to cover every in this work,we do attempt to illustrate how various phytochemical compounds regulate the epigenetic effects of a few Alzheimer’s disease-related genes.展开更多
Noncoding RNAs instruct the Cas9 nuclease to site speifillyl cleave DNA in the CRISPR/Cas9 system.Despite the high incidence of hepatocellular carcinoma(HCC),the patient's outcome is poor.As a result of the emerge...Noncoding RNAs instruct the Cas9 nuclease to site speifillyl cleave DNA in the CRISPR/Cas9 system.Despite the high incidence of hepatocellular carcinoma(HCC),the patient's outcome is poor.As a result of the emergence of therapeutic resistance in HCC patients,dlinicians have faced difficulties in treating such tumor.In addition,CRISPR/Cas9 screens were used to identify genes that improve the dlinical response of HCC patients.It is the objective of this article to summarize the current understanding of the use of the CRISPR/Cas9 system for the treatment of cancer,with a particular emphasis on HCC as part of the current state of knowledge.Thus,in order to locate recent developments in oncology research,we examined both the Scopus database and the PubMed database.The ability to selectively interfere with gene expression in combinatorial CRISPR/Cas9 screening can lead to the discovery of new effective HCC treatment regimens by combining clinically approved drugs.Drug resistance can be overcome with the help of the CRISPR/Cas9 system.HCC signature genes and resistance to treatment have been uncovered by genome-scale CRISPR activation screening although this method is not without limitations.It has been extensively examined whether CRISPR can be used as a tool for disease research and gene therapy.CRISPR and its applications to tumor research,particularly in HCC,are examined in this study through a review of the literature.展开更多
Neurodegenerative diseases(NDs)are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease(AD),Parkinson's disease(PD),Huntington's disease(...Neurodegenerative diseases(NDs)are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease(AD),Parkinson's disease(PD),Huntington's disease(HD),and amyotrophic lateral sclerosis(ALS).Currently,there are no therapies available that can delay,stop,or reverse the pathological progression of NDs in clinical settings.As the population ages,NDs are imposing a huge burden on public health systems and affected families.Animal models are important tools for preclinical investigations to understand disease pathogenesis and test potential treatments.While numerous rodent models of NDs have been developed to enhance our understanding of disease mechanisms,the limited success of translating findings from animal models to clinical practice suggests that there is still a need to bridge this translation gap.Old World nonhuman primates(NHPs),such as rhesus,cynomolgus,and vervet monkeys,are phylogenetically,physiologically,biochemically,and behaviorally most relevant to humans.This is particularly evident in the similarity of the structure and function of their central nervous systems,rendering such species uniquely valuable for neuroscience research.Recently,the development of several genetically modified NHP models of NDs has successfully recapitulated key pathologies and revealed novel mechanisms.This review focuses on the efficacy of NHPs in modeling NDs and the novel pathological insights gained,as well as the challenges associated with the generation of such models and the complexities involved in their subsequent analysis.展开更多
Background The genetic diversity of yak,a key domestic animal on the Qinghai-Tibetan Plateau(QTP),is a vital resource for domestication and breeding efforts.This study presents the first yak pangenome obtained through...Background The genetic diversity of yak,a key domestic animal on the Qinghai-Tibetan Plateau(QTP),is a vital resource for domestication and breeding efforts.This study presents the first yak pangenome obtained through the de novo assembly of 16 yak genomes.Results We discovered 290 Mb of nonreference sequences and 504 new genes.Our pangenome-wide presence and absence variation(PAV)analysis revealed 5,120 PAV-related genes,highlighting a wide range of variety-specific genes and genes with varying frequencies across yak populations.Principal component analysis(PCA)based on binary gene PAV data classified yaks into three new groups:wild,domestic,and Jinchuan.Moreover,we pro-posed a‘two-haplotype genomic hybridization model'for understanding the hybridization patterns among breeds by integrating gene frequency,heterozygosity,and gene PAV data.A gene PAV-GWAS identified a novel gene(Bos-Gru3G009179)that may be associated with the multirib trait in Jinchuan yaks.Furthermore,an integrated transcrip-tome and pangenome analysis highlighted the significant differences in the expression of core genes and the muta-tional burden of differentially expressed genes between yaks from high and low altitudes.Transcriptome analysis across multiple species revealed that yaks have the most unique differentially expressed m RNAs and lnc RNAs(between high-and low-altitude regions),especially in the heart and lungs,when comparing high-and low-altitude adaptations.Conclusions The yak pangenome offers a comprehensive resource and new insights for functional genomic studies,supporting future biological research and breeding strategies.展开更多
BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unkn...BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unknown.AIM To explore potential molecular connections between H.pylori infection and T2DM.METHODS We extracted gene expression arrays from three online datasets(GSE60427,GSE27411 and GSE115601).Differentially expressed genes(DEGs)commonly present in patients with H.pylori infection and T2DM were identified.Hub genes were validated using human gastric biopsy samples.Correlations between hub genes and immune cell infiltration,miRNAs,and transcription factors(TFs)were further analyzed.RESULTS A total of 67 DEGs were commonly presented in patients with H.pylori infection and T2DM.Five significantly upregulated hub genes,including TLR4,ITGAM,C5AR1,FCER1G,and FCGR2A,were finally identified,all of which are closely related to immune cell infiltration.The gene-miRNA analysis detected 13 miRNAs with at least two gene cross-links.TF-gene interaction networks showed that TLR4 was coregulated by 26 TFs,the largest number of TFs among the 5 hub genes.CONCLUSION We identified five hub genes that may have molecular connections between H.pylori infection and T2DM.This study provides new insights into the pathogenesis of H.pylori-induced onset of T2DM.展开更多
基金This work was supported in part by National Natural Science Foundation of China(No.30170413)the Foundation for Jing Yuan FANG of National Excellent Doctoral Dissertation of China(No.199946)the Foundation of Shanghai Education Committee(Shuguang Plan,No.02SG45).
文摘The aim of this study is to assess the effects of DNA methylation and historic acetylation, alone or in combination, on the expression of several tumor-associated genes and cell cycle progression in two established human colon cancer cell lines: Colo-320 and SW1116. Treatments with 5-aza-2'-deoxycytidine (5-aza-dC) and trichostatin A, alone or in combination, were applied respectively. The methylation status of the CDKN2A promoter was determined by methyla-tion-specific PCR, and the acetylated status of the histones associated with the p21WAF1 and CDKN2A genes was examined by chromatin immunoprecipitation. The expression of the CDKN2A, p21WAF1, p53, p73, APC, c-myc, c-Ki-ras and survivin genes was detected by real-time RT-PCR and RT-PCR. The cell cycle profile was established by flow cytometry. We found that along with the demethylation of the CDKN2A gene promoter in both cell lines induced by 5-aza-dC alone or in combination with TSA, the expression of both CDKN2A and APC genes increased. The treatment of TSA or sodium butyrate up-regulated the transcription of p21WAF1 significantly by inducing the acetylation of histones H4 and H3, but failed to alter the acetylation level of CDKN2A-associated histones. No changes in transcription of p53, p73, c-myc, c-Ki-ras and survivin genes were observed. In addition, TSA or sodium butyrate was shown to arrest cells at the G1 phase. However, 5-aza-dC was not able to affect the cell cycle progression. In conclusion, regulation by epigenetic modification of the transcription of tumor-associated genes and the cell cycle progression in both human colon cancer cell lines Colo-320 and SW1116 is gene-specific.
基金Supported by the National Basic Research 973 Pre-research Program of China, No. 2006CB708506
文摘AIM: To study at transcriptional level the similarities and differences of the physiological and biochemical activities between liver tumor (LT) and regenerating liver cells. METHODS: LT-associated genes and their expression changes in LT were obtained from databases and scientific articles, and their expression profiles in rat liver regeneration (LR) were detected using Rat Genome 230 2.0 array. Subsequently their expression changes in LT and LR were compared and analyzed. RESULTS: One hundred and twenty one LT-associated genes were found to be LR-associated. Thirty four genes were up-regulated, and 14 genes were down-regulated in both LT and regenerating liver; 20 genes up-regulated in LT were down-regulated in regenerating liver; 21 up-regulated genes and 16 down-regulated genes in LT were up-regulated at some time points and down-regulated at others during LR. CONCLUSION: Results suggested that apoptosis activity suppressed in LT was still active in regenerating liver, and there are lots of similarities and differences between the LT and regenerating liver at the aspects of cell growth, proliferation, differentiation, migration and angiogenesis.
基金This work was supported by the National Natural Science Foundation of China(82003018).
文摘Tumor-associated macrophages(TAMs)are emerging as targets for tumor therapy because of their primary role in promoting tumor progression.Several studies have been conducted to target TAMs by reducing their infiltration,depleting their numbers,and reversing their phenotypes to suppress tumor progression,leading to the development of drugs in preclinical and clinical trials.However,the heterogeneous characteristics of TAMs,including their ontogenetic and functional heterogeneity,limit their targeting.Therefore,in-depth exploration of the heterogeneity of TAMs,combined with immune checkpoint therapy or other therapeutic modalities could improve the efficiency of tumor treatment.This review focuses on the heterogeneous ontogeny and function of TAMs,as well as the current development of tumor therapies targeting TAMs and combination strategies.
文摘This letter comments on the recently published manuscript by Huang et al in the World Journal of Gastroenterology,which focused on the immunomodulatory effect of Calculus bovis on hepatocellular carcinoma(HCC)tumor microenvironments(TME)by inhibiting M2-tumor-associated macrophage(M2-TAM)polarization via Wnt/β-catenin pathway modulation.Recent research highlights the crucial role of TAMs and their polarization towards the M2 phenotype in promoting HCC progression.Epigenetic regulation,particularly through microRNAs(miR),has emerged as a key factor in modulating immune responses and TAM polarization in the TME,influencing treatment responses and tumor progression.This editorial focuses on miR-206,which has been found to inhibit HCC cell proliferation and migration and promote apoptosis.Moreover,miR-206 enhances anti-tumor immune responses by promoting M1-polarization of Kupffer cells,facilitating CD8+T cell recruitment and suppressing liver cancer stem cell expansion.However,challenges remain in understanding the precise mechanisms regulating miR-206 and its potential as a therapeutic agent.Targeting epigenetic mechanisms and improving strategies,whether through pharmacological or genetic approaches,offer promising avenues to sensitize tumor cells to chemotherapy.Understanding the intricate interactions between cancer and non-coding RNA regulation opens new avenues for developing targeted therapies,potentially improving HCC prognosis.
基金Supported by National Natural Science Foundation of China,No.82074450Education Department of Hunan Province,No.21A0243,No.21B0374,No.22B0397,and No.22B0392+2 种基金Research Project of"Academician Liu Liang Workstation"of Hunan University of Traditional Chinese Medicine,No.21YS003Hunan Administration of Traditional Chinese Medicine,No.B2023001 and No.B2023009Hunan Provincial Natural Science Foundation of China,No.2023JJ40481。
文摘BACKGROUND Calculus bovis(CB),used in traditional Chinese medicine,exhibits anti-tumor effects in various cancer models.It also constitutes an integral component of a compound formulation known as Pien Tze Huang,which is indicated for the treatment of liver cancer.However,its impact on the liver cancer tumor microenvironment,particularly on tumor-associated macrophages(TAMs),is not well understood.AIM To elucidate the anti-liver cancer effect of CB by inhibiting M2-TAM polarization via Wnt/β-catenin pathway modulation.METHODS This study identified the active components of CB using UPLC-Q-TOF-MS,evaluated its anti-neoplastic effects in a nude mouse model,and elucidated the underlying mechanisms via network pharmacology,transcriptomics,and molecular docking.In vitro assays were used to investigate the effects of CB-containing serum on HepG2 cells and M2-TAMs,and Wnt pathway modulation was validated by real-time reverse transcriptase-polymerase chain reaction and Western blot analysis.RESULTS This study identified 22 active components in CB,11 of which were detected in the bloodstream.Preclinical investigations have demonstrated the ability of CB to effectively inhibit liver tumor growth.An integrated approach employing network pharmacology,transcriptomics,and molecular docking implicated the Wnt signaling pathway as a target of the antineoplastic activity of CB by suppressing M2-TAM polarization.In vitro and in vivo experiments further confirmed that CB significantly hinders M2-TAM polarization and suppresses Wnt/β-catenin pathway activation.The inhibitory effect of CB on M2-TAMs was reversed when treated with the Wnt agonist SKL2001,confirming its pathway specificity.CONCLUSION This study demonstrated that CB mediates inhibition of M2-TAM polarization through the Wnt/β-catenin pathway,contributing to the suppression of liver cancer growth.
文摘The relevant mechanism of tumor-associated macrophages(TAMs)in the treatment of colorectal cancer patients with immune checkpoint inhibitors(ICIs)is discussed,and the application prospects of TAMs in reversing the treatment tolerance of ICIs are discussed to provide a reference for related studies.As a class of drugs widely used in clinical tumor immunotherapy,ICIs can act on regulatory molecules on cells that play an inhibitory role-immune checkpoints-and kill tumors in the form of an immune response by activating a variety of immune cells in the immune system.The sensitivity of patients with different types of colorectal cancer to ICI treatment varies greatly.The phenotype and function of TAMs in the colorectal cancer microenvironment are closely related to the efficacy of ICIs.ICIs can regulate the phenotypic function of TAMs,and TAMs can also affect the tolerance of colorectal cancer to ICI therapy.TAMs play an important role in ICI resistance,and making full use of this target as a therapeutic strategy is expected to improve the immunotherapy efficacy and prognosis of patients with colorectal cancer.
基金Supported by Macao Science and Technology Development Fund,No.0086/2022/A and No.0097/2022/A2.
文摘In this article,we comment on the article by Huang et al.The urgent development of new therapeutic strategies targeting macrophage polarization is critical in the fight against liver cancer.Tumor-associated macrophages(TAMs),primarily of the M2 subtype,are instrumental in cellular communication within the tumor microenvironment and are influenced by various signaling pathways,including the wingless/integrated(Wnt)pathway.Activation of the Wnt signaling pathway is pivotal in promoting M2 TAMs polarization,which in turn can exacerbate hepatocarcinoma cell proliferation and migration.This manuscript emphasizes the burgeoning significance of the Wnt signaling pathway and M2 TAMs polarization in the pathogenesis and progression of liver cancer,highlighting the potential therapeutic benefits of inhibiting the Wnt pathway.Lastly,we point out areas in Huang et al’s study that require further research,providing guidance and new directions for similar studies.
基金supported by the National Key Research&Development Program of China(2021YFE0204900)the National Natural Science Foundation of China(52222108)Science and Technology Commission of Shanghai Municipality(22ZR1432000,23JC1402400).
文摘Effective management of malignant tumor-induced bone defects remains challenging due to severe systemic side effects,substantial tumor recurrence,and long-lasting bone reconstruction post tumor resection.Magnesium and its alloys have recently emerged in clinics as orthopedics implantable metals but mostly restricted to mechanical devices.Here,by deposition of calcium-based bilayer coating on the surface,a Mg-based composite implant platform is developed with tailored degradation characteristics,simultaneously integrated with chemotherapeutic(Taxol)loading capacity.The delicate modulation of Mg degradation occurring in aqueous environment is observed to play dual roles,not only in eliciting desirable osteoinductivity,but allows for modification of tumor microenvironment(TME)owing to the continuous release of degradation products.Specifically,the sustainable H2 evolution and Ca2+from the implant is distinguished to cooperate with local Taxol delivery to achieve superior antineoplastic activity through activating Cyt-c pathway to induce mitochondrial dysfunction,which in turn leads to significant tumor-growth inhibition in vivo.In addition,the local chemotherapeutic delivery of the implant minimizes toxicity and side effects,but markedly fosters osteogenesis and bone repair with appropriate structure degradation in rat femoral defect model.Taken together,a promising intraosseous administration strategy with biodegradable Mg-based implants to facilitate tumor-associated bone defect is proposed.
文摘BACKGROUND Colorectal cancer(CRC)is a prevalent global malignancy with complex prognostic factors.Tumor-associated macrophages(TAMs)have shown paradoxical associations with CRC survival,particularly concerning the M2 subset.AIM We aimed to establish a simplified protocol for quantifying M2-like TAMs and explore their correlation with clinicopathological factors.METHODS A cross-sectional study included histopathological assessment of paraffinembedded tissue blocks obtained from 43 CRC patients.Using CD68 and CD163 immunohistochemistry,we quantified TAMs in tumor stroma and front,focusing on M2 proportion.Demographic,histopathological,and clinical parameters were collected.RESULTS TAM density was significantly higher at the tumor front,with the M2 proportion three times greater in both zones.The tumor front had a higher M2 proportion,which correlated significantly with advanced tumor stage(P=0.04),pathological nodal involvement(P=0.04),and lymphovascular invasion(LVI,P=0.01).However,no significant association was found between the M2 proportion in the tumor stroma and clinicopathological factors.CONCLUSION Our study introduces a simplified protocol for quantifying M2-like TAMs in CRC tissue samples.We demonstrated a significant correlation between an increased M2 proportion at the tumor front and advanced tumor stage,nodal involvement,and LVI.This suggests that M2-like TAMs might serve as potential indicators of disease progression in CRC,warranting further investigation and potential clinical application.
文摘The problem of liver cancer is becoming increasingly important due to the epi-demic of metabolic diseases and persistent high alcohol consumption.This deter-mines great attention to the development and improvement of methods for early diagnosis and treatment of liver cancer.Huang et al presented a study in the World Journal of Gastroenterology,in which they showed that the use of the traditional Chinese medicine Calculus bovis(CB)can suppress tumor growth in mice by inhibiting M2 tumor-associated macrophages(TAM)through modulating the activity of the Wnt/β-catenin pathway.The interaction of CB components with the Wnt/β-catenin pathway,M2 TAM polarization,and tumor dynamics were studied using network pharmacology,transcriptomics,and molecular docking.It is now generally accepted that the polarization of TAM and the differentiation of the functions of M1 and M2 phagocytes are of great importance for the progression of neoplasms.It is assumed that M2 TAM promote proliferation and migration of tumor cells.Attempts to medicinally influence the Wnt/β-catenin pathway in order to modulate phagocyte polarization now belong to one of the most promising areas of immunotherapy of oncological diseases.Undoubtedly,the work of the Chinese authors deserves attention and further development.
基金Supported by National Natural Science Foundation of China,No.82272396Suzhou Medical and Health Science and Technology Innovation Project,No.SKY2022057The Youth Medical Talent of Jiangsu Province,No.QNRC2016475.
文摘Many digestive system malignant tumors are characterized by high incidence and mortality rate.Increasing evidence has revealed that the tumor microenvironment(TME)is involved in cancer initiation and tumor progression.Tumor-associated macrophages(TAMs)are a predominant constituent of the TME,and participate in the regulation of various biological behaviors and influence the prognosis of digestive system cancer.TAMs can be mainly classified into the antitumor M1 phenotype and protumor M2 phenotype.The latter especially are crucial drivers of tumor invasion,growth,angiogenesis,metastasis,immunosuppression,and resistance to therapy.TAMs are of importance in the occurrence,development,diagnosis,prognosis,and treatment of common digestive system malignant tumors.In this review,we summarize the role of TAMs in common digestive system malignant tumors,including esophageal,gastric,colorectal,pancreatic and liver cancers.How TAMs promote the development of tumors,and how they act as potential therapeutic targets and their clinical applications are also described.
基金Supported by São Paulo Research Foundation(FAPESP),No.2010/08918-9 and 2020/11564-6the KBSP Young Investigator Fellowship,No.2011/00204-0+2 种基金the DBF Fellowship,No.2019/27492-7the LMG Fellowship,No.2014/01395-1the CFB Fellowship,No.2014/14278-3.
文摘BACKGROUND Validation of the reference gene(RG)stability during experimental analyses is essential for correct quantitative real-time polymerase chain reaction(RT-qPCR)data normalisation.Commonly,in an unreliable way,several studies use genes involved in essential cellular functions[glyceraldehyde-3-phosphate dehydro-genase(GAPDH),18S rRNA,andβ-actin]without paying attention to whether they are suitable for such experimental conditions or the reason for choosing such genes.Furthermore,such studies use only one gene when Minimum Information for Publication of Quantitative Real-Time PCR Experiments guidelines recom-mend two or more genes.It impacts the credibility of these studies and causes dis-tortions in the gene expression findings.For tissue engineering,the accuracy of gene expression drives the best experimental or therapeutical approaches.We cultivated DPSCs under two conditions:Undifferentiated and osteogenic dif-ferentiation,both for 35 d.We evaluated the gene expression of 10 candidates for RGs[ribosomal protein,large,P0(RPLP0),TATA-binding protein(TBP),GAPDH,actin beta(ACTB),tubulin(TUB),aminolevulinic acid synthase 1(ALAS1),tyro-sine 3-monooxygenase/tryptophan 5-monooxygenase activation protein,zeta(YWHAZ),eukaryotic translational elongation factor 1 alpha(EF1a),succinate dehydrogenase complex,subunit A,flavoprotein(SDHA),and beta-2-micro-globulin(B2M)]every 7 d(1,7,14,21,28,and 35 d)by RT-qPCR.The data were analysed by the four main algorithms,ΔCt method,geNorm,NormFinder,and BestKeeper and ranked by the RefFinder method.We subdivided the samples into eight subgroups.RESULTS All of the data sets from clonogenic and osteogenic samples were analysed using the RefFinder algorithm.The final ranking showed RPLP0/TBP as the two most stable RGs and TUB/B2M as the two least stable RGs.Either theΔCt method or NormFinder analysis showed TBP/RPLP0 as the two most stable genes.However,geNorm analysis showed RPLP0/EF1αin the first place.These algorithms’two least stable RGs were B2M/GAPDH.For BestKeeper,ALAS1 was ranked as the most stable RG,and SDHA as the least stable RG.The pair RPLP0/TBP was detected in most subgroups as the most stable RGs,following the RefFinfer ranking.CONCLUSION For the first time,we show that RPLP0/TBP are the most stable RGs,whereas TUB/B2M are unstable RGs for long-term osteogenic differentiation of human DPSCs in traditional monolayers.
基金supported by the Major Program of National Agricultural Science and Technology of China(NK20220607)the West Light Foundation of the Chinese Academy of Sciences(2022XBZG_XBQNXZ_A_001)the Sichuan Science and Technology Program,China(2022ZDZX0014)。
文摘Grain weight is one of the key components of wheat(Triticum aestivum L.)yield.Genetic manipulation of grain weight is an efficient approach for improving yield potential in breeding programs.A recombinant inbred line(RIL)population derived from a cross between W7268 and Chuanyu 12(CY12)was employed to detect quantitative trait loci(QTLs)for thousand-grain weight(TGW),grain length(GL),grain width(GW),and the ratio of grain length to width(GLW)in six environments.Seven major QTLs,QGl.cib-2D,QGw.cib-2D,QGw.cib-3B,QGw.cib-4B.1,QGlw.cib-2D.1,QTgw.cib-2D.1 and QTgw.cib-3B.1,were consistently identified in at least four environments and the best linear unbiased estimation(BLUE)datasets,and they explained 2.61 to 34.85%of the phenotypic variance.Significant interactions were detected between the two major TGW QTLs and three major GW loci.In addition,QTgw.cib-3B.1 and QGw.cib-3B were co-located,and the improved TGW at this locus was contributed by GW.Unlike other loci,QTgw.cib-3B.1/QGw.cib-3B had no effect on grain number per spike(GNS).They were further validated in advanced lines using Kompetitive Allele Specific PCR(KASP)markers,and a comparison analysis indicated that QTgw.cib-3B.1/QGw.cib-3B is likely a novel locus.Six haplotypes were identified in the region of this QTL and their distribution frequencies varied between the landraces and cultivars.According to gene annotation,spatial expression patterns,ortholog analysis and sequence variation,the candidate gene of QTgw.cib-3B.1/QGw.cib-3B was predicted.Collectively,the major QTLs and KASP markers reported here provide valuable information for elucidating the genetic architecture of grain weight and for molecular marker-assisted breeding in grain yield improvement.
文摘Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults.Pathogenic factors,such as oxidative stress,an increase in acetylcholinesterase activity,mitochondrial dysfunction,genotoxicity,and neuroinflammation are present in this syndrome,which leads to neurodegeneration.Neurodegenerative pathologies such as Alzheimer’s disease are considered late-onset diseases caused by the complex combination of genetic,epigenetic,and environmental factors.There are two main types of Alzheimer’s disease,known as familial Alzheimer’s disease(onset<65 years)and late-onset or sporadic Alzheimer’s disease(onset≥65 years).Patients with familial Alzheimer’s disease inherit the disease due to rare mutations on the amyloid precursor protein(APP),presenilin 1 and 2(PSEN1 and PSEN2)genes in an autosomaldominantly fashion with closely 100%penetrance.In contrast,a different picture seems to emerge for sporadic Alzheimer’s disease,which exhibits numerous non-Mendelian anomalies suggesting an epigenetic component in its etiology.Importantly,the fundamental pathophysiological mechanisms driving Alzheimer’s disease are interfaced with epigenetic dysregulation.However,the dynamic nature of epigenetics seems to open up new avenues and hope in regenerative neurogenesis to improve brain repair in Alzheimer’s disease or following injury or stroke in humans.In recent years,there has been an increase in interest in using natural products for the treatment of neurodegenerative illnesses such as Alzheimer’s disease.Through epigenetic mechanisms,such as DNA methylation,non-coding RNAs,histone modification,and chromatin conformation regulation,natural compounds appear to exert neuroprotective effects.While we do not purport to cover every in this work,we do attempt to illustrate how various phytochemical compounds regulate the epigenetic effects of a few Alzheimer’s disease-related genes.
文摘Noncoding RNAs instruct the Cas9 nuclease to site speifillyl cleave DNA in the CRISPR/Cas9 system.Despite the high incidence of hepatocellular carcinoma(HCC),the patient's outcome is poor.As a result of the emergence of therapeutic resistance in HCC patients,dlinicians have faced difficulties in treating such tumor.In addition,CRISPR/Cas9 screens were used to identify genes that improve the dlinical response of HCC patients.It is the objective of this article to summarize the current understanding of the use of the CRISPR/Cas9 system for the treatment of cancer,with a particular emphasis on HCC as part of the current state of knowledge.Thus,in order to locate recent developments in oncology research,we examined both the Scopus database and the PubMed database.The ability to selectively interfere with gene expression in combinatorial CRISPR/Cas9 screening can lead to the discovery of new effective HCC treatment regimens by combining clinically approved drugs.Drug resistance can be overcome with the help of the CRISPR/Cas9 system.HCC signature genes and resistance to treatment have been uncovered by genome-scale CRISPR activation screening although this method is not without limitations.It has been extensively examined whether CRISPR can be used as a tool for disease research and gene therapy.CRISPR and its applications to tumor research,particularly in HCC,are examined in this study through a review of the literature.
基金supported by the National Key Research and Development Program of China (2021YFF0702201)National Natural Science Foundation of China (81873736,31872779,81830032)+2 种基金Guangzhou Key Research Program on Brain Science (202007030008)Department of Science and Technology of Guangdong Province (2021ZT09Y007,2020B121201006,2018B030337001,2021A1515012526)Natural Science Foundation of Guangdong Province (2021A1515012526,2022A1515012651)。
文摘Neurodegenerative diseases(NDs)are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease(AD),Parkinson's disease(PD),Huntington's disease(HD),and amyotrophic lateral sclerosis(ALS).Currently,there are no therapies available that can delay,stop,or reverse the pathological progression of NDs in clinical settings.As the population ages,NDs are imposing a huge burden on public health systems and affected families.Animal models are important tools for preclinical investigations to understand disease pathogenesis and test potential treatments.While numerous rodent models of NDs have been developed to enhance our understanding of disease mechanisms,the limited success of translating findings from animal models to clinical practice suggests that there is still a need to bridge this translation gap.Old World nonhuman primates(NHPs),such as rhesus,cynomolgus,and vervet monkeys,are phylogenetically,physiologically,biochemically,and behaviorally most relevant to humans.This is particularly evident in the similarity of the structure and function of their central nervous systems,rendering such species uniquely valuable for neuroscience research.Recently,the development of several genetically modified NHP models of NDs has successfully recapitulated key pathologies and revealed novel mechanisms.This review focuses on the efficacy of NHPs in modeling NDs and the novel pathological insights gained,as well as the challenges associated with the generation of such models and the complexities involved in their subsequent analysis.
基金This study was supported by the National Key R&D Program of China(2021YFD1600200)Program of National Beef Cattle and Yak Industrial Technol-ogy System(NO.CARS-37)+1 种基金Natural Science Foundation of Sichuan Province(General Program)(24NSFSC0581)the Scientific and Technological Innovation Team for Qinghai-Tibetan Plateau Research in Southwest Minzu University(Grant No.2024CXTD02)。
文摘Background The genetic diversity of yak,a key domestic animal on the Qinghai-Tibetan Plateau(QTP),is a vital resource for domestication and breeding efforts.This study presents the first yak pangenome obtained through the de novo assembly of 16 yak genomes.Results We discovered 290 Mb of nonreference sequences and 504 new genes.Our pangenome-wide presence and absence variation(PAV)analysis revealed 5,120 PAV-related genes,highlighting a wide range of variety-specific genes and genes with varying frequencies across yak populations.Principal component analysis(PCA)based on binary gene PAV data classified yaks into three new groups:wild,domestic,and Jinchuan.Moreover,we pro-posed a‘two-haplotype genomic hybridization model'for understanding the hybridization patterns among breeds by integrating gene frequency,heterozygosity,and gene PAV data.A gene PAV-GWAS identified a novel gene(Bos-Gru3G009179)that may be associated with the multirib trait in Jinchuan yaks.Furthermore,an integrated transcrip-tome and pangenome analysis highlighted the significant differences in the expression of core genes and the muta-tional burden of differentially expressed genes between yaks from high and low altitudes.Transcriptome analysis across multiple species revealed that yaks have the most unique differentially expressed m RNAs and lnc RNAs(between high-and low-altitude regions),especially in the heart and lungs,when comparing high-and low-altitude adaptations.Conclusions The yak pangenome offers a comprehensive resource and new insights for functional genomic studies,supporting future biological research and breeding strategies.
基金Supported by National Natural Science Foundation of China,No.82100594.
文摘BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unknown.AIM To explore potential molecular connections between H.pylori infection and T2DM.METHODS We extracted gene expression arrays from three online datasets(GSE60427,GSE27411 and GSE115601).Differentially expressed genes(DEGs)commonly present in patients with H.pylori infection and T2DM were identified.Hub genes were validated using human gastric biopsy samples.Correlations between hub genes and immune cell infiltration,miRNAs,and transcription factors(TFs)were further analyzed.RESULTS A total of 67 DEGs were commonly presented in patients with H.pylori infection and T2DM.Five significantly upregulated hub genes,including TLR4,ITGAM,C5AR1,FCER1G,and FCGR2A,were finally identified,all of which are closely related to immune cell infiltration.The gene-miRNA analysis detected 13 miRNAs with at least two gene cross-links.TF-gene interaction networks showed that TLR4 was coregulated by 26 TFs,the largest number of TFs among the 5 hub genes.CONCLUSION We identified five hub genes that may have molecular connections between H.pylori infection and T2DM.This study provides new insights into the pathogenesis of H.pylori-induced onset of T2DM.