Conjugated microporous polymers(CMPs) with tunable bandgaps have attracted increasing attention for photocatalytic hydrogen evolution. However, the synthesis of CMPs usually needs expensive metal-based catalysts. Here...Conjugated microporous polymers(CMPs) with tunable bandgaps have attracted increasing attention for photocatalytic hydrogen evolution. However, the synthesis of CMPs usually needs expensive metal-based catalysts. Herein, we report a metal-free synthetic route to fabricate pyridyl conjugated microporous polymers(PCMPs) via a condensed polymerization between aldehyde and aryl ketone monomers. The PCMPs show widely tunable specific surface areas(347–418 m^(2)/g), which were controlled via changing the used monomers. The PCMPs synthesized using monomers of dialdehyde and diacetylbenzene(diacetylpyridine) in the presence of pyridine exhibited the highest visible-light driven hydrogen evolution rate(9.56 μmol/h). These novel designed PCMPs provide wide adaptability to current materials designed for high-performance photocatalysts in different applications.展开更多
The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is o...The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is of great importance not only to device physics but also to technological applications. Here we demonstrate a widely tunable bandgap of few-layer black phosphorus (BP) by the application of vertical electric field in dual-gated BP field-effect transistors. A total bandgap reduction of 124 meV is observed when the electrical displacement field is increased from 0.10 V/nm to 0.83 V/nm. Our results suggest appealing potential for few-layer BP as a tunable bandgap material in infrared optoelectronies, thermoelectric power generation and thermal imaging.展开更多
Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behav...Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior.Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties,providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs.The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable(opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts(0–100%).Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase,band alignment/structure,carrier density,and surface reactive activity,enabling novel and promising applications.This review comprehensively elaborates on atomically substitutional engineering in TMD layers,including theoretical foundations,synthetic strategies,tailored properties,and superior applications.The emerging type of ternary TMDs,Janus TMDs,is presented specifically to highlight their typical compounds,fabrication methods,and potential applications.Finally,opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field.展开更多
An analytical method,called the symplectic mathematical method,is proposed to study the wave propagation in a spring-mass chain with gradient arranged local resonators and nonlinear ground springs.Combined with the li...An analytical method,called the symplectic mathematical method,is proposed to study the wave propagation in a spring-mass chain with gradient arranged local resonators and nonlinear ground springs.Combined with the linearized perturbation approach,the symplectic transform matrix for a unit cell of the weakly nonlinear graded metamaterial is derived,which only relies on the state vector.The results of the dispersion relation obtained with the symplectic mathematical method agree well with those achieved by the Bloch theory.It is shown that wider and lower frequency bandgaps are formed when the hardening nonlinearity and incident wave intensity increase.Subsequently,the displacement response and transmission performance of nonlinear graded metamaterials with finite length are studied.The dual tunable effects of nonlinearity and gradation on the wave propagation are explored under different excitation frequencies.For small excitation frequencies,the gradient parameter plays a dominant role compared with the nonlinearity.The reason is that the gradient tuning aims at the gradient arrangement of local resonators,which is limited by the critical value of the local resonator mass.In contrast,for larger excitation frequencies,the hardening nonlinearity is dominant and will contribute to the formation of a new bandgap.展开更多
Design and application of tunable phononic crystals(PnCs)are attracting increasing interest due to their promising capabilities to manipulate acoustic and elastic waves effectively.This paper investigates topology opt...Design and application of tunable phononic crystals(PnCs)are attracting increasing interest due to their promising capabilities to manipulate acoustic and elastic waves effectively.This paper investigates topology optimization of the magnetorheological(MR)materials including PnCs for opening the tunable and wide bandgaps.Therein,the bandgap tunability of the PnCs is achieved by shear modulus variation of MR materials under a continuously changing applied magnetic field.The pseudo elemental densities representing the bi-material distribution inside the PnC unit cell are taken as design variables and interpolated with an artificial MR penalization model.An aggregated bandgap index for enveloping the extreme values ofbandgap width and tunable range of the MR included smart PnCs is proposed as the objective function.In this context,the sensitivity analysis scheme is derived,and the optimization problem is solved with the gradient-based mathematical programming method.The effectiveness of the proposed optimization method is demonstrated by numerical examples,where the optimized solutions present tunable and stably wide bandgap characteristics under different magnetic fields.The tunable optimized PnCs based device that can provide a wider tunable bandgap range is also explored.展开更多
Graphene is a fascinating material of recent origin whose first isolation was being made possible through micromechanical cleavage of a graphite crystal. Owing to its fascinating properties, graphene has garnered sign...Graphene is a fascinating material of recent origin whose first isolation was being made possible through micromechanical cleavage of a graphite crystal. Owing to its fascinating properties, graphene has garnered significant attention in the research community for multiple applications. A number of methods have been employed for the synthesis of single-layer and multi-layer graphene. The extraordinary properties of graphene such as its Hall effect at room temperature, high surface area, tunable bandgap, high charge mobility and excellent electrical, conducting and thermal properties allow for the development of sensors of various types and also opened the doors for its use in nanoelectronics, supercapacitors and batteries. Biological aspects of graphene have also been investigated with particular emphasis on its toxicity and drug delivery. In this review, many of the salient aspects of graphene, such as from synthesis to its applications, primarily focusing on sensor applications which are of current interest, are covered.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 52103024, 52073046, 51873036 and51673039)the Program of Shanghai Academic Research Leader(No. 21XD1420200)+5 种基金the Shanghai Shuguang Program (No. 19SG28)the Chang Jiang Scholar Program (No. Q2019152)the Shanghai Pujiang Talent Program (No. 20PJ1400600)the Shanghai Natural Science Foundation (Nos. 22ZR1401600 and 19ZR1470900)the Fundamental Research Funds for the Central Universities(No. 2232021D-01)the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University (No. CUSF-DH-D-2019024)。
文摘Conjugated microporous polymers(CMPs) with tunable bandgaps have attracted increasing attention for photocatalytic hydrogen evolution. However, the synthesis of CMPs usually needs expensive metal-based catalysts. Herein, we report a metal-free synthetic route to fabricate pyridyl conjugated microporous polymers(PCMPs) via a condensed polymerization between aldehyde and aryl ketone monomers. The PCMPs show widely tunable specific surface areas(347–418 m^(2)/g), which were controlled via changing the used monomers. The PCMPs synthesized using monomers of dialdehyde and diacetylbenzene(diacetylpyridine) in the presence of pyridine exhibited the highest visible-light driven hydrogen evolution rate(9.56 μmol/h). These novel designed PCMPs provide wide adaptability to current materials designed for high-performance photocatalysts in different applications.
基金Supported by the National Basic Research Program of China under Grant Nos 2013CB921900 and 2014CB920900the National Natural Science Foundation of China under Grant No 11374021)(S.Yan,Z.Xie,J.-H,Chen)+1 种基金support from the Elemental Strategy Initiative conducted by the MEXT,Japana Grant-in-Aid for Scientific Research on Innovative Areas"Science of Atomic Layers"from JSPS
文摘The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is of great importance not only to device physics but also to technological applications. Here we demonstrate a widely tunable bandgap of few-layer black phosphorus (BP) by the application of vertical electric field in dual-gated BP field-effect transistors. A total bandgap reduction of 124 meV is observed when the electrical displacement field is increased from 0.10 V/nm to 0.83 V/nm. Our results suggest appealing potential for few-layer BP as a tunable bandgap material in infrared optoelectronies, thermoelectric power generation and thermal imaging.
基金This work was supported by National Key R&D Program of China(2021YFF1200200)Peiyang Talents Project of Tianjin University.
文摘Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior.Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties,providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs.The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable(opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts(0–100%).Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase,band alignment/structure,carrier density,and surface reactive activity,enabling novel and promising applications.This review comprehensively elaborates on atomically substitutional engineering in TMD layers,including theoretical foundations,synthetic strategies,tailored properties,and superior applications.The emerging type of ternary TMDs,Janus TMDs,is presented specifically to highlight their typical compounds,fabrication methods,and potential applications.Finally,opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field.
基金Project supported by the National Natural Science Foundation of China(Nos.12072266,12172297,11972287,and 12072262)the Open Foundation of the State Key Laboratory of Structural Analysis for Industrial Equipment of China(No.GZ22106)。
文摘An analytical method,called the symplectic mathematical method,is proposed to study the wave propagation in a spring-mass chain with gradient arranged local resonators and nonlinear ground springs.Combined with the linearized perturbation approach,the symplectic transform matrix for a unit cell of the weakly nonlinear graded metamaterial is derived,which only relies on the state vector.The results of the dispersion relation obtained with the symplectic mathematical method agree well with those achieved by the Bloch theory.It is shown that wider and lower frequency bandgaps are formed when the hardening nonlinearity and incident wave intensity increase.Subsequently,the displacement response and transmission performance of nonlinear graded metamaterials with finite length are studied.The dual tunable effects of nonlinearity and gradation on the wave propagation are explored under different excitation frequencies.For small excitation frequencies,the gradient parameter plays a dominant role compared with the nonlinearity.The reason is that the gradient tuning aims at the gradient arrangement of local resonators,which is limited by the critical value of the local resonator mass.In contrast,for larger excitation frequencies,the hardening nonlinearity is dominant and will contribute to the formation of a new bandgap.
基金supported by the National Natural Science Foundation of China(Grant No.12102079).
文摘Design and application of tunable phononic crystals(PnCs)are attracting increasing interest due to their promising capabilities to manipulate acoustic and elastic waves effectively.This paper investigates topology optimization of the magnetorheological(MR)materials including PnCs for opening the tunable and wide bandgaps.Therein,the bandgap tunability of the PnCs is achieved by shear modulus variation of MR materials under a continuously changing applied magnetic field.The pseudo elemental densities representing the bi-material distribution inside the PnC unit cell are taken as design variables and interpolated with an artificial MR penalization model.An aggregated bandgap index for enveloping the extreme values ofbandgap width and tunable range of the MR included smart PnCs is proposed as the objective function.In this context,the sensitivity analysis scheme is derived,and the optimization problem is solved with the gradient-based mathematical programming method.The effectiveness of the proposed optimization method is demonstrated by numerical examples,where the optimized solutions present tunable and stably wide bandgap characteristics under different magnetic fields.The tunable optimized PnCs based device that can provide a wider tunable bandgap range is also explored.
基金supported by the National Science Fund for Distinguished Young Scholars (Grant No.11925205)the National Natural Science Foundation of China (Grant No.51921003).
文摘Graphene is a fascinating material of recent origin whose first isolation was being made possible through micromechanical cleavage of a graphite crystal. Owing to its fascinating properties, graphene has garnered significant attention in the research community for multiple applications. A number of methods have been employed for the synthesis of single-layer and multi-layer graphene. The extraordinary properties of graphene such as its Hall effect at room temperature, high surface area, tunable bandgap, high charge mobility and excellent electrical, conducting and thermal properties allow for the development of sensors of various types and also opened the doors for its use in nanoelectronics, supercapacitors and batteries. Biological aspects of graphene have also been investigated with particular emphasis on its toxicity and drug delivery. In this review, many of the salient aspects of graphene, such as from synthesis to its applications, primarily focusing on sensor applications which are of current interest, are covered.