We report on a compact, stable, all-fiberized narrow-linewidth(0.045 nm) pulsed laser source emitting laser beam with a wavelength of 266 nm, and tunable pulse width and repetition rate. The system is based on all-fib...We report on a compact, stable, all-fiberized narrow-linewidth(0.045 nm) pulsed laser source emitting laser beam with a wavelength of 266 nm, and tunable pulse width and repetition rate. The system is based on all-fiberized nanosecond amplifier architecture, which consists of Yb-doped fiber preamplifiers and a super-large-mode-area Yb-doped fiber power amplifier. The fiber amplifier with a core of 50 μm is used to raise the threshold of the stimulated Brillouin scattering(SBS) effect and to obtain high output power and single pulse energy. Using lithium triborate(LBO) crystal and betabarium borate(BBO) crystal for realizing the second-harmonic generation(SHG) and fourth-harmonic generation(FHG),we achieve 17 μJ(1.73 W) and 0.66 μJ(66 mW), respectively, at wavelengths of 532 nm and 266 nm and a repetition rate of 100 kHz with pulse width of 4 ns. This source has great potential applications in fluorescence research and solar-blind ultraviolet optical communication.展开更多
We demonstrate an all-fiberized narrow-linewidth nanosecond amplifier with high peak power,tunable pulse width,and repetition rate.A fiber-coupled narrow-linewidth laser diode operating at 1064.1 nm is employed as the...We demonstrate an all-fiberized narrow-linewidth nanosecond amplifier with high peak power,tunable pulse width,and repetition rate.A fiber-coupled narrow-linewidth laser diode operating at 1064.1 nm is employed as the seed source,which is gain-switched to generate nanosecond pulses with tunable pulse widths of 1-200 ns and tunable repetition rates of10 Hz-100 kHz.By utilizing a very-large-mode-area Yb-doped fiber with a core diameter of 50 μm in the power amplifier,thresholds of the stimulated Brillouin scattering at different pulse widths and repetition rates are increased.The maximum average power reaches 30.8 W at the pulse width of 4 ns and a repetition rate of 100 kHz,corresponding to an optical-tooptical conversion efficiency of ~55.2%.Pulse energy and peak power are calculated to be 0.2 mJ and 50 kW,respectively,which are limited by stimulated Brillouin scattering.The 3-dB spectral linewidth remains around 0.05 nm during the power scaling process.The stimulated Brillouin scattering limited output powers at different pulse widths and repetition rates are investigated.Peak power of 47.5 kW(0.19 mJ) is obtained for the 4 ns pulses at a repetition rate of 50 kHz,which is nearly the same as that of 4 ns pulses at 100 kHz.When the pulse width of the seed source is increased to 8 ns,peak powers/pulse energies are decreased to 19.6 kW/0.11 mJ and 13.3 kW/0.08 mJ at repetition rates of 50 kHz and 100 kHz,respectively.展开更多
Based on a theoretical model of Q-switched laser with the influences of the driving signal sent to the Pockels cell and the doping concentration of the gain medium taken into account,a method of achieving high energy ...Based on a theoretical model of Q-switched laser with the influences of the driving signal sent to the Pockels cell and the doping concentration of the gain medium taken into account,a method of achieving high energy sub-nanosecond Q-switched lasers is proposed and verified in experiment.When a Nd:YVO4 crystal with a doping concentration of 0.7 at.%is used as a gain medium and a driving signal with the optimal high-level voltage is applied to the Pockels cell,a stable single-transverse-mode electro-optical Q-switched laser with a pulse width of 0.77 ns and a pulse energy of 1.04 mJ operating at the pulse repetition frequency of 1 kHz is achieved.The precise tuning of the pulse width is also demonstrated.展开更多
We demonstrate a flexible erbium-doped pulsed fiber laser which achieves the wavelength and pulse width tuning by adjusting an intracavity filter. The intracavity filter is flexible to achieve any of the different wav...We demonstrate a flexible erbium-doped pulsed fiber laser which achieves the wavelength and pulse width tuning by adjusting an intracavity filter. The intracavity filter is flexible to achieve any of the different wavelengths and bandwidths in the tuning range. The wavelength and width of pulse can be tuned in a range of - 20 nm and from - 0.8 ps to 87 ps, respectively. The flexible pulsed fiber laser can be accurately controlled, which is insensitive to environmental disturbance.展开更多
基金Project supported by the Key Program of Beijing Municipal Natural Science Foundation, China (Grant No. KZ201910005006)the National Nature Science Foundation of China (Grant No. 62005004)+1 种基金the Natural Science Foundation of Beijing Municipality, China (Grant No. 4204091)the National Science Foundation for Postdoctor Scientists of China (Grant No. 212423)。
文摘We report on a compact, stable, all-fiberized narrow-linewidth(0.045 nm) pulsed laser source emitting laser beam with a wavelength of 266 nm, and tunable pulse width and repetition rate. The system is based on all-fiberized nanosecond amplifier architecture, which consists of Yb-doped fiber preamplifiers and a super-large-mode-area Yb-doped fiber power amplifier. The fiber amplifier with a core of 50 μm is used to raise the threshold of the stimulated Brillouin scattering(SBS) effect and to obtain high output power and single pulse energy. Using lithium triborate(LBO) crystal and betabarium borate(BBO) crystal for realizing the second-harmonic generation(SHG) and fourth-harmonic generation(FHG),we achieve 17 μJ(1.73 W) and 0.66 μJ(66 mW), respectively, at wavelengths of 532 nm and 266 nm and a repetition rate of 100 kHz with pulse width of 4 ns. This source has great potential applications in fluorescence research and solar-blind ultraviolet optical communication.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61675009)the Beijing Natural Science Foundation Program, China,Scientific Research Key Program of Beijing Municipal Education Commission, China (Grant No. KZ201910005006)
文摘We demonstrate an all-fiberized narrow-linewidth nanosecond amplifier with high peak power,tunable pulse width,and repetition rate.A fiber-coupled narrow-linewidth laser diode operating at 1064.1 nm is employed as the seed source,which is gain-switched to generate nanosecond pulses with tunable pulse widths of 1-200 ns and tunable repetition rates of10 Hz-100 kHz.By utilizing a very-large-mode-area Yb-doped fiber with a core diameter of 50 μm in the power amplifier,thresholds of the stimulated Brillouin scattering at different pulse widths and repetition rates are increased.The maximum average power reaches 30.8 W at the pulse width of 4 ns and a repetition rate of 100 kHz,corresponding to an optical-tooptical conversion efficiency of ~55.2%.Pulse energy and peak power are calculated to be 0.2 mJ and 50 kW,respectively,which are limited by stimulated Brillouin scattering.The 3-dB spectral linewidth remains around 0.05 nm during the power scaling process.The stimulated Brillouin scattering limited output powers at different pulse widths and repetition rates are investigated.Peak power of 47.5 kW(0.19 mJ) is obtained for the 4 ns pulses at a repetition rate of 50 kHz,which is nearly the same as that of 4 ns pulses at 100 kHz.When the pulse width of the seed source is increased to 8 ns,peak powers/pulse energies are decreased to 19.6 kW/0.11 mJ and 13.3 kW/0.08 mJ at repetition rates of 50 kHz and 100 kHz,respectively.
基金the National Key Research and Development Program of China(Grant No.2017YFB0405203)the Shanxi“1331 Project”Key Subjects Construction,China(Grant No.1331KSC).
文摘Based on a theoretical model of Q-switched laser with the influences of the driving signal sent to the Pockels cell and the doping concentration of the gain medium taken into account,a method of achieving high energy sub-nanosecond Q-switched lasers is proposed and verified in experiment.When a Nd:YVO4 crystal with a doping concentration of 0.7 at.%is used as a gain medium and a driving signal with the optimal high-level voltage is applied to the Pockels cell,a stable single-transverse-mode electro-optical Q-switched laser with a pulse width of 0.77 ns and a pulse energy of 1.04 mJ operating at the pulse repetition frequency of 1 kHz is achieved.The precise tuning of the pulse width is also demonstrated.
基金Project supported by the National Natural Science Foundation of China(Grant No.61575137)the Program on Social Development by Department of Science and Technology of Shanxi Province,China(Grant No.20140313023-3)
文摘We demonstrate a flexible erbium-doped pulsed fiber laser which achieves the wavelength and pulse width tuning by adjusting an intracavity filter. The intracavity filter is flexible to achieve any of the different wavelengths and bandwidths in the tuning range. The wavelength and width of pulse can be tuned in a range of - 20 nm and from - 0.8 ps to 87 ps, respectively. The flexible pulsed fiber laser can be accurately controlled, which is insensitive to environmental disturbance.