期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Study on in-situ WC particles/tungsten wire reinforced iron matrix composites under electromagnetic field 被引量:2
1
作者 Niu Libin Xu Yunhua Wu Hong 《China Foundry》 SCIE CAS 2010年第2期157-162,共6页
By applying electromagnetic field to a system consisting of tungsten wires and grey cast iron melt,the grey cast iron matrix composite reinforced by either in-situ WC particles or the combination ofin-situ WC particle... By applying electromagnetic field to a system consisting of tungsten wires and grey cast iron melt,the grey cast iron matrix composite reinforced by either in-situ WC particles or the combination ofin-situ WC particles and the residual tungsten wire was obtained.By means of differential thermal analysis(DTA),the pouring temperature ofiron melt was determined at 1,573 K.The microstructures of the composites were analyzed by using of X-ray diffraction(XRD),scanning electron microscopy(SEM) equipped with an energy dispersive spectrum(EDS) and pin-on-disc abrasive wear test.The obtained results indicated that,with the enhancing frequency of electromagnetic field,the amount ofin-situ WC particles gradually increases,leading to continuous decrease of the residual tungsten wires.When the electromagnetic field frequency was up to 4 kHz,tungsten wires reacted completely with carbon atoms in grey cast iron melt,forming WC particals.The electromagnetic field appeared to accelerate the elemental diffusion in the melt,to help relatively quick formation of a series of small FeW-C ternary zones and to improve the kinetic condition ofin-situ WC fabrication.As compared with the composite prepared without the electromagnetic field,the composite fabricated at 4 kHz presented good wear resistance. 展开更多
关键词 tungsten carbide particle COMPOSITE electromagnetic field in-situ synthesis grey cast iron
下载PDF
Effect of Ni Addition on Microstructure of Matrix in Casting Tungsten Carbide Particle Reinforced Composite 被引量:3
2
作者 Quan Shan Zulai Li +2 位作者 Yehua Jiang Rong Zhou Yudong Sui 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2013年第8期720-724,共5页
Microstructure of the matrix directly influences the performance and the application of metal matrix composites. By using vacuum casting-infiltration method to manufacture casting tungsten carbide particle reinforced ... Microstructure of the matrix directly influences the performance and the application of metal matrix composites. By using vacuum casting-infiltration method to manufacture casting tungsten carbide particle reinforced composite, the addition of Ni can alter the microstructure of the matrix of composite. High carbon chromium steel was chosen as the substrate. The casting process was achieved at 1580 ℃ with vacuum degree of 0.072-0.078 MPa. Padding of the molten steel in each part of the preform was different, and the solidification of each part of the composite was different, too. Microstructure of the matrix was various in different parts of the composite. The Ni addition had enlarged the austenite zone in matrix, which would improve the corrosion resistance of the composite. The phase identification of the composite was performed by X-ray diffraction technique. The result showed that Fe3W3C was the primary precipitated carbide and its composition had a direct link with the decomposition of the casting tungsten carbide particles. The hardness of the matrix mainly depended on the reinforced carbide, i.e. Fe3W3C. 展开更多
关键词 Casting-infiltration Casting tungsten carbide particle Fe3W3C
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部