An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of min...An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of mineral powder as the thermal conductive filler to prepare a new type of asphalt concrete and improve the efficiency of electrothermal snow and ice melting systems accordingly.The thermal conductivity of asphalt concrete prepared with different thermally conductive fillers was tested by a transient plane source method,and the related performances were measured.Then the temperature rise rate and surface temperature were studied through field heating tests.Finally,the actual ice melting efficiency of the thermally conductive asphalt concrete was evaluated using an effective electrothermal system.As shown by the experimental results,the composite made of SiC powder and carbon fiber has a high thermal conductivity.When SiC replaces mineral powder,the thermal conductivity of the asphalt mixture increases first and then decreases with the increase of carbon fiber content.In the present study,in particular,the thermal conductivity attained a peak when the carbon fiber content was 0.2%of the aggregate mass.展开更多
The coating layers of Tri-structural Isotropic Particles(TRISO)serve to protect the kernel and act as barriers to fission products.Sintering aids in the silicon carbide matrix variably react with TRISO coating layers,...The coating layers of Tri-structural Isotropic Particles(TRISO)serve to protect the kernel and act as barriers to fission products.Sintering aids in the silicon carbide matrix variably react with TRISO coating layers,leading to the destruction of the coating layers.Investigating how carbon content affects element diffusion in silicon carbide-based TRISO composite fuel is of great significance for predicting reactor safety.In this study,silicon carbide-based TRISO composite fuels with different carbon contents were prepared by adding varying amounts of phenolic resin to the silicon carbide matrix.X-ray Diffraction(XRD)and Scanning Electron Microscopy(SEM)were employed to characterize the phase composition,morphology,and microstructure of the composite fuels.The elemental content in each coating layer of TRISO was quantified using Energy-Dispersive X-ray Spectroscopy(EDS).The results demonstrated that the addition of phenolic resin promoted the uniform distribution of sintering aids in the silicon carbide matrix.The atomic percentage(at.%)of aluminum(Al)in the pyrolytic carbon layer of the TRISO particles reached its lowest value of 0.55%when the phenolic resin addition was 1%.This is because the addition of phenolic resin caused the Al and silicon(Si)in the matrix to preferentially react with the carbon in the phenolic resin to form a metastable liquid phase,rather than preferentially consuming the pyrolytic carbon in the outer coating layer of the TRISO particles.The findings suggest that carbon addition through phenolic resin incorporation can effectively mitigate the deleterious reactions between the TRISO coating layers and sintering aids,thereby enhancing the durability and safety of silicon carbide-based TRISO composite fuels.展开更多
Carbides/carbon composites are emerging as a new kind of binary dielectric systems with good microwave absorption performance.Herein,we obtain a series of tungsten carbide/carbon composites through a simple solvent-fr...Carbides/carbon composites are emerging as a new kind of binary dielectric systems with good microwave absorption performance.Herein,we obtain a series of tungsten carbide/carbon composites through a simple solvent-free strategy,where the solid mixture of dicyandiamide(DCA)and ammonium metatungstate(AM)is employed as the precursor.Ultrafine cubic WC1-x nanoparticles(3-4 nm)are in situ generated and uniformly dispersed on carbon nanosheets.This configuration overcomes some disadvantages of conventional carbides/carbon composites and is greatly helpful for electromagnetic dissipation.It is found that the weight ratio of DCA to AM can regulate chemical composition of these composites,while less impact on the average size of WC1-x nanoparticles.With the increase in carbon nanosheets,the relative complex permittivity and dielectric loss ability are constantly enhanced through conductive loss and polarization relaxation.The different dielectric properties endow these composites with distinguishable attenuation ability and impedance matching.When DCA/AM weight ratio is 6.0,the optimized composite can produce good microwave absorption performance,whose strongest reflection loss intensity reaches up to-55.6 dB at 17.5 GHz and qualified absorption bandwidth covers 3.6-18.0 GHz by manipulating the thickness from 1.0 to 5.0 mm.Such a performance is superior to many conventional carbides/carbon composites.展开更多
This paper reports the chemical synthesis of tungsten carbide/cobalt (WC/Co) nanocomposite powders via a unique chemical processing technique, involving the using of all water soluble solution of W-, Co- and C-precurs...This paper reports the chemical synthesis of tungsten carbide/cobalt (WC/Co) nanocomposite powders via a unique chemical processing technique, involving the using of all water soluble solution of W-, Co- and C-precursors. In the actual synthesis, large quantities of commercial-scale WC-Co nanocomposite powders are made by an unique combination of converting a molecularly mixed W-, Co-, and C-containing solutions into a complex inorganic polymeric powder precursor, conversion of the inorganic polymeric precursor powder into a W-Co-C-O containing powder intermediates using a belt furnace with temperature at about 500°C - 600°C in an inert atmosphere, followed by carburization in a rotary furnace at temperature less than 1000°C in nitrogen. Liquid phase sintering technique is used to consolidate the WC/Co nanocomposite powder into sintered bulk parts. The sintered parts have excellent hardness in excess of 93 HRA, with WC grains in the order of 200 - 300 nm, while Co phase is uniformly distributed on the grain boundaries of the WC nanoparticles. We also report the presence of cobalt Co precipitates inside tungsten carbide WC nanograins in the composites of the consolidated bulk parts. EDS is used to identify the presence of these precipitates and micro-micro-diffraction technique is employed to determine the nature of these precipitates.展开更多
Large scale tungsten nanowires and tungsten nanodots are prepared in a controllable way. The preparation is based on mechanisms of chemical vapor transportation and phase transformation during the reduction of ammoniu...Large scale tungsten nanowires and tungsten nanodots are prepared in a controllable way. The preparation is based on mechanisms of chemical vapor transportation and phase transformation during the reduction of ammonium metatungstate (AMT) in H2. The AMT is first encapsulated into the hollow core of nanostructured carbon with hollow macroporous core/mesoporous shell (NC-HMC/MS) and forms nanorods, which are the precursors of both tungsten nanowires and tungsten nanodots. Just by controlling H2 flow rate and heating rate in the reduction process, the AMT nanorods could turn into nanowires (under low rate condition) or nanodots (under high rate condition). Besides, via heat treatment at 1200 ℃, the as-obtained nano-sized tungsten could convert into W2C nanorods or WC nanodots respectively. Furthermore, the diameter of the as-obtained tungsten or tungsten carbide is confined within 50 nm by the NC-HMC/MS, and no agglomeration appears in the obtained nanomaterials.展开更多
The engineblock production lines need high speed tapping with tungsten carbide taps. In the tapping process, the machining precision and the tool life of taps are directly influenced by tapping forces. And the paramet...The engineblock production lines need high speed tapping with tungsten carbide taps. In the tapping process, the machining precision and the tool life of taps are directly influenced by tapping forces. And the parameter optimization of tap structures is also correlated with the variation of tapping forces. Therefore, the study of tapping forces is necessary in developing new style taps. Several experiments about some novel carbide taps are performed on a vertical machining center by a Kistler dynamometer system in blind tapping both gray cast iron and ductile cast iron. And the variations of tapping forces are analyzed in tapping-in and tapping-out periods. It indicates that cutting forces hardly vary with the tap wear in tapping cast iron. Contrarily, tapping forces are closely correlated with the holding method. Besides, it also depends on the helix angle, the flute numbers and the plasticity of the work material to some extent.展开更多
Single crystal superalloys of AM3 with different carbon levels were prepared at withdraw rate of 50μm/s. The effect of carbon addition on the carbide morphology was investigated. It was found that there were four typ...Single crystal superalloys of AM3 with different carbon levels were prepared at withdraw rate of 50μm/s. The effect of carbon addition on the carbide morphology was investigated. It was found that there were four types of MC-type carbides, acicular, nodular, blocky, and Chinese script-type in the crystals. With an increase in carbon level, the volume fraction of carbide increased significantly while the volume fraction of eutectic decreased significantly. Furthermore, the size of carbide in high level carbon alloy became much larger.展开更多
In machining the particle reinforced aluminum based composite material with high Si content using the cobalt-cemented tungsten carbide micro cutting tools, diamond like carbon (DLC) films are deposited on cobalt-cem...In machining the particle reinforced aluminum based composite material with high Si content using the cobalt-cemented tungsten carbide micro cutting tools, diamond like carbon (DLC) films are deposited on cobalt-cemented tungsten carbide micro-drills with two-step pretreatment method. Characteristics of DLC coated tools are investigated in bias-enhanced HFCVD system with the optimized hot filament arrangement. The optimization deposition technology is obtained and the wear mechanism of cutting tools is analyzed. The drilling performance of DLC coated tools is verified by the experiments of cutting particle reinforced aluminum based composite material (Si 15% in volume) compared with uncoated ones. Experimental results show that the two-step pretreatment method is appropriate for complex shaped cemented carbide substrates and ensures the good adhesive strength between the diamond film and the substrate. The cutting performance of DLC coated tool is enhanced 10 times when machining the Si particle reinforced aluminum based metal matrix composite compared with that of uncoated ones under the same cutting conditions.展开更多
N-wells are created by P+ ion implantation into Si-faced p-type 4H-SiC epilayer. Ti and Ni are deposited in sequence on the surface of the active regions. Ni2Si is identified as the dominant phase by X-ray diffracti...N-wells are created by P+ ion implantation into Si-faced p-type 4H-SiC epilayer. Ti and Ni are deposited in sequence on the surface of the active regions. Ni2Si is identified as the dominant phase by X-ray diffraction (XRD) analysis after metallization annealing. An amorphous C film at the Ni2 Si/SiC interface is confirmed by an X-ray energy-dispersive spectrometer (XEDS). The Ni2Si and amorphous C film are etched away selectively,followed by deposition of new metal films without annealing. Measurement of the current-voltage characteristics shows that the contacts are still ohmic after the Ni2 Si and amorphous C film are replaced by new metal films. The sheet resistance Rsh of the implanted layers decreases from 975 to 438f2/D, because carbon vacancies (Vc) appeared during annealing,which act as donors for electrons in SiC.展开更多
High-purity ultrafine W or WC powder was prepared via a two-step process composed of the carbothermic pre-reduction of WO2.9 and the following deep reduction with H2 or carbonization with CH4+H2 mixed gases. The effec...High-purity ultrafine W or WC powder was prepared via a two-step process composed of the carbothermic pre-reduction of WO2.9 and the following deep reduction with H2 or carbonization with CH4+H2 mixed gases. The effects of C/WO2.9 molar ratio and temperature on phase composition, morphology, particle size, and impurity content of products were investigated. The results revealed that when the C/WO2.9ratio was in the range from 2.1:1 to 2.5:1, the carbothermic pre-reduction products consisted of W and a small amount of WO2. With changing C/WO2.9 ratio from 2.1:1 to 2.5:1, the particle sizes were gradually decreased. In order to prepare ultrafine W or WC powder, a relatively high C/WO2.9 ratio and a lower reaction temperature at this stage were preferred. After the second reaction, the final products of ultrafine W and WC powders with a high purity could be obtained, respectively.展开更多
Carbon nanotubes(CNTs) have shown as unique nanoreactors to tune the catalytic activity of confined nano-catalysts. Here we report that the catalytic performance of molybdenum carbide nanoparticles(MoC_x NPs) for the ...Carbon nanotubes(CNTs) have shown as unique nanoreactors to tune the catalytic activity of confined nano-catalysts. Here we report that the catalytic performance of molybdenum carbide nanoparticles(MoC_x NPs) for the hydrogen evolution reaction(HER) process can be enhanced by encapsulation within single-walled carbon nanotubes(SWNTs) with a diameter of 1–2 nm. The catalyst with MoC_x NPs located on the interior surface of SWNTs(MoCx@SWNTs) exhibits a lower onset over-potential and a smaller Tafel slope than the one with MoC_x NPs attached on the exterior surface(MoCx/SWNTs). This is likely attributed to the much smaller particle size and the more reduced states of the confined MoC_x NPs, as well as the larger specific surface area of MoCx@SWNTs compared with Mo Cx/SWNTs. In addition, the electronic structure of the confined MoC_x NPs might be modified by the confinement effects of SWNTs, and hence the adsorption free energy of H atoms on the confined MoC_x NPs, which could also contribute to their higher performance. These results suggest that the SWNTs can be further explored for constructing novel catalysts with beneficial catalytic performance.展开更多
The coatings of W-Ti carbides on the surface of diamond was obtained by using physical vapor deposition (PVD), during which WO3 powders pre-treated with hydrofluoric acid were reduced by titanium hydride in vacuum at ...The coatings of W-Ti carbides on the surface of diamond was obtained by using physical vapor deposition (PVD), during which WO3 powders pre-treated with hydrofluoric acid were reduced by titanium hydride in vacuum at 850 ℃. The resistance of diamond to corrosion at high-temperature was investigated. The formation of W-Ti carbides on the surface of diamond was verified by X-ray diffraction analysis, the interface state between diamond and matrix in metaLbase diamond composite was observed by scanning electron microscope. The results showed that the carbide coating is easy to be formed at low deposition temperature on the surface of diamond, while the resistance of diamond to corrosion at highutemperature and the strength of bonding between diarnond and metal matrix are effectively improved.展开更多
Experimental results on the primary carburization reaction between the tungsten powder and methane in the induction plasma, and the secondary carburization of the deposit on substrate at high temperature are reported....Experimental results on the primary carburization reaction between the tungsten powder and methane in the induction plasma, and the secondary carburization of the deposit on substrate at high temperature are reported. Optical microscopy and scanning electron microscopy were used to examine the microstructures of starting tungsten powder, carburized powder, and deposit. X-ray diffraction analysis, thermal gravimetric analysis and microhardness measurement were used to characterize the structures and properties of the powder and the deposit. It is found that the primary carburization reaction in the induction plasma starts from the surface of tungsten particles when the particles are melted. Tungsten particles are partially carburized inside the reactive plasma. Complete carburization is achieved through the secondary carburization reaction of the deposit on substrate at high temperature.展开更多
Tungsten carbide deposit was made directly from tungsten metal powder through the reaction with methane in radio frequency induction plasma. Effect of major process parameters on the induction plasma reactive depositi...Tungsten carbide deposit was made directly from tungsten metal powder through the reaction with methane in radio frequency induction plasma. Effect of major process parameters on the induction plasma reactive deposition of tungsten carbide was studied by optical microscopy, scanning electron microscopy, X ray diffraction analysis, water displacement method, and microhardness test. The results show that methane flow rate, powder feed rate, particle size, reaction chamber pressure and deposition distance have significant influences on the phase composition, density, and microhardness of the deposit. Extra carbon is necessary to ensure the complete conversion of tungsten metal into the carbide.展开更多
Nanosized tungsten carbide was synthesized from phenol formaldehyde resin (PF) coated tungsten precursors. The process has three steps in which nanosized tungsten particles were first coated with PF, then the precur...Nanosized tungsten carbide was synthesized from phenol formaldehyde resin (PF) coated tungsten precursors. The process has three steps in which nanosized tungsten particles were first coated with PF, then the precursors were carburized at 950℃, and finally the carburized powders were treated in flowing wet hydrogen atmosphere at 940℃ to remove the uncombined carbon. The obtained powders were characterized using X-ray diffraction analysis (XRD), field-emission scanning electron microscopy (FESEM), small angle X-ray scattering (SAXS), and combustion-gas-volume method. The results indicated that single-phase WC could be synthesized using excessive PF as carburizer at a much lower temperature compared with using mixed carbon black. After wet hydrogen treating, the mean size of the obtained WC particles was 94.5 nm and the total carbon content was 6.18 wt.%.展开更多
Expansion of the pressure range of Kawai-type multi-anvil presses (KMAPs) with tungsten carbide (WC) anvils is called for, especially in the field of Earth science. However, no significant progress in pressure generat...Expansion of the pressure range of Kawai-type multi-anvil presses (KMAPs) with tungsten carbide (WC) anvils is called for, especially in the field of Earth science. However, no significant progress in pressure generation has been made for 40 years. Our recent studies have expanded the pressure generation of a KMAP with WC anvils to 65 GPa, which is the world record for high-pressure generation in this device and is more than 2.5 times higher than conventional pressure generation. We have also successfully generated pressures of about 50 GPa at high temperatures. This work reviews our recently developed technology for high-pressure generation. High-pressure generation at room temperature and at high temperature was attained by integration of the following techniques:① a precisely aligned guideblock system,② a high degree of hardness of the second-stage anvils,③ tapering of the second-stage anvil faces,④ a high-pressure cell consisting of materials with a high bulk modulus, and ⑤ high thermal insulation of the furnace. Our high-pressure technology will facilitate investigation of the phase stability and physical properties of materials under the conditions of the upper part of the lower mantle, and will permit the synthesis and characterization of novel materials.展开更多
Nanocrystalline tungsten carbide thin films were fabricated on graphite substrates by plasma enhanced chemical vapor deposition (PECVD) at H2 and Ar atmosphere, using WF6 and CH4 as precursors. The crystal phase, st...Nanocrystalline tungsten carbide thin films were fabricated on graphite substrates by plasma enhanced chemical vapor deposition (PECVD) at H2 and Ar atmosphere, using WF6 and CH4 as precursors. The crystal phase, structure and chemical components of the films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS), respectively. The results show that the film prepared at CH4/WF6 concentration ratio of 20 and at 800℃ is composed of spherical particles with a diameter of 20-35 nm. Electrochemical investigations show that the electrochemical real surface area of electrode of the film is large, and the electrode of the film exhibits higher electro-catalytic activity in the reaction of methanol oxidation. The designated constant current of the film catalyst is 123.6 mA/cm^2 in the mixture solution of H2SO4 and CH3OH at the concentration of 0.5 and 2.0 mol/L at 70℃, and the designated constant potential is only 0.306 V (vs SCE).展开更多
WC-Co alloys have enjoyed great practical significance owing to their excellent properties during the past decades.Despite the advantages,however,recently there have been concerns about the challenges associated with ...WC-Co alloys have enjoyed great practical significance owing to their excellent properties during the past decades.Despite the advantages,however,recently there have been concerns about the challenges associated with the use of Co,i.e.price instability,toxicity and properties degeneration,which necessitates the fabrication of binderless tungsten carbide(BTC).On the other hand,BTC or BTC composites,none of them,to date has been commercialized and produced on an industrial scale,but only used to a limited extent for specialized applications,such as mechanical seals undergoing high burthen as well as high temperature electrical contacts.There are two challenges in developing BTC:fully densifying the sintered body together with achieving a high toughness.Thus,this review applies towards comprehensively summarize the current knowledge of sintering behavior,microstructure,and mechanical properties of BTC,highlighting the densification improving strategies as well as toughening methods,so as to provide reference for those who would like to enhance the performance of BTC with better reliability advancing them to further wide applications and prepare the material in a way that is environment friendly,harmless to human health and low in production cost.This paper shows that the fabrication of highly dense and high-performance BTC is economically and technically feasible.The properties of BTC can be tailored by judiciously selecting the chemical composition coupled with taking into careful account the effects of processing techniques and parameters.展开更多
Ultrafine or nano-sized of tungsten carbide(WC)is the key material to prepare ultrafine grained cemented carbides.In this paper,nano-sized WC powders were directly prepared by using industrial nano-needle violet tungs...Ultrafine or nano-sized of tungsten carbide(WC)is the key material to prepare ultrafine grained cemented carbides.In this paper,nano-sized WC powders were directly prepared by using industrial nano-needle violet tungsten oxide(WO2.72)as the raw material,a fluidized bed as the reactor,and CO as the carbonization gas.The relationship between particle sizes and reaction temperatures,residence times,atmospheres has been investigated systematically.In addition,the physical–chemical indexes(such as residual oxygen,total carbon and free carbon)of the products were measured.The results indicated that the particle size of WC increased with the increase of temperature from 800 to 950°C.As the residence time increased,the particle size decreased gradually,and then increased due to slight sintering.The introduction of hydrogen reduced the carbonization rate,and is not beneficial to obtaining nano-sized WC.Products that satisfy the standard were obtained when WO2.72 reacted with CO at 850°C,900°C and 950°C for 3.0 h,2.5 h and 2.0 h,respectively.The particle sizes of the three samples calculated from the specific surface area were 46.4 nm,53.2 nm and 52.1 nm,respectively.展开更多
基金the support of the Joint Funds of the Natural Science Foundation of Hubei Province(2022CFD130)the Technology Innovation Project of Hubei Province(Key Program,No.2023BEB010)+1 种基金the Key Research and Development Program of Hubei Province(No.2021BGD015)the Knowledge Innovation Project of Wuhan(No.2022010801010259).
文摘An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of mineral powder as the thermal conductive filler to prepare a new type of asphalt concrete and improve the efficiency of electrothermal snow and ice melting systems accordingly.The thermal conductivity of asphalt concrete prepared with different thermally conductive fillers was tested by a transient plane source method,and the related performances were measured.Then the temperature rise rate and surface temperature were studied through field heating tests.Finally,the actual ice melting efficiency of the thermally conductive asphalt concrete was evaluated using an effective electrothermal system.As shown by the experimental results,the composite made of SiC powder and carbon fiber has a high thermal conductivity.When SiC replaces mineral powder,the thermal conductivity of the asphalt mixture increases first and then decreases with the increase of carbon fiber content.In the present study,in particular,the thermal conductivity attained a peak when the carbon fiber content was 0.2%of the aggregate mass.
基金funded by the Shanghai Academic/Technology Research Leader(Project No.21XD1432000).
文摘The coating layers of Tri-structural Isotropic Particles(TRISO)serve to protect the kernel and act as barriers to fission products.Sintering aids in the silicon carbide matrix variably react with TRISO coating layers,leading to the destruction of the coating layers.Investigating how carbon content affects element diffusion in silicon carbide-based TRISO composite fuel is of great significance for predicting reactor safety.In this study,silicon carbide-based TRISO composite fuels with different carbon contents were prepared by adding varying amounts of phenolic resin to the silicon carbide matrix.X-ray Diffraction(XRD)and Scanning Electron Microscopy(SEM)were employed to characterize the phase composition,morphology,and microstructure of the composite fuels.The elemental content in each coating layer of TRISO was quantified using Energy-Dispersive X-ray Spectroscopy(EDS).The results demonstrated that the addition of phenolic resin promoted the uniform distribution of sintering aids in the silicon carbide matrix.The atomic percentage(at.%)of aluminum(Al)in the pyrolytic carbon layer of the TRISO particles reached its lowest value of 0.55%when the phenolic resin addition was 1%.This is because the addition of phenolic resin caused the Al and silicon(Si)in the matrix to preferentially react with the carbon in the phenolic resin to form a metastable liquid phase,rather than preferentially consuming the pyrolytic carbon in the outer coating layer of the TRISO particles.The findings suggest that carbon addition through phenolic resin incorporation can effectively mitigate the deleterious reactions between the TRISO coating layers and sintering aids,thereby enhancing the durability and safety of silicon carbide-based TRISO composite fuels.
基金supported by National Natural Science Foundation of China(21676065 and 21776053)。
文摘Carbides/carbon composites are emerging as a new kind of binary dielectric systems with good microwave absorption performance.Herein,we obtain a series of tungsten carbide/carbon composites through a simple solvent-free strategy,where the solid mixture of dicyandiamide(DCA)and ammonium metatungstate(AM)is employed as the precursor.Ultrafine cubic WC1-x nanoparticles(3-4 nm)are in situ generated and uniformly dispersed on carbon nanosheets.This configuration overcomes some disadvantages of conventional carbides/carbon composites and is greatly helpful for electromagnetic dissipation.It is found that the weight ratio of DCA to AM can regulate chemical composition of these composites,while less impact on the average size of WC1-x nanoparticles.With the increase in carbon nanosheets,the relative complex permittivity and dielectric loss ability are constantly enhanced through conductive loss and polarization relaxation.The different dielectric properties endow these composites with distinguishable attenuation ability and impedance matching.When DCA/AM weight ratio is 6.0,the optimized composite can produce good microwave absorption performance,whose strongest reflection loss intensity reaches up to-55.6 dB at 17.5 GHz and qualified absorption bandwidth covers 3.6-18.0 GHz by manipulating the thickness from 1.0 to 5.0 mm.Such a performance is superior to many conventional carbides/carbon composites.
文摘This paper reports the chemical synthesis of tungsten carbide/cobalt (WC/Co) nanocomposite powders via a unique chemical processing technique, involving the using of all water soluble solution of W-, Co- and C-precursors. In the actual synthesis, large quantities of commercial-scale WC-Co nanocomposite powders are made by an unique combination of converting a molecularly mixed W-, Co-, and C-containing solutions into a complex inorganic polymeric powder precursor, conversion of the inorganic polymeric precursor powder into a W-Co-C-O containing powder intermediates using a belt furnace with temperature at about 500°C - 600°C in an inert atmosphere, followed by carburization in a rotary furnace at temperature less than 1000°C in nitrogen. Liquid phase sintering technique is used to consolidate the WC/Co nanocomposite powder into sintered bulk parts. The sintered parts have excellent hardness in excess of 93 HRA, with WC grains in the order of 200 - 300 nm, while Co phase is uniformly distributed on the grain boundaries of the WC nanoparticles. We also report the presence of cobalt Co precipitates inside tungsten carbide WC nanograins in the composites of the consolidated bulk parts. EDS is used to identify the presence of these precipitates and micro-micro-diffraction technique is employed to determine the nature of these precipitates.
文摘Large scale tungsten nanowires and tungsten nanodots are prepared in a controllable way. The preparation is based on mechanisms of chemical vapor transportation and phase transformation during the reduction of ammonium metatungstate (AMT) in H2. The AMT is first encapsulated into the hollow core of nanostructured carbon with hollow macroporous core/mesoporous shell (NC-HMC/MS) and forms nanorods, which are the precursors of both tungsten nanowires and tungsten nanodots. Just by controlling H2 flow rate and heating rate in the reduction process, the AMT nanorods could turn into nanowires (under low rate condition) or nanodots (under high rate condition). Besides, via heat treatment at 1200 ℃, the as-obtained nano-sized tungsten could convert into W2C nanorods or WC nanodots respectively. Furthermore, the diameter of the as-obtained tungsten or tungsten carbide is confined within 50 nm by the NC-HMC/MS, and no agglomeration appears in the obtained nanomaterials.
文摘The engineblock production lines need high speed tapping with tungsten carbide taps. In the tapping process, the machining precision and the tool life of taps are directly influenced by tapping forces. And the parameter optimization of tap structures is also correlated with the variation of tapping forces. Therefore, the study of tapping forces is necessary in developing new style taps. Several experiments about some novel carbide taps are performed on a vertical machining center by a Kistler dynamometer system in blind tapping both gray cast iron and ductile cast iron. And the variations of tapping forces are analyzed in tapping-in and tapping-out periods. It indicates that cutting forces hardly vary with the tap wear in tapping cast iron. Contrarily, tapping forces are closely correlated with the holding method. Besides, it also depends on the helix angle, the flute numbers and the plasticity of the work material to some extent.
基金Project(51201130)supported by the National Natural Science Foundation of ChinaProject(2012JQ6005)supported by the Natural Science Basic Research Plan in Shaanxi Province of China+2 种基金Project(SKLSP201226)supported by the Fund of the State Key Laboratory of Solidification Processing in NWPU,ChinaProject(11JK0805)supported by Scientific Research Program Funded by Shaanxi Provincial Education Department,ChinaProject(2010CV631201)supported by the National Basic Research Program of China
文摘Single crystal superalloys of AM3 with different carbon levels were prepared at withdraw rate of 50μm/s. The effect of carbon addition on the carbide morphology was investigated. It was found that there were four types of MC-type carbides, acicular, nodular, blocky, and Chinese script-type in the crystals. With an increase in carbon level, the volume fraction of carbide increased significantly while the volume fraction of eutectic decreased significantly. Furthermore, the size of carbide in high level carbon alloy became much larger.
文摘In machining the particle reinforced aluminum based composite material with high Si content using the cobalt-cemented tungsten carbide micro cutting tools, diamond like carbon (DLC) films are deposited on cobalt-cemented tungsten carbide micro-drills with two-step pretreatment method. Characteristics of DLC coated tools are investigated in bias-enhanced HFCVD system with the optimized hot filament arrangement. The optimization deposition technology is obtained and the wear mechanism of cutting tools is analyzed. The drilling performance of DLC coated tools is verified by the experiments of cutting particle reinforced aluminum based composite material (Si 15% in volume) compared with uncoated ones. Experimental results show that the two-step pretreatment method is appropriate for complex shaped cemented carbide substrates and ensures the good adhesive strength between the diamond film and the substrate. The cutting performance of DLC coated tool is enhanced 10 times when machining the Si particle reinforced aluminum based metal matrix composite compared with that of uncoated ones under the same cutting conditions.
文摘N-wells are created by P+ ion implantation into Si-faced p-type 4H-SiC epilayer. Ti and Ni are deposited in sequence on the surface of the active regions. Ni2Si is identified as the dominant phase by X-ray diffraction (XRD) analysis after metallization annealing. An amorphous C film at the Ni2 Si/SiC interface is confirmed by an X-ray energy-dispersive spectrometer (XEDS). The Ni2Si and amorphous C film are etched away selectively,followed by deposition of new metal films without annealing. Measurement of the current-voltage characteristics shows that the contacts are still ohmic after the Ni2 Si and amorphous C film are replaced by new metal films. The sheet resistance Rsh of the implanted layers decreases from 975 to 438f2/D, because carbon vacancies (Vc) appeared during annealing,which act as donors for electrons in SiC.
基金Project(51725401)supported by the National Natural Science Foundation of China。
文摘High-purity ultrafine W or WC powder was prepared via a two-step process composed of the carbothermic pre-reduction of WO2.9 and the following deep reduction with H2 or carbonization with CH4+H2 mixed gases. The effects of C/WO2.9 molar ratio and temperature on phase composition, morphology, particle size, and impurity content of products were investigated. The results revealed that when the C/WO2.9ratio was in the range from 2.1:1 to 2.5:1, the carbothermic pre-reduction products consisted of W and a small amount of WO2. With changing C/WO2.9 ratio from 2.1:1 to 2.5:1, the particle sizes were gradually decreased. In order to prepare ultrafine W or WC powder, a relatively high C/WO2.9 ratio and a lower reaction temperature at this stage were preferred. After the second reaction, the final products of ultrafine W and WC powders with a high purity could be obtained, respectively.
基金financially supported by the National Natural Science Foundation of China (No. 21425312, 21688102, 21621063, and 21573224)
文摘Carbon nanotubes(CNTs) have shown as unique nanoreactors to tune the catalytic activity of confined nano-catalysts. Here we report that the catalytic performance of molybdenum carbide nanoparticles(MoC_x NPs) for the hydrogen evolution reaction(HER) process can be enhanced by encapsulation within single-walled carbon nanotubes(SWNTs) with a diameter of 1–2 nm. The catalyst with MoC_x NPs located on the interior surface of SWNTs(MoCx@SWNTs) exhibits a lower onset over-potential and a smaller Tafel slope than the one with MoC_x NPs attached on the exterior surface(MoCx/SWNTs). This is likely attributed to the much smaller particle size and the more reduced states of the confined MoC_x NPs, as well as the larger specific surface area of MoCx@SWNTs compared with Mo Cx/SWNTs. In addition, the electronic structure of the confined MoC_x NPs might be modified by the confinement effects of SWNTs, and hence the adsorption free energy of H atoms on the confined MoC_x NPs, which could also contribute to their higher performance. These results suggest that the SWNTs can be further explored for constructing novel catalysts with beneficial catalytic performance.
文摘The coatings of W-Ti carbides on the surface of diamond was obtained by using physical vapor deposition (PVD), during which WO3 powders pre-treated with hydrofluoric acid were reduced by titanium hydride in vacuum at 850 ℃. The resistance of diamond to corrosion at high-temperature was investigated. The formation of W-Ti carbides on the surface of diamond was verified by X-ray diffraction analysis, the interface state between diamond and matrix in metaLbase diamond composite was observed by scanning electron microscope. The results showed that the carbide coating is easy to be formed at low deposition temperature on the surface of diamond, while the resistance of diamond to corrosion at highutemperature and the strength of bonding between diarnond and metal matrix are effectively improved.
文摘Experimental results on the primary carburization reaction between the tungsten powder and methane in the induction plasma, and the secondary carburization of the deposit on substrate at high temperature are reported. Optical microscopy and scanning electron microscopy were used to examine the microstructures of starting tungsten powder, carburized powder, and deposit. X-ray diffraction analysis, thermal gravimetric analysis and microhardness measurement were used to characterize the structures and properties of the powder and the deposit. It is found that the primary carburization reaction in the induction plasma starts from the surface of tungsten particles when the particles are melted. Tungsten particles are partially carburized inside the reactive plasma. Complete carburization is achieved through the secondary carburization reaction of the deposit on substrate at high temperature.
文摘Tungsten carbide deposit was made directly from tungsten metal powder through the reaction with methane in radio frequency induction plasma. Effect of major process parameters on the induction plasma reactive deposition of tungsten carbide was studied by optical microscopy, scanning electron microscopy, X ray diffraction analysis, water displacement method, and microhardness test. The results show that methane flow rate, powder feed rate, particle size, reaction chamber pressure and deposition distance have significant influences on the phase composition, density, and microhardness of the deposit. Extra carbon is necessary to ensure the complete conversion of tungsten metal into the carbide.
基金This Work was financially supported by Beijing Municipal Science & Technology Commission(No.2052015).
文摘Nanosized tungsten carbide was synthesized from phenol formaldehyde resin (PF) coated tungsten precursors. The process has three steps in which nanosized tungsten particles were first coated with PF, then the precursors were carburized at 950℃, and finally the carburized powders were treated in flowing wet hydrogen atmosphere at 940℃ to remove the uncombined carbon. The obtained powders were characterized using X-ray diffraction analysis (XRD), field-emission scanning electron microscopy (FESEM), small angle X-ray scattering (SAXS), and combustion-gas-volume method. The results indicated that single-phase WC could be synthesized using excessive PF as carburizer at a much lower temperature compared with using mixed carbon black. After wet hydrogen treating, the mean size of the obtained WC particles was 94.5 nm and the total carbon content was 6.18 wt.%.
基金supported by an Alexander von Humboldt Postdoctoral Fellowship to T.Ishiifunding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (787527)
文摘Expansion of the pressure range of Kawai-type multi-anvil presses (KMAPs) with tungsten carbide (WC) anvils is called for, especially in the field of Earth science. However, no significant progress in pressure generation has been made for 40 years. Our recent studies have expanded the pressure generation of a KMAP with WC anvils to 65 GPa, which is the world record for high-pressure generation in this device and is more than 2.5 times higher than conventional pressure generation. We have also successfully generated pressures of about 50 GPa at high temperatures. This work reviews our recently developed technology for high-pressure generation. High-pressure generation at room temperature and at high temperature was attained by integration of the following techniques:① a precisely aligned guideblock system,② a high degree of hardness of the second-stage anvils,③ tapering of the second-stage anvil faces,④ a high-pressure cell consisting of materials with a high bulk modulus, and ⑤ high thermal insulation of the furnace. Our high-pressure technology will facilitate investigation of the phase stability and physical properties of materials under the conditions of the upper part of the lower mantle, and will permit the synthesis and characterization of novel materials.
基金This work was supported by the National Natural Scmnce Foundation of China(Grant Nos.20276069,20476097)
文摘Nanocrystalline tungsten carbide thin films were fabricated on graphite substrates by plasma enhanced chemical vapor deposition (PECVD) at H2 and Ar atmosphere, using WF6 and CH4 as precursors. The crystal phase, structure and chemical components of the films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS), respectively. The results show that the film prepared at CH4/WF6 concentration ratio of 20 and at 800℃ is composed of spherical particles with a diameter of 20-35 nm. Electrochemical investigations show that the electrochemical real surface area of electrode of the film is large, and the electrode of the film exhibits higher electro-catalytic activity in the reaction of methanol oxidation. The designated constant current of the film catalyst is 123.6 mA/cm^2 in the mixture solution of H2SO4 and CH3OH at the concentration of 0.5 and 2.0 mol/L at 70℃, and the designated constant potential is only 0.306 V (vs SCE).
基金the China Postdoctoral Science Foundation (No. 2019M663685)
文摘WC-Co alloys have enjoyed great practical significance owing to their excellent properties during the past decades.Despite the advantages,however,recently there have been concerns about the challenges associated with the use of Co,i.e.price instability,toxicity and properties degeneration,which necessitates the fabrication of binderless tungsten carbide(BTC).On the other hand,BTC or BTC composites,none of them,to date has been commercialized and produced on an industrial scale,but only used to a limited extent for specialized applications,such as mechanical seals undergoing high burthen as well as high temperature electrical contacts.There are two challenges in developing BTC:fully densifying the sintered body together with achieving a high toughness.Thus,this review applies towards comprehensively summarize the current knowledge of sintering behavior,microstructure,and mechanical properties of BTC,highlighting the densification improving strategies as well as toughening methods,so as to provide reference for those who would like to enhance the performance of BTC with better reliability advancing them to further wide applications and prepare the material in a way that is environment friendly,harmless to human health and low in production cost.This paper shows that the fabrication of highly dense and high-performance BTC is economically and technically feasible.The properties of BTC can be tailored by judiciously selecting the chemical composition coupled with taking into careful account the effects of processing techniques and parameters.
基金the financial support from the National Natural Science Foundation of China(Grant No.21878305)。
文摘Ultrafine or nano-sized of tungsten carbide(WC)is the key material to prepare ultrafine grained cemented carbides.In this paper,nano-sized WC powders were directly prepared by using industrial nano-needle violet tungsten oxide(WO2.72)as the raw material,a fluidized bed as the reactor,and CO as the carbonization gas.The relationship between particle sizes and reaction temperatures,residence times,atmospheres has been investigated systematically.In addition,the physical–chemical indexes(such as residual oxygen,total carbon and free carbon)of the products were measured.The results indicated that the particle size of WC increased with the increase of temperature from 800 to 950°C.As the residence time increased,the particle size decreased gradually,and then increased due to slight sintering.The introduction of hydrogen reduced the carbonization rate,and is not beneficial to obtaining nano-sized WC.Products that satisfy the standard were obtained when WO2.72 reacted with CO at 850°C,900°C and 950°C for 3.0 h,2.5 h and 2.0 h,respectively.The particle sizes of the three samples calculated from the specific surface area were 46.4 nm,53.2 nm and 52.1 nm,respectively.