期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of Reaction Temperature and Pressure on the Metathesis Reaction between Ethene and 2-Butene to Propene on the WO_3/Al_2O_3-HY Catalyst 被引量:2
1
作者 Shengjun Huang Shenglin Liu +3 位作者 Wenjie Xin Sujuan Xie Qingxia Wang Longya Xu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第2期93-99,共7页
Effect of reaction temperature and pressure on the metathesis reaction between ethene and 2-butene to propene was studied on the WO3/γ-Al2O3-HY catalyst. The activity is found to increase with elevated temperature an... Effect of reaction temperature and pressure on the metathesis reaction between ethene and 2-butene to propene was studied on the WO3/γ-Al2O3-HY catalyst. The activity is found to increase with elevated temperature and reaches a plateau at 150-240 ℃. After that, the activity undergoes a remarkable decrement at too high temperature. The effect of temperature is elucidated by the oxidation state of tungsten species. The evaluation results also indicate that the stability is dependent on this reaction parameter. Medium pressure (0.5-0.8 MPa) is favorable for stability, while atmospheric pressure or too high pressure (〉1.0 MPa) deteriorates the stability. For explanation, UV Vis, FT-IR, O2-TPO, and TG techniques are used to characterize the spent catalysts. 展开更多
关键词 METATHESIS tungsten oxide catalyst temperature PRESSURE ETHENE 2-BUTENE PROPENE
下载PDF
Nanostructure and Formation Mechanism of Pt-WO_3/C Nanocatalyst by Ethylene Glycol Method
2
作者 吴锋 吴川 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第3期377-383,共7页
Pt-WO3 nanoparticles uniformly dispersed on Vulcan XC-72R carbon black were prepared by an ethylene glycol method.The morphology,composition,nanostructure,electrochemical characteristics and electrocatalytic activity ... Pt-WO3 nanoparticles uniformly dispersed on Vulcan XC-72R carbon black were prepared by an ethylene glycol method.The morphology,composition,nanostructure,electrochemical characteristics and electrocatalytic activity were characterized,and the formation mechanism was investigated.The average particle size was 2.3 nm,the same as that of Pt/C catalyst.The W/Pt atomic ratio was 1/20,much lower than the design of 1/3.The deposition of WO3·xH2O nanoparticles on Vulcan XC-72R carbon black was found to be very difficult by TEM.From XPS and XRD,the Pt nanoparticles were formed in the colloidal solution of Na2WO4,the EG insoluble Na2WO4 resulted in the decreased relative crystallinity and increased crystalline lattice constant compared with those of Pt/C catalyst and,subsequently,the higher specific electrocatalytic activity as determined by CV.The Pt-mass and Pt-electrochemically-active-specific-surface-area based anodic peak current densities for ethanol oxidation were 422.2 mA·mg-1Pt and 0.43 mA·cm-2Pt,1.2 and 1.1 times higher than those of Pt/C catalyst,respectively. 展开更多
关键词 Pt-based catalyst tungsten oxide ethylene glycol method fuel cell
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部