期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Geological characteristics and mineralization setting of the Zhuxi tungsten(copper) polymetallic deposit in the Eastern Jiangnan Orogen 被引量:25
1
作者 CHEN GuoHua SHU LiangShu +2 位作者 SHU LiMin ZHANG Cheng OUYANG YongPeng 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第4期803-823,共21页
The Zhuxi ore deposit is a super-large scheelite(copper) polymetallic deposit discovered in recent years. It grew above copper/tungsten-rich Neoproterozoic argilloarenaceous basement rocks and was formed in the contac... The Zhuxi ore deposit is a super-large scheelite(copper) polymetallic deposit discovered in recent years. It grew above copper/tungsten-rich Neoproterozoic argilloarenaceous basement rocks and was formed in the contact zone between Yanshanian granites and Carboniferous-Permian limestone. Granites related to this mineralization mainly include equigranular, middle- to coarse-grained granites and granitic porphyries. There are two mineralization types: skarn scheelite(copper) and granite scheelite mineralization. The former is large scale and has a high content of scheelite, whereas the latter is small scale and has a low content of scheelite. In the Taqian-Fuchun Basin, its NW boundary is a thrust fault, and the SE boundary is an angular unconformity with Proterozoic basement. In Carboniferous-Permian rock assemblages, the tungsten and copper contents in the limestone are both very high. The contents of major elements in granitoids do not differ largely between the periphery and the inside of the Zhuxi ore deposit. In both areas, the values of the aluminum saturation index are A/CNK>1.1, and the rocks are classified as potassium-rich strongly peraluminous granites. In terms of trace elements, compared to granites on the periphery of the Zhuxi ore deposit, the granites inside the Zhuxi ore deposit have smaller d Eu values, exhibit a significantly more negative Eu anomaly, are richer in Rb, U, Ta, Pb and Hf, and are more depleted in Ba, Ce, Sr, La and Ti, which indicates that they are highly differentiated S-type granites with a high degree of evolution. Under the influence of fluids, mineralization of sulfides is evident within massive rock formations inside the Zhuxi ore deposit, and the mean SO_3 content is 0.2%. Compared to peripheral rocks, the d Eu and total rare earth element(REE) content of granites inside the Zhuxi ore deposit are both lower, indicating a certain evolutionary inheritance relationship between the granites on the periphery and the granites inside the Zhuxi ore deposit. For peripheral and ore district plutons, U-Pb zircon dating shows an age range of 152–148 Ma. In situ Lu-Hf isotope analysis of zircon in the granites reveals that the calculated e_(Hf)(t) values are all negative, and the majority range from -6 to -9. The T_(DM2) values are concentrated in the range of 1.50–1.88 Ga(peak at 1.75 Ga), suggesting that the granitic magmas are derived from partial melting of ancient crust. This paper also discusses the metallogenic conditions and ore-controlling conditions of the ore district from the perspectives of mineral contents, hydrothermal alteration, and ore-controlling structures in the strata and the ore-bearing rocks. It is proposed that the Zhuxi ore deposit went through a multistage evolution, including oblique intrusion of granitic magmas, skarn mineralization, cooling and alteration, and precipitation of metal sulfides. The mineralization pattern can be summarized as "copper in the east and tungsten in the west, copper at shallow-middle depths and tungsten at deep depths, tungsten in the early stage and copper in the late stage". 展开更多
关键词 tungsten(copper) polymetallic deposit Late Mesozoic granites Carboniferous-Permian carbonate rocks Skarn mineralization Zhuxi ore deposit Eastern Jiangnan Orogen
原文传递
The use of evidential belief functions for mineral potential mapping in the Nanling belt, South China
2
作者 Yue LIU Qiuming CHENG +1 位作者 Qinglin XIA Xinqing WANG 《Frontiers of Earth Science》 SCIE CAS CSCD 2015年第2期342-354,共13页
In this study, the evidential belief functions (EBFs) were applied for mapping tungsten polymetallic potential in the Nanling belt, South China. Seven evidential layers (e.g., geological, geochemical, and geophysi... In this study, the evidential belief functions (EBFs) were applied for mapping tungsten polymetallic potential in the Nanling belt, South China. Seven evidential layers (e.g., geological, geochemical, and geophysical) related to tungsten polymetallic deposits were extracted from a multi-source geospatial database. The relationships between evidential layers and the target deposits were quantified using EBFs model. Four EBF maps (belief map, disbelief map, uncertainty map, and plausibility map) are generated by integrating seven evidential layers which provide meaningful interpretations for tungsten polymetallic potential. On the final predictive map, the study area was divided into three target zones of high potential, moderate potential, and low potential areas, among which high potential and moderate potential areas accounted for 17.8% of the total area, containing 81% of the total deposits. To evaluate the success rate accuracy, the receiver operating characteristic (ROC) curves and the area under the curves (AUC) for the belief map were calculated. The area under the curve is 0.81 which indicates that the capability for correctly classifying the areas with existing mineral deposits is satisfactory. The results of this study indicate that the EBFs were effectively used for mapping mineral potential and for managing uncertainties asso- ciated with evidential layers. 展开更多
关键词 Dempster-Shafer theory of evidence GIS uncertainty tungsten polymetallic deposit ROC curve
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部