This present study applied gas tungsten arc welding in order to join AISI 304 and AISI 201 stainless steels.The objective was to find the optimum welding condition that gave a weld bead in accordance with DIN EN ISO 2...This present study applied gas tungsten arc welding in order to join AISI 304 and AISI 201 stainless steels.The objective was to find the optimum welding condition that gave a weld bead in accordance with DIN EN ISO 25817 quality level B, pitting corrosion potential of the weld metal of not less than that of the AISI304 base metal and a ratio of delta-ferrite in austenite matrix of the weld metal of not lower than 3%.Such a ratio is a criterion widely accepted to protect the weld metal from solidification cracking. At the welding current of 75 A and by using pure argon as a shielding gas 0 to 8 vol.% and applying a welding speed in the range of 2-3.5 mm·s^(-1) was found to give a complete weld bead with an increased depthper-width ratio(promote weldability). For welding speed in the range of 3 and 3.5 mm·s^(-1)(promote corrosion resistance). Increasing the welding speed in such a range decreased the amount of delta-ferrite in the austenite matrix, and increased the pitting corrosion potential of the weld metal to be 302 mV_(SCE).This value was still lower than the pitting corrosion potential of the AISI 304 base metal. Mixing nitrogen in argon shielding gas increased the nitrogen content in the weld. The optimum condition was found when using a welding speed of 3 mm· s^(-1) and mixing 1 vol.% of nitrogen in the argon shielding gas(promote weldability and corrosion resistance). Pitted areas after potentiodynamic test were observed in the austenite in which its Cr content was relatively low.展开更多
Superior properties of maraging steels make them suitable for the fabrication of components used for military applications like missile covering, rocket motor casing and ship hulls. Welding is the main process for fab...Superior properties of maraging steels make them suitable for the fabrication of components used for military applications like missile covering, rocket motor casing and ship hulls. Welding is the main process for fabrication of these components, while the maraging steels can be fusion welded using gas tungsten arc welding(GTAW) process. All these fabricated components require longer storage life and a major problem in welds is susceptible to stress corrosion cracking(SCC). The present study is aimed at studying the SCC behaviour of MDN 250(18% Ni) steel and its welds with respect to microstructural changes. In the present study, 5.2 mm thick sheets made of MDN 250 steel in the solution annealed condition was welded using GTAW process. Post-weld heat treatments of direct ageing(480 C for 3 h), solutionizing(815 C for 1 h) followed by ageing and homogenizing(1150 C for 1 h) followed by ageing were carried out. A mixture of martensite and austenite was observed in the microstructure of the fusion zone of solutionized and direct aged welds and only martensite in as-welded condition. Homogenization and ageing treatment have eliminated reverted austenite and elemental segregation. Homogenized welds also exhibited a marginal improvement in the corrosion resistance compared to those in the as-welded, solutionized and aged condition. Constant load SCC test data clearly revealed that the failure time of homogenized weld is much longer compared to other post weld treatments, and the homogenization treatment is recommended to improve the SCC life of GTA welds of MDN 250 Maraging steel.展开更多
In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses o...In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid–solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation(LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.展开更多
The mechanical and corrosion performance of low alloy steel tubular goods depends on the microstructure obtained as a result of the combination of alloying elements and manufacturing process parameters. The basic desi...The mechanical and corrosion performance of low alloy steel tubular goods depends on the microstructure obtained as a result of the combination of alloying elements and manufacturing process parameters. The basic design philosophy for the selection of the alloying elements is ruled by the balance between the steel cost and the material performance.Following this approach the alloying sequence for the manufacturing of tubular components in oil country tubular goods(OCTG) application is generally Mn,C,r and Mo,used as substitutional elements in a total added weight concentration around 1%up to 3%.Other elements such as B,Ti,Nb and V are applied as strengthening microalloying elements forming fine precipitates. A lack of experience is found related to the use of Tungsten(W) on OCTG applications,although W is also a substitutional element that belongs to group 6 of the periodic table together with Cr and Mo.On the other hand W is widely added for steel pipes working in high temperature services such as power plant boilers,where creep resistance is needed.It is also applied for tool steels enhancing the hardness,wear resistance and cutting performance. Taken into consideration the similarity between Cr,Mo and W and the applications where W has been proven it was decided to analyze the feasibility of using W as an alternative alloying element for some OCTG applications. Another factor that drives this study is the fact that W could be a cost effective substitute of Mo,depending on the alloy market price. This paper is based on literature review and experimental activity done on laboratory steels in which 0.1%Mo was replaced by 0.2%and 0.4%W.The different findings in regards with manufacturing process considerations, material performance and the possible use of W alloyed steel for OCTG applications are summarized. (1 ) Opposed to the susceptibility shown by low carbon with high Cr-W content,hot cracks are not expected in medium C steels(0.2%-0.3%) with W addition up to 1%. (2) Microporosity-related defects could form if W <<0.4%. (3) An improvement in the oxidation resistance for typical rolling furnace atmospheres in the temperature range 1 200 - 1 340℃was detected if Mo is substituted by W. (4) Theoretically W is one half less efficient in regards with hardenability. (5) No differences were found in the grain size after austenitizing in the temperature range 920 - 1 050℃, independently on Mo and W contents. (6) Tempering resistance was similar to Mo steels and there was no effect on the cementite shape factor,which affects the performance in sour environments. (7) Both pitting and general corrosion resistance are improved by W addition.But W effectiveness in improving pitting resistance is about one half. (8) The use of W as a substitute of Mo has been proven to be feasible and it could be applied for the manufacturing of N80 or L80 OCTG steel grades as per ISO 11960/API 5CT.展开更多
Tungsten coating is considered as a promising alternative material for plasma facing materials(PFC) in future fusion devices.The electro-deposition of tungsten in Na_2WO_4-ZnO-WO_3 melt at 1173 K on low activation ste...Tungsten coating is considered as a promising alternative material for plasma facing materials(PFC) in future fusion devices.The electro-deposition of tungsten in Na_2WO_4-ZnO-WO_3 melt at 1173 K on low activation steel substrates was studied in this work.Adherent and smooth tungsten films were deposited under various pulsed current conditions.The crystal structure and microstructure of tungsten deposits were characterized by XRD,SEM and EDX techniques.The results show that pulsed current density and duty cycle have a significant influence on tungsten nucleation and electro-crystallization phenomena.Uniform and smooth tungsten coating with high purity and high adherence is obtained on low active steel substrates as cathodic current density ranges from 35 to 25 mA·cm_(-2).展开更多
2205 duplex stainless steels ( DSSs) are welded in gas tungsten arc welding (GTAW) with the addition of N2 to argon, and the desirable microstructure and properties of the joints are obtained by altering the nitro...2205 duplex stainless steels ( DSSs) are welded in gas tungsten arc welding (GTAW) with the addition of N2 to argon, and the desirable microstructure and properties of the joints are obtained by altering the nitrogen percentage in the shielding gas mixture. The mechanical properties of joints are tested with tensile and microhardness machine, and the joint micrustructure is analyzed with scanning electron microscope (SEM) and optical microscope ( OM ) , and detrimental phase precipitate is investigated with X-ray diffraction (XRD), respectively. Finally, the corrosion behaviour of joint is also evaluated. Results show that the favorable joint strength and corrosion resistance can be obtained with appropriate shielding gas mixture in GTA W. No detrimental phase precipitates in the weldment, and the joint tensile fracture obviously presents the characteristic of ductile fracture.展开更多
The microstracture, mechanical and corrosion resistance properties of 445J2 ultra pure ferritic stainless steel thin plate joints conducted by the pulsed current gas tungsten arc welding (PCGTAW) were discussed in t...The microstracture, mechanical and corrosion resistance properties of 445J2 ultra pure ferritic stainless steel thin plate joints conducted by the pulsed current gas tungsten arc welding (PCGTAW) were discussed in this paper. In order to avoid weld defects, the appropriate welding process was adjusted. The joints were subjected to optical microscopy, transverse static tensile, plastic deformation, intergranular corrosion and electrochemistry corrosion tests. The results indicated that the weld zone (WZ) is characterized with columnar grains and equiaxed grains and the heat-affected zone (HAZ) shows coarse ferrite grains due to the rapid solidification of thin plate welding. The PCGTAW joint exhibited acceptable mechanical properties and equivalent corrosion resistance properties as the base metal.展开更多
Welding defects influence the desired properties of welded joints giving fabrication experts a common problem of not being able to produce weld structures with optimal strength and quality. In this study, the fuz...Welding defects influence the desired properties of welded joints giving fabrication experts a common problem of not being able to produce weld structures with optimal strength and quality. In this study, the fuzzy logic system was employed to predict welding tensile strength. 30 sets of welding experiments were conducted and tensile strength data was collected which were converted from crisp variables into fuzzy sets. The result showed that the fuzzy logic tool is a highly effective tool for predicting tensile strength present in TIG mild steel weld having a coefficient of determination value of 99%.展开更多
FSW and TIG were conducted on 316L stainless steel.Variation during microstructure and properties in joints obtained by different welding methods was studied.The results show that the effect of severe mechanical stirr...FSW and TIG were conducted on 316L stainless steel.Variation during microstructure and properties in joints obtained by different welding methods was studied.The results show that the effect of severe mechanical stirring and intense plastic deformation creat a fine recrystallized grain in the welding joint during FSW.As for TIG,the temperature of welding joint exceeds the melting point of welded material itself.The entire welding process belongs to the solidification of a small molten pool;and the microstructure of the joint takes on a typical casting structure.When the welding parameters were selected appropriately,the average ultimate tensile strength of FSW joints can reach 493 MPa,which is 83.6%of base metal;the average elongation is 52.1%of base metal.The average ultimate tensile strength of TIG joints is 475 MPa, which is 80.5%of base metal;the average elongation is 40.8%of base metal.The tensile test of FSW joints is superior to the TIG joints.The microhardness of FSW joint compared to base metal and TIG joint having a significant improvement,which arel95.5 HV,159.7 HV and 160.7 HV,respectively;grain refinement strengthening plays an important role in enhancing the microhardness.The electrochemical corrosion tests show that the joint of FSW 316L austenitic stainless steel has a good corrosion resistance.展开更多
High nitrogen stainless steel(HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grad...High nitrogen stainless steel(HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance.Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poor mechanical properties.The above problems can be overcome by proper selection and procedure of joining process. In the present work, an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel. Shielded metal arc welding(SMAW), gas tungsten arc welding(GTAW), electron beam welding(EBW) and friction stir welding(FSW) processes were used in the present work. Optical microscopy, scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes. Hardness, tensile and bend tests were performed to evaluate the mechanical properties of welds. The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW. Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds. Discontinuous ferrite network in austenite matrix was observed in electron beam welds.Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds.Improved mechanical properties are obtained in friction stir welds when compared to fusion welds. This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains.展开更多
基金the Thai Government scholarship given via Rajamangala University of Technology Krungthep (UTK), Bangkok, Thailand, for their financial support through this funded research project
文摘This present study applied gas tungsten arc welding in order to join AISI 304 and AISI 201 stainless steels.The objective was to find the optimum welding condition that gave a weld bead in accordance with DIN EN ISO 25817 quality level B, pitting corrosion potential of the weld metal of not less than that of the AISI304 base metal and a ratio of delta-ferrite in austenite matrix of the weld metal of not lower than 3%.Such a ratio is a criterion widely accepted to protect the weld metal from solidification cracking. At the welding current of 75 A and by using pure argon as a shielding gas 0 to 8 vol.% and applying a welding speed in the range of 2-3.5 mm·s^(-1) was found to give a complete weld bead with an increased depthper-width ratio(promote weldability). For welding speed in the range of 3 and 3.5 mm·s^(-1)(promote corrosion resistance). Increasing the welding speed in such a range decreased the amount of delta-ferrite in the austenite matrix, and increased the pitting corrosion potential of the weld metal to be 302 mV_(SCE).This value was still lower than the pitting corrosion potential of the AISI 304 base metal. Mixing nitrogen in argon shielding gas increased the nitrogen content in the weld. The optimum condition was found when using a welding speed of 3 mm· s^(-1) and mixing 1 vol.% of nitrogen in the argon shielding gas(promote weldability and corrosion resistance). Pitted areas after potentiodynamic test were observed in the austenite in which its Cr content was relatively low.
基金Financial assistance from Defence Research Development Organization (DRDO)
文摘Superior properties of maraging steels make them suitable for the fabrication of components used for military applications like missile covering, rocket motor casing and ship hulls. Welding is the main process for fabrication of these components, while the maraging steels can be fusion welded using gas tungsten arc welding(GTAW) process. All these fabricated components require longer storage life and a major problem in welds is susceptible to stress corrosion cracking(SCC). The present study is aimed at studying the SCC behaviour of MDN 250(18% Ni) steel and its welds with respect to microstructural changes. In the present study, 5.2 mm thick sheets made of MDN 250 steel in the solution annealed condition was welded using GTAW process. Post-weld heat treatments of direct ageing(480 C for 3 h), solutionizing(815 C for 1 h) followed by ageing and homogenizing(1150 C for 1 h) followed by ageing were carried out. A mixture of martensite and austenite was observed in the microstructure of the fusion zone of solutionized and direct aged welds and only martensite in as-welded condition. Homogenization and ageing treatment have eliminated reverted austenite and elemental segregation. Homogenized welds also exhibited a marginal improvement in the corrosion resistance compared to those in the as-welded, solutionized and aged condition. Constant load SCC test data clearly revealed that the failure time of homogenized weld is much longer compared to other post weld treatments, and the homogenization treatment is recommended to improve the SCC life of GTA welds of MDN 250 Maraging steel.
基金financially supported by the National Natural Science Foundation of China (No. 51575132)
文摘In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid–solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation(LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.
文摘The mechanical and corrosion performance of low alloy steel tubular goods depends on the microstructure obtained as a result of the combination of alloying elements and manufacturing process parameters. The basic design philosophy for the selection of the alloying elements is ruled by the balance between the steel cost and the material performance.Following this approach the alloying sequence for the manufacturing of tubular components in oil country tubular goods(OCTG) application is generally Mn,C,r and Mo,used as substitutional elements in a total added weight concentration around 1%up to 3%.Other elements such as B,Ti,Nb and V are applied as strengthening microalloying elements forming fine precipitates. A lack of experience is found related to the use of Tungsten(W) on OCTG applications,although W is also a substitutional element that belongs to group 6 of the periodic table together with Cr and Mo.On the other hand W is widely added for steel pipes working in high temperature services such as power plant boilers,where creep resistance is needed.It is also applied for tool steels enhancing the hardness,wear resistance and cutting performance. Taken into consideration the similarity between Cr,Mo and W and the applications where W has been proven it was decided to analyze the feasibility of using W as an alternative alloying element for some OCTG applications. Another factor that drives this study is the fact that W could be a cost effective substitute of Mo,depending on the alloy market price. This paper is based on literature review and experimental activity done on laboratory steels in which 0.1%Mo was replaced by 0.2%and 0.4%W.The different findings in regards with manufacturing process considerations, material performance and the possible use of W alloyed steel for OCTG applications are summarized. (1 ) Opposed to the susceptibility shown by low carbon with high Cr-W content,hot cracks are not expected in medium C steels(0.2%-0.3%) with W addition up to 1%. (2) Microporosity-related defects could form if W <<0.4%. (3) An improvement in the oxidation resistance for typical rolling furnace atmospheres in the temperature range 1 200 - 1 340℃was detected if Mo is substituted by W. (4) Theoretically W is one half less efficient in regards with hardenability. (5) No differences were found in the grain size after austenitizing in the temperature range 920 - 1 050℃, independently on Mo and W contents. (6) Tempering resistance was similar to Mo steels and there was no effect on the cementite shape factor,which affects the performance in sour environments. (7) Both pitting and general corrosion resistance are improved by W addition.But W effectiveness in improving pitting resistance is about one half. (8) The use of W as a substitute of Mo has been proven to be feasible and it could be applied for the manufacturing of N80 or L80 OCTG steel grades as per ISO 11960/API 5CT.
基金supported by the International Thermonuclear Experimental Reactor (ITER) Project of China (No. 2010GB109000)the National Natural Science Foundation of China (No. 50972008)
文摘Tungsten coating is considered as a promising alternative material for plasma facing materials(PFC) in future fusion devices.The electro-deposition of tungsten in Na_2WO_4-ZnO-WO_3 melt at 1173 K on low activation steel substrates was studied in this work.Adherent and smooth tungsten films were deposited under various pulsed current conditions.The crystal structure and microstructure of tungsten deposits were characterized by XRD,SEM and EDX techniques.The results show that pulsed current density and duty cycle have a significant influence on tungsten nucleation and electro-crystallization phenomena.Uniform and smooth tungsten coating with high purity and high adherence is obtained on low active steel substrates as cathodic current density ranges from 35 to 25 mA·cm_(-2).
文摘2205 duplex stainless steels ( DSSs) are welded in gas tungsten arc welding (GTAW) with the addition of N2 to argon, and the desirable microstructure and properties of the joints are obtained by altering the nitrogen percentage in the shielding gas mixture. The mechanical properties of joints are tested with tensile and microhardness machine, and the joint micrustructure is analyzed with scanning electron microscope (SEM) and optical microscope ( OM ) , and detrimental phase precipitate is investigated with X-ray diffraction (XRD), respectively. Finally, the corrosion behaviour of joint is also evaluated. Results show that the favorable joint strength and corrosion resistance can be obtained with appropriate shielding gas mixture in GTA W. No detrimental phase precipitates in the weldment, and the joint tensile fracture obviously presents the characteristic of ductile fracture.
基金This work was supported by the Natural Science Foundation of Shanxi Province of China (2013021021-1), and the Graduate Innovation Project of Shanxi Province of China (20123031).
文摘The microstracture, mechanical and corrosion resistance properties of 445J2 ultra pure ferritic stainless steel thin plate joints conducted by the pulsed current gas tungsten arc welding (PCGTAW) were discussed in this paper. In order to avoid weld defects, the appropriate welding process was adjusted. The joints were subjected to optical microscopy, transverse static tensile, plastic deformation, intergranular corrosion and electrochemistry corrosion tests. The results indicated that the weld zone (WZ) is characterized with columnar grains and equiaxed grains and the heat-affected zone (HAZ) shows coarse ferrite grains due to the rapid solidification of thin plate welding. The PCGTAW joint exhibited acceptable mechanical properties and equivalent corrosion resistance properties as the base metal.
文摘Welding defects influence the desired properties of welded joints giving fabrication experts a common problem of not being able to produce weld structures with optimal strength and quality. In this study, the fuzzy logic system was employed to predict welding tensile strength. 30 sets of welding experiments were conducted and tensile strength data was collected which were converted from crisp variables into fuzzy sets. The result showed that the fuzzy logic tool is a highly effective tool for predicting tensile strength present in TIG mild steel weld having a coefficient of determination value of 99%.
文摘FSW and TIG were conducted on 316L stainless steel.Variation during microstructure and properties in joints obtained by different welding methods was studied.The results show that the effect of severe mechanical stirring and intense plastic deformation creat a fine recrystallized grain in the welding joint during FSW.As for TIG,the temperature of welding joint exceeds the melting point of welded material itself.The entire welding process belongs to the solidification of a small molten pool;and the microstructure of the joint takes on a typical casting structure.When the welding parameters were selected appropriately,the average ultimate tensile strength of FSW joints can reach 493 MPa,which is 83.6%of base metal;the average elongation is 52.1%of base metal.The average ultimate tensile strength of TIG joints is 475 MPa, which is 80.5%of base metal;the average elongation is 40.8%of base metal.The tensile test of FSW joints is superior to the TIG joints.The microhardness of FSW joint compared to base metal and TIG joint having a significant improvement,which arel95.5 HV,159.7 HV and 160.7 HV,respectively;grain refinement strengthening plays an important role in enhancing the microhardness.The electrochemical corrosion tests show that the joint of FSW 316L austenitic stainless steel has a good corrosion resistance.
文摘High nitrogen stainless steel(HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance.Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poor mechanical properties.The above problems can be overcome by proper selection and procedure of joining process. In the present work, an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel. Shielded metal arc welding(SMAW), gas tungsten arc welding(GTAW), electron beam welding(EBW) and friction stir welding(FSW) processes were used in the present work. Optical microscopy, scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes. Hardness, tensile and bend tests were performed to evaluate the mechanical properties of welds. The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW. Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds. Discontinuous ferrite network in austenite matrix was observed in electron beam welds.Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds.Improved mechanical properties are obtained in friction stir welds when compared to fusion welds. This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains.