12-Tungstophosphoric acid(PW) supported on KSF montmorillonite, PW/KSF, was used as catalyst for deep oxidative desulfurization(ODS) of mixed thiophenic compounds in model oil and crude oil under mild conditions u...12-Tungstophosphoric acid(PW) supported on KSF montmorillonite, PW/KSF, was used as catalyst for deep oxidative desulfurization(ODS) of mixed thiophenic compounds in model oil and crude oil under mild conditions using hydrogen peroxide(H2O2) as an oxidizing agent. A one-factor-at-a-time method was applied for optimizing the parameters such as temperature, reaction time, amount of catalyst, type of extractant and oxidant-tosulfur compounds(S-compounds) molar ratio. The corresponding products can be easily removed from the model oil by using ethanol as the best extractant. The results showed high catalytic activity of PW/KSF in the oxidative removal of dibenzothiophene(DBT) and mixed thiophenic model oil under atmospheric pressure at 75 ℃ in a biphasic system. To investigate the oxidation and adsorption effects of crude oil composition on ODS, the effects of cyclohexene, 1,7-octadiene and o-xylene with different concentrations were studied.展开更多
A series of mesoporous phosphotungstic acid/alumina composites (HPW/Al_2O_3) with various HPW contents were synthesized by evaporation-induced self-assembly method. These composites were characterized by nitrogen ad...A series of mesoporous phosphotungstic acid/alumina composites (HPW/Al_2O_3) with various HPW contents were synthesized by evaporation-induced self-assembly method. These composites were characterized by nitrogen adsorption-desorption, TEM, FTIR, and UV-vis, and were tested as catalysts in oxidation desulfurization of model fuel composed of dibenzothiophene (DBT) and hydrocarbon, using H202 as the oxidant. These composites exhibited high activity in catalytic oxidation of DBT in model fuel and good reusing ability. The best performance was achieved by using the mesoporous HPW/Al_2O_3 with 15wt% HPW content, which resulted in a DBT conversion of 98% after 2 h reaction at 343 K, and it did not show significant activity degradation after 3 recycles. Characterization results showed that the mesoporous structure of alumina and the Keggin structure of HPW were preserved in the formed composite. These results suggested that HPW/ Al_2O_3 could be a promising catalyst in oxidative desulfurization process.展开更多
Synthesis of tetrahydrofuran and tetrahydropyran derivatives catalyzed by tungstophosphoric acid (H3PW12040) were conveniently performed with high yield from the corresponding unsaturated alcohols in ionic liquid. S...Synthesis of tetrahydrofuran and tetrahydropyran derivatives catalyzed by tungstophosphoric acid (H3PW12040) were conveniently performed with high yield from the corresponding unsaturated alcohols in ionic liquid. Sufuric acid (H2SO4), trifluoromathanesulfonic acid (TfOH) and p-toluenesulfonic acid (TsOH) were also explored for preparing these products in ionic liquid. The catalysts and ionic liquid can be easily recovered and reused.展开更多
Mesoporous silica-zirconia supported phosphotungstic acid was synthesized by evaporation induced self-assembly method and used as oxidative desulfurization catalysts. The structural properties of as-prepared catalysts...Mesoporous silica-zirconia supported phosphotungstic acid was synthesized by evaporation induced self-assembly method and used as oxidative desulfurization catalysts. The structural properties of as-prepared catalysts were characterized using various analytical techniques including X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, and nitrogen adsorption desorption. The experimental results showed that HPW was highly dispersed on mesoporous framework. The surface acidity of catalysts was analyzed by FTIR measurement of adsorbed pyridine.The surface Lewis acidity was improved with increasing the content of zirconium in the samples. The mesoporous composites were used as catalysts with H2O2 as oxidant for oxidative desulfurization of model fuel. The catalytic activity results showed that the surface Lewis acid sites acted as selective adsorption active sites for dibenzothiophene, which facilitated the sulfur removal from model fuel in the presence of arene. A slight decrease in activity of the recovered catalyst used in the proceeding rounds indicated the reusability of the catalyst.展开更多
The photocatalytic degradation of polyvinyl chloride (PVC) films by tungstophosphoric acid (HPW) was investigated. The main reason for highly enhanced photodegradation of HPW-doped PVC film was studied and discussed.
Potassium and cesium salts of tungstophosphoric acid were prepared by precipitation method. For sake of comparison HPW, potassium and cesium tungstophosphates were supported on silica (20 wt%) by wet impregnation meth...Potassium and cesium salts of tungstophosphoric acid were prepared by precipitation method. For sake of comparison HPW, potassium and cesium tungstophosphates were supported on silica (20 wt%) by wet impregnation method. The catalysts were characterized by XRD, nitrogen adsorption-desorption measurements at 77 K, and the catalytic activity has been studied by using the catalytic conversion of tert-butanol at temperatures between 323 and 423 K. The results revealed that all of the catalysts were active and selective towards dehydration of tert-butanol yielding isobutene with low amount of isooctene as result of oligomerization process. Substitution of one proton of HPW by cesium or potassium cation exerted no measurable effect on the catalytic activity. The conversion over unsupported catalysts increased by increasing the cation content per Keggin unit of x ≥ 2. Supporting the previous salts on SiO2 resulted in a significant decrease in the catalytic activity upon increasing cation content. Activation energy was calculated for different solids.展开更多
Zirconia nanotube-supported H3 PW_(12)O_(40)(HPW) catalysts were obtained by loading HPW onto zirconia nanotube arrays which were prepared through anodization of zirconium foil in the mixture of formamide and gl...Zirconia nanotube-supported H3 PW_(12)O_(40)(HPW) catalysts were obtained by loading HPW onto zirconia nanotube arrays which were prepared through anodization of zirconium foil in the mixture of formamide and glycerol(volume ratio = 1:1) containing 1 wt% NH4 F and 1 wt% H_2 O.The samples were characterized through scanning electron microscope,X-ray diffraction,infrared spectra and thermogravimetric analysis. Various factors affecting the catalytic activities have been investigated. The catalysts, prepared through pretreating the nanotube carrier at 400 'C, followed by loading with 35 wt% HPW and calcining at 200 ℃, possess high catalytic activities in the synthesis of fatty acid ethyl ester. Under the optimal reaction conditions, the conversion percentages of lauric acid, oleic acid and stearic acid are all higher than 98.5%.展开更多
基金Razi University Research Council for support of this work
文摘12-Tungstophosphoric acid(PW) supported on KSF montmorillonite, PW/KSF, was used as catalyst for deep oxidative desulfurization(ODS) of mixed thiophenic compounds in model oil and crude oil under mild conditions using hydrogen peroxide(H2O2) as an oxidizing agent. A one-factor-at-a-time method was applied for optimizing the parameters such as temperature, reaction time, amount of catalyst, type of extractant and oxidant-tosulfur compounds(S-compounds) molar ratio. The corresponding products can be easily removed from the model oil by using ethanol as the best extractant. The results showed high catalytic activity of PW/KSF in the oxidative removal of dibenzothiophene(DBT) and mixed thiophenic model oil under atmospheric pressure at 75 ℃ in a biphasic system. To investigate the oxidation and adsorption effects of crude oil composition on ODS, the effects of cyclohexene, 1,7-octadiene and o-xylene with different concentrations were studied.
基金Funded by the National Natural Science Foundation of China(21106008)the PetroChina Innovation Foundation(2013D-5006-0405)the Natural Science Foundation of Hubei Province(2011CDB007)
文摘A series of mesoporous phosphotungstic acid/alumina composites (HPW/Al_2O_3) with various HPW contents were synthesized by evaporation-induced self-assembly method. These composites were characterized by nitrogen adsorption-desorption, TEM, FTIR, and UV-vis, and were tested as catalysts in oxidation desulfurization of model fuel composed of dibenzothiophene (DBT) and hydrocarbon, using H202 as the oxidant. These composites exhibited high activity in catalytic oxidation of DBT in model fuel and good reusing ability. The best performance was achieved by using the mesoporous HPW/Al_2O_3 with 15wt% HPW content, which resulted in a DBT conversion of 98% after 2 h reaction at 343 K, and it did not show significant activity degradation after 3 recycles. Characterization results showed that the mesoporous structure of alumina and the Keggin structure of HPW were preserved in the formed composite. These results suggested that HPW/ Al_2O_3 could be a promising catalyst in oxidative desulfurization process.
文摘Synthesis of tetrahydrofuran and tetrahydropyran derivatives catalyzed by tungstophosphoric acid (H3PW12040) were conveniently performed with high yield from the corresponding unsaturated alcohols in ionic liquid. Sufuric acid (H2SO4), trifluoromathanesulfonic acid (TfOH) and p-toluenesulfonic acid (TsOH) were also explored for preparing these products in ionic liquid. The catalysts and ionic liquid can be easily recovered and reused.
基金Funded by the National Natural Science Foundation of China(No.21106008)the Petro China Innovation Foundation(No.2013D-5006-0405)
文摘Mesoporous silica-zirconia supported phosphotungstic acid was synthesized by evaporation induced self-assembly method and used as oxidative desulfurization catalysts. The structural properties of as-prepared catalysts were characterized using various analytical techniques including X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, and nitrogen adsorption desorption. The experimental results showed that HPW was highly dispersed on mesoporous framework. The surface acidity of catalysts was analyzed by FTIR measurement of adsorbed pyridine.The surface Lewis acidity was improved with increasing the content of zirconium in the samples. The mesoporous composites were used as catalysts with H2O2 as oxidant for oxidative desulfurization of model fuel. The catalytic activity results showed that the surface Lewis acid sites acted as selective adsorption active sites for dibenzothiophene, which facilitated the sulfur removal from model fuel in the presence of arene. A slight decrease in activity of the recovered catalyst used in the proceeding rounds indicated the reusability of the catalyst.
基金This work was supported by the National Natural Science Foundation of China(No.20076004)
文摘The photocatalytic degradation of polyvinyl chloride (PVC) films by tungstophosphoric acid (HPW) was investigated. The main reason for highly enhanced photodegradation of HPW-doped PVC film was studied and discussed.
文摘Potassium and cesium salts of tungstophosphoric acid were prepared by precipitation method. For sake of comparison HPW, potassium and cesium tungstophosphates were supported on silica (20 wt%) by wet impregnation method. The catalysts were characterized by XRD, nitrogen adsorption-desorption measurements at 77 K, and the catalytic activity has been studied by using the catalytic conversion of tert-butanol at temperatures between 323 and 423 K. The results revealed that all of the catalysts were active and selective towards dehydration of tert-butanol yielding isobutene with low amount of isooctene as result of oligomerization process. Substitution of one proton of HPW by cesium or potassium cation exerted no measurable effect on the catalytic activity. The conversion over unsupported catalysts increased by increasing the cation content per Keggin unit of x ≥ 2. Supporting the previous salts on SiO2 resulted in a significant decrease in the catalytic activity upon increasing cation content. Activation energy was calculated for different solids.
基金supported by the National Natural Science Foundation of China (No. 51272064)Key Basic Research Program of Hebei Province of China(No. 17964401D)
文摘Zirconia nanotube-supported H3 PW_(12)O_(40)(HPW) catalysts were obtained by loading HPW onto zirconia nanotube arrays which were prepared through anodization of zirconium foil in the mixture of formamide and glycerol(volume ratio = 1:1) containing 1 wt% NH4 F and 1 wt% H_2 O.The samples were characterized through scanning electron microscope,X-ray diffraction,infrared spectra and thermogravimetric analysis. Various factors affecting the catalytic activities have been investigated. The catalysts, prepared through pretreating the nanotube carrier at 400 'C, followed by loading with 35 wt% HPW and calcining at 200 ℃, possess high catalytic activities in the synthesis of fatty acid ethyl ester. Under the optimal reaction conditions, the conversion percentages of lauric acid, oleic acid and stearic acid are all higher than 98.5%.