This paper deals with the design, construction and performance evaluation procedure of a solar tunnel dryer in drying fish. A 12 meter long and 2 meter width half-circled tunnel was designed and constructed to dry abo...This paper deals with the design, construction and performance evaluation procedure of a solar tunnel dryer in drying fish. A 12 meter long and 2 meter width half-circled tunnel was designed and constructed to dry about 50-100 kg of freshly harvested fishes per batch. The half of the tunnel base was used as the flat plate air heating solar collector and the remaining half as a dryer. The drying air was forced from the collector region (north side) to the drying region (south side) of the half circled tunnel where the product is to be dried. The drying temperature could be easily raised by some 5-30 ℃ above the ambient temperature inside the tunnel at an air velocity of approximately 0.2 m/sec. The test was conducted with 51.5 kg freshly harvested sardines (hall-load) with initial moisture content of 66.5% (wet-basis) to analyze the performance of the dryer. The fishes were dried to a final average moisture content of 15.5% (wet-basis) within three days (30 hours). It was possible to reach the moisture content level for safe storage within less than three days (30 hrs) with solar tunnel dryer and 7 days in open air natural sun drying. The improvement in the quality of fishes in terms of color, brightness, flavor, and taste and food value was distinctly recognized.展开更多
文摘This paper deals with the design, construction and performance evaluation procedure of a solar tunnel dryer in drying fish. A 12 meter long and 2 meter width half-circled tunnel was designed and constructed to dry about 50-100 kg of freshly harvested fishes per batch. The half of the tunnel base was used as the flat plate air heating solar collector and the remaining half as a dryer. The drying air was forced from the collector region (north side) to the drying region (south side) of the half circled tunnel where the product is to be dried. The drying temperature could be easily raised by some 5-30 ℃ above the ambient temperature inside the tunnel at an air velocity of approximately 0.2 m/sec. The test was conducted with 51.5 kg freshly harvested sardines (hall-load) with initial moisture content of 66.5% (wet-basis) to analyze the performance of the dryer. The fishes were dried to a final average moisture content of 15.5% (wet-basis) within three days (30 hours). It was possible to reach the moisture content level for safe storage within less than three days (30 hrs) with solar tunnel dryer and 7 days in open air natural sun drying. The improvement in the quality of fishes in terms of color, brightness, flavor, and taste and food value was distinctly recognized.