Mesa-structured submicron intrinsic Josephson junctions are successfully fabricated and well characterized on underdoped Bi2Sr2Ca1-xYxCu2O8+δ single crystals with a Tc of 80 K. Tunneling spectra at the temperatures ...Mesa-structured submicron intrinsic Josephson junctions are successfully fabricated and well characterized on underdoped Bi2Sr2Ca1-xYxCu2O8+δ single crystals with a Tc of 80 K. Tunneling spectra at the temperatures ranging from 4.2 K to 295 K are measured. A pulse technique is used to reduce sample heating for the measurement near pseudogap opening temperature T^* - 280 K. Our experimental results show that the superconducting gap, the peakdip separation, and the pseudogap opening temperature are all increased as compared with those from near optimally doped samples, which requires further theoretical analysis in the future.展开更多
Most acceleration diagrams show high levels of unpredictability, as a result, it is the best to avoid using diagrams of earthquake acceleration spect~'a, even if the diagrams recorded at the site in question. In orde...Most acceleration diagrams show high levels of unpredictability, as a result, it is the best to avoid using diagrams of earthquake acceleration spect~'a, even if the diagrams recorded at the site in question. In order to design earthquake resistant structures, we, instead, suggest constructing a design spectrum using a set of spectra that have common characteristics to the recorded acceleration diagrams at a particular site and smoothing the associated data. In this study, we conducted a time history analysis and determined a design spectrum for the region near the Lali tunnel in Southwestern Iran. We selected 13 specific ground motion records from the rock site to construct the design spectrum. To process the data, we first applied a base-line correction and then calculated the signal-to-noise ratio (]~SN) for each record. Next, we calculated the Fourier amplitude spectra of the acceleration pertaining to the signal window (1), and the Fourier amplitude spectra of the associated noise (2). After dividing each spectra by the square root of the selected window interval, they were divided by each other (1 divided by 2), in order to obtain the ~SN ratio (filtering was also applied). In addition, all data were normalized to the peak ground acceleration (PGA). Next, the normalized vertical and horizontal responses and mean response spectrum (50%) and the mean plus-one standard deviation (84%) were calculated for all the selected ground motion records at 5% damping. Finally, the mean design spectrum and the mean plus-one standard deviation were plotted for the spectrums. The equation of the mean and the above-mean design spectrum at the Lali tunnel site are also provided, along with our observed conclusions.展开更多
Using scanning tunneling spectroscopy, we studied the transition from tunneling regime to local point contact on the iron-based superconductor Ba0.6K0.4Fe2As2. By gradually reducing the junction resistance, a series o...Using scanning tunneling spectroscopy, we studied the transition from tunneling regime to local point contact on the iron-based superconductor Ba0.6K0.4Fe2As2. By gradually reducing the junction resistance, a series of spectra were obtained with the characteristics evolving from single-particle tunneling into Andreev reflection. The spectra can be well fitted to the modified Blonder–Tinkham–Klapwijk(BTK) model and exhibit significant changes of both spectral broadening and orbital selection due to the formation of point contact. The spatial resolution of the point contact was estimated to be several nanometers, providing a unique way to study the inhomogeneity of unconventional superconductors on such a scale.展开更多
We report on a tunneling study of underdoped submicron Bi2Sr2_xLasCuO_6+δ (La-Bi2201) intrinsic Josephson junctions (IJJs), whose self-heating is sufficiently suppressed. The tunneling spectra are measured from ...We report on a tunneling study of underdoped submicron Bi2Sr2_xLasCuO_6+δ (La-Bi2201) intrinsic Josephson junctions (IJJs), whose self-heating is sufficiently suppressed. The tunneling spectra are measured from 4.2 K up to the pseudogap opening temperature of T* = 260 K. The gap value found from the spectral peak position is about 35 meV and has a weak temperature dependence both below and above the superconducting transition temperature of Tc = 29 K. Since the superconducting gap should have a value of 10-15 meV, our results indicate that the pseudogap (~35 meV) plays an important role in the underdoped La-Bi2201 intrinsic tunneling spectroscopy down to the lowest temperature of 4.2 K. However, the contribution of the superconducting gap can be separated by normalizing the spectra to the one near and above Tc, which shows that the IJJs can be a useful tool for the study of the electronic properties of the La-Bi2201 cuprate superconductors.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.10974242)
文摘Mesa-structured submicron intrinsic Josephson junctions are successfully fabricated and well characterized on underdoped Bi2Sr2Ca1-xYxCu2O8+δ single crystals with a Tc of 80 K. Tunneling spectra at the temperatures ranging from 4.2 K to 295 K are measured. A pulse technique is used to reduce sample heating for the measurement near pseudogap opening temperature T^* - 280 K. Our experimental results show that the superconducting gap, the peakdip separation, and the pseudogap opening temperature are all increased as compared with those from near optimally doped samples, which requires further theoretical analysis in the future.
文摘Most acceleration diagrams show high levels of unpredictability, as a result, it is the best to avoid using diagrams of earthquake acceleration spect~'a, even if the diagrams recorded at the site in question. In order to design earthquake resistant structures, we, instead, suggest constructing a design spectrum using a set of spectra that have common characteristics to the recorded acceleration diagrams at a particular site and smoothing the associated data. In this study, we conducted a time history analysis and determined a design spectrum for the region near the Lali tunnel in Southwestern Iran. We selected 13 specific ground motion records from the rock site to construct the design spectrum. To process the data, we first applied a base-line correction and then calculated the signal-to-noise ratio (]~SN) for each record. Next, we calculated the Fourier amplitude spectra of the acceleration pertaining to the signal window (1), and the Fourier amplitude spectra of the associated noise (2). After dividing each spectra by the square root of the selected window interval, they were divided by each other (1 divided by 2), in order to obtain the ~SN ratio (filtering was also applied). In addition, all data were normalized to the peak ground acceleration (PGA). Next, the normalized vertical and horizontal responses and mean response spectrum (50%) and the mean plus-one standard deviation (84%) were calculated for all the selected ground motion records at 5% damping. Finally, the mean design spectrum and the mean plus-one standard deviation were plotted for the spectrums. The equation of the mean and the above-mean design spectrum at the Lali tunnel site are also provided, along with our observed conclusions.
基金supported by the National Natural Science Foundation of China(Grant Nos.11574372 and 11322432)the“Strategic Priority Research Program(B)”of the Chinese Academy of Sciences(Grant No.XDB07020300)
文摘Using scanning tunneling spectroscopy, we studied the transition from tunneling regime to local point contact on the iron-based superconductor Ba0.6K0.4Fe2As2. By gradually reducing the junction resistance, a series of spectra were obtained with the characteristics evolving from single-particle tunneling into Andreev reflection. The spectra can be well fitted to the modified Blonder–Tinkham–Klapwijk(BTK) model and exhibit significant changes of both spectral broadening and orbital selection due to the formation of point contact. The spatial resolution of the point contact was estimated to be several nanometers, providing a unique way to study the inhomogeneity of unconventional superconductors on such a scale.
基金supported by the National Natural Science Foundation of China(Grant No.10974242)the National Basic Research Program of China(Grant No.2011CBA00106)
文摘We report on a tunneling study of underdoped submicron Bi2Sr2_xLasCuO_6+δ (La-Bi2201) intrinsic Josephson junctions (IJJs), whose self-heating is sufficiently suppressed. The tunneling spectra are measured from 4.2 K up to the pseudogap opening temperature of T* = 260 K. The gap value found from the spectral peak position is about 35 meV and has a weak temperature dependence both below and above the superconducting transition temperature of Tc = 29 K. Since the superconducting gap should have a value of 10-15 meV, our results indicate that the pseudogap (~35 meV) plays an important role in the underdoped La-Bi2201 intrinsic tunneling spectroscopy down to the lowest temperature of 4.2 K. However, the contribution of the superconducting gap can be separated by normalizing the spectra to the one near and above Tc, which shows that the IJJs can be a useful tool for the study of the electronic properties of the La-Bi2201 cuprate superconductors.