The quantum tunneling effect (QTE) in a cavity-resonator-coupled (CRC) array was analytically and numerically investigated. The underlying mechanism was interpreted by treating electromagnetic waves as photons, an...The quantum tunneling effect (QTE) in a cavity-resonator-coupled (CRC) array was analytically and numerically investigated. The underlying mechanism was interpreted by treating electromagnetic waves as photons, and then was generalized to acoustic waves and matter waves. It is indicated that for the three kinds of waves, the QTE can be excited by cavity resonance in a CRC array, resulting in sub-wavelength transparency through the narrow splits between cavities. This opens up opportunities for designing new types of crystals based on CRC arrays, which may find potential applications such as quantum devices, micro-optic transmission, and acoustic manipulation.展开更多
In this paper are illustrated the main features of tunneling travelling between two deuterons within a lattice. Considering thescreening effect due to lattice electrons we compare the d-d fusion rate evaluated from di...In this paper are illustrated the main features of tunneling travelling between two deuterons within a lattice. Considering thescreening effect due to lattice electrons we compare the d-d fusion rate evaluated from different authors assuming different screeningefficiency and different d-d potentials. Then, we propose an effective potential which describes very well the attractive contribution dueto Plasmon exchange between two deuterons and by means of it we will compute the d-d fusion rates for different energy values.展开更多
Head-up displays (HUDs) enable a pilot to manage aircraft activities by facilitating simultaneous access to the flight instrument data and to the outside scene. However, HUDs can also distract a pilot. This study sh...Head-up displays (HUDs) enable a pilot to manage aircraft activities by facilitating simultaneous access to the flight instrument data and to the outside scene. However, HUDs can also distract a pilot. This study shows that HUD luminance non-uniformity may force inappropriate distribution of attention between the events shown on HUD symbology and the outside scene because of the resultant differential contrast in the display area. Results of statistical analysis demonstrate considerable effects of HUD image luminance and ambient luminance, as well as their interaction, on the detection of events displayed on an HUD and the outside scene.展开更多
This study presents a theoretical investigation of a novel Ge/Si tunneling avalanche photodiode(TAPD)with an ultra-thin barrier layer between the absorption and p+ contact layer. A high-frequency tunneling effect i...This study presents a theoretical investigation of a novel Ge/Si tunneling avalanche photodiode(TAPD)with an ultra-thin barrier layer between the absorption and p+ contact layer. A high-frequency tunneling effect is introduced into the structure of the barrier layer to increase the high-frequency response when frequency is larger than 0.1 GHz, and the-3 dB bandwidth of the device increases evidently. The results demonstrate that the avalanche gain and-3 dB bandwidth of the TAPD can be influenced by the thickness and bandgap of the barrier layer.When the barrier thickness is 2 nm and the bandgap is 4.5 eV, the avalanche gain loss is negligible and the gainbandwidth product of the TAPD is 286 GHz, which is 18% higher than that of an avalanche photodiode without a barrier layer. The total noise in the TAPD was an order of magnitude smaller than that in APD without barrier layer.展开更多
The tunneling effect of Bose-Einstein condensate (BEC) in a harmonic trap with a Gaussian energy barrier is studied in this paper. The initial condensate evolves into two separate moving condensates after the tunnel...The tunneling effect of Bose-Einstein condensate (BEC) in a harmonic trap with a Gaussian energy barrier is studied in this paper. The initial condensate evolves into two separate moving condensates after the tunneling time under certain conditions. The interference pattern between the two moving condensates is given as a comparison and as a further demonstration of the existence of the global phase.展开更多
The tunneling current in a graphene nanoribbon tunnel field effect transistor(GNR-TFET) has been quantum mechanically modeled. The tunneling current in the GNR-TFET was compared based on calculations of the Dirac-like...The tunneling current in a graphene nanoribbon tunnel field effect transistor(GNR-TFET) has been quantum mechanically modeled. The tunneling current in the GNR-TFET was compared based on calculations of the Dirac-like equation and Schrodinger’s equation. To calculate the electron transmittance, a numerical approach-namely the transfer matrix method(TMM)-was employed and the Launder formula was used to compute the tunneling current. The results suggest that the tunneling currents that were calculated using both equations have similar characteristics for the same parameters, even though they have different values. The tunneling currents that were calculated by applying the Dirac-like equation were lower than those calculated using Schrodinger’s equation.展开更多
Nanowires with gate-all-around(GAA) structures are widely considered as the most promising candidate for 3-nm technology with the best ability of suppressing the short channel effects,and tunneling field effect transi...Nanowires with gate-all-around(GAA) structures are widely considered as the most promising candidate for 3-nm technology with the best ability of suppressing the short channel effects,and tunneling field effect transistors(TFETs)based on GAA structures also present improved performance.In this paper,a non-quasi-static(NQS) device model is developed for nanowire GAA TFETs.The model can predict the transient current and capacitance varying with operation frequency,which is beyond the ability of the quasi-static(QS) model published before.Excellent agreements between the model results and numerical simulations are obtained.Moreover,the NQS model is derived from the published QS model including the current-voltage(I-V) and capacitance-voltage(C-V) characteristics.Therefore,the NQS model is compatible with the QS model for giving comprehensive understanding of GAA TFETs and would be helpful for further study of TFET circuits based on nanowire GAA structure.展开更多
An analytical model of gate-all-around (GAA) silicon nanowire tunneling field effect transistors (NW-TFETs) is developted based on the surface potential solutions in the channel direction and considering the band ...An analytical model of gate-all-around (GAA) silicon nanowire tunneling field effect transistors (NW-TFETs) is developted based on the surface potential solutions in the channel direction and considering the band to band tunneling (BTBT) efficiency. The three-dimensional Poisson equation is solved to obtain the surface potential distributions in the partition regions along the channel direction for the NW-TFET, and a tunneling current model using Kane's expression is developed. The validity of the developed model is shown by the good agreement between the model predictions and the TCAD simulation results.展开更多
Tunneling field effect transistors(TFETs) based on two-dimensional materials are promising contenders to the traditional metal oxide semiconductor field effect transistor, mainly due to potential applications in low...Tunneling field effect transistors(TFETs) based on two-dimensional materials are promising contenders to the traditional metal oxide semiconductor field effect transistor, mainly due to potential applications in low power devices. Here,we investigate the TFETs based on two different integration types: in-plane and vertical heterostructures composed of two kinds of layered phosphorous(β-P and δ-P) by ab initio quantum transport simulations. NDR effects have been observed in both in-plane and vertical heterostructures, and the effects become significant with the highest peak-to-valley ratio(PVR)when the intrinsic region length is near zero. Compared with the in-plane TFET based on β-P and δ-P, better performance with a higher on/off current ratio of - 10-6 and a steeper subthreshold swing(SS) of - 23 mV/dec is achieved in the vertical TFET. Such differences in the NDR effects, on/off current ratio and SS are attributed to the distinct interaction nature of theβ-P and δ-P layers in the in-plane and vertical heterostructures.展开更多
To study the influence of CoFeB/MgO interface on tunneling magnetoresistance (TMR), different structures of magnetic tunnel junctions (MTJs) are successfully prepared by the magnetron sputtering technique and char...To study the influence of CoFeB/MgO interface on tunneling magnetoresistance (TMR), different structures of magnetic tunnel junctions (MTJs) are successfully prepared by the magnetron sputtering technique and characterized by atomic force microscopy, a physical property measurement system, x-ray photoelectron spectroscopy, and transmission electron microscopy. The experimental results show that TMR of the CoFeB/Mg/MgO/CoFeB structure is evidently improved in comparison with the CoFeB/MgO/CoFeB structure because the inserted Mg layer prevents Fe-oxide formation at the CoFeB/MgO interface, which occurs in CoFeB/MgO/CoFeB MTJs. The inherent properties of the CoFeB/MgO/CoFeB, CoFeB/Fe-oxide/MgO/CoFeB and CoFeB/Mg/MgO/CoFeB MTJs are simulated by using the theories of density functions and non-equilibrium Green functions. The simulated results demonstrate that TMR of CoFeB/Fe-oxide/MgO/CoFeB MTJs is severely decreased and is only half the value of the CoFeB/Mg/MgO/CoFeB MTJs. Based on the experimental results and theoretical analysis, it is believed that in CoFeB/MgO/CoFeB MTJs, the interface oxidation of the CoFeB layer is the main reason to cause a remarkable reduction of TMR, and the inserted Mg layer may play an important role in protecting Fe atoms from oxidation, and then increasing TMR.展开更多
A tunneling accelerometer is fabricated and characterized based on the extension of the silicon-glass anodic-bonding and deep etching releasing process provided by Peking University.The tunneling current under open lo...A tunneling accelerometer is fabricated and characterized based on the extension of the silicon-glass anodic-bonding and deep etching releasing process provided by Peking University.The tunneling current under open loop operation is tested in the air by HP4145B semiconductor analyzer,which verifies the presence of tunneling current and the exponential relationship between tunneling gap and tunneling current.The tunneling barrier is extrapolated to be from 1.182 to 2.177eV.The threshold voltages are tested to be 14~16V for most of the devices.The threshold voltages under -1,0,and +1g are tested,respectively,which shows the sensitivity of the accelerometer is about 87mV/g.展开更多
Effects of soft-magnetic MnZn ferrite (Mn0.5Zn0.5Fe2O4, MZF) and hard-magnetic Ba ferrite (BaO.6Fe2O3, BaM) on the structure and magnetic transport properties of [La2/3Srl/3MnO3] (LSMO)/(x) [ferrites] (ferrit...Effects of soft-magnetic MnZn ferrite (Mn0.5Zn0.5Fe2O4, MZF) and hard-magnetic Ba ferrite (BaO.6Fe2O3, BaM) on the structure and magnetic transport properties of [La2/3Srl/3MnO3] (LSMO)/(x) [ferrites] (ferrites=MZF, BaM) composites have been investigated. It was found that the inclusion of MZF phase reduces magnetization and ferromagnetic-paramagnetic transition temperature (To) of the composites. With increasing the content of the dopants, the high-temperature magnetoresistance (MR) decreases, whereas low-temperature MR increases and reaches 42% at 150 K and x=0.1. However, for the LSMO/BaM composites, magnetization and ferromagneticparamagnetic transition temperature (To) decrease firstly as x〈5%, and then increase as x〉5%. The resistivity of the composites increases by five orders of magnitude at x=1% and is out of measured range at x=5%. High magnetic field has little effect on the resistivity and magnetoresistance originate from the pinning effect of BaM for the composites with x〉5%, which may grains.展开更多
The influence of characteristics’ measurement sequence on total ionizing dose effect in partially-depleted SOI nMOSFET is comprehensively studied. We find that measuring the front-gate curves has no influence on tota...The influence of characteristics’ measurement sequence on total ionizing dose effect in partially-depleted SOI nMOSFET is comprehensively studied. We find that measuring the front-gate curves has no influence on total ionizing dose effect.However, the back-gate curves’ measurement has a great influence on total ionizing dose effect due to high electric field in the buried oxide during measuring. In this paper, we analyze their mechanisms and we find that there are three kinds of electrons tunneling mechanisms at the bottom corner of the shallow trench isolation and in the buried oxide during the backgate curves’ measurement, which are: Fowler–Nordheim tunneling, trap-assisted tunneling, and charge-assisted tunneling.The tunneling electrons neutralize the radiation-induced positive trapped charges, which weakens the total ionizing dose effect. As the total ionizing dose level increases, the charge-assisted tunneling is enhanced by the radiation-induced positive trapped charges. Hence, the influence of the back-gate curves’ measurement is enhanced as the total ionizing dose level increases. Different irradiation biases are compared with each other. An appropriate measurement sequence and voltage bias are proposed to eliminate the influence of measurement.展开更多
In this paper, we extend Parikh' recent work to the Vaidya-de Sitter black hole which is non-stationary. We view Hawking radiation as a tunnelling process across the event horizon and calculate the tunnelling probabi...In this paper, we extend Parikh' recent work to the Vaidya-de Sitter black hole which is non-stationary. We view Hawking radiation as a tunnelling process across the event horizon and calculate the tunnelling probability when the particle crosses the event horizon. From the tunnelling probability we also find a leading correction to the semiclassical emission rate.展开更多
This paper uses the relation of the cosmic scale factor and scalar field to solve Wheeler-De Witt equation,gives the tunnel effect of the cosmic scale factor a and quantum potential well of scalar field, and makes it ...This paper uses the relation of the cosmic scale factor and scalar field to solve Wheeler-De Witt equation,gives the tunnel effect of the cosmic scale factor a and quantum potential well of scalar field, and makes it fit with the physics of cosmic quantum birth. By solving Wheeler-De Witt equation we achieve a general probability distribution of the cosmic birth, and give the analysis of cosmic quantum birth.展开更多
The influence of vibration is already one of main obstacles for improving the nano measuring accuracy.The techniques of anti-vibration,vibration isolation and vibration compensation become an important branch in nano ...The influence of vibration is already one of main obstacles for improving the nano measuring accuracy.The techniques of anti-vibration,vibration isolation and vibration compensation become an important branch in nano measuring field.Starting with the research of sensitivity to vibration of scanning tunneling microscope(STM),the theory,techniques and realization methods of nano vibration sensor based on tunnel effect are initially investigated,followed by developing the experimental devices.The experiments of the vibration detection and vibration compensation are carried out.The experimental results show that vibration sensor based on tunnel effect is characterized by high sensitivity,good frequency characteristic and the same vibratory response characteristic consistent with STM.展开更多
Most previous investigations on interference effects of tall buildings under wind actions focused on the wind induced interference effects between two buildings,and the interference effects of three or more buildings ...Most previous investigations on interference effects of tall buildings under wind actions focused on the wind induced interference effects between two buildings,and the interference effects of three or more buildings have seldom been studied so far due to the huge workload involved in experiments and data processing.In this paper,mean and dynamic force/response interference effects and peak wind pressure interference effects of two and three tall buildings,especially the three-building configuration,are investigated through a series of wind tunnel tests on typical tall building models using high frequency force balance technique and wind pressure measurements.Furthermore,the present paper focuses on the effects of parameters,including breadth ratio and height ratio of the buildings and terrain category,on the interference factors and derives relevant regression results for the interference factors.展开更多
A new 'twice loose shoe' method in the Wheeler–DeWitt equation of the universe wavefunction on the cosmic scale factor and a scalar field is suggested. We analyze both the affections coming from the tunnell...A new 'twice loose shoe' method in the Wheeler–DeWitt equation of the universe wavefunction on the cosmic scale factor and a scalar field is suggested. We analyze both the affections coming from the tunnelling effect of and the potential well effect of , and obtain the initial values and about a primary closed universe which is born with the largest probability in the quantum manner. Our result is able to overcome the 'large field difficulty' of the universe quantum creation probability with only tunnelling effect. This new born universe has to suffer a startup of inflation, and then comes into the usual slow rolling inflation. The universe with the largest probability maybe has a 'gentle' inflation or an eternal chaotic inflation, this depends on a new parameter which describes the tunnelling character.展开更多
To explore tunnel effects on ring road traffic flow,a macroscopic urgent-gentle class traffic model is put forward.The model identifies vehicles with urgent and gentle classes,chooses the tunnel speed limit as free fl...To explore tunnel effects on ring road traffic flow,a macroscopic urgent-gentle class traffic model is put forward.The model identifies vehicles with urgent and gentle classes,chooses the tunnel speed limit as free flow speed to express the fundamental diagram in the tunnel,and adopts algebraic expressions to describe traffic pressure and sound speed.With two speed trajectories at the Kobotoke tunnel in Japan,the model is validated,with good agreement with observed data.Numerical results indicate that in the case of having no ramp effects,tunnel mean travel time is almost constant dependent on tunnel length.When initial density normalized by jam density is above a threshold of about 0.21,a traffic shock wave originates at the tunnel entrance and propagates backward.Such a threshold drops slightly as a result of on-ramp merging effect,the mean travel time drops as off-ramp diversion effect intensifies gradually.These findings deepen the understanding of tunnel effects on traffic flow in reality.展开更多
The transport property of electrons tunneling through arrays of magnetic and electric barriers is studied in silicene. In the tunneling transmission spectrum, the spin-valley-dependent filtered states can be achieved ...The transport property of electrons tunneling through arrays of magnetic and electric barriers is studied in silicene. In the tunneling transmission spectrum, the spin-valley-dependent filtered states can be achieved in an incident energy range which can be controlled by the electric gate voltage. For the parallel magnetization configuration, the transmission is asymmetric with respect to the incident angle θ, and electrons with a very large negative incident angle can always transmit in propagating modes for one of the spin-valley filtered states under a certain electromagnetic condition. But for the antiparallel configuration, the transmission is symmetric about θ and there is no such transmission channel. The difference of the transmission between the two configurations leads to a giant tunneling magnetoresistance (TMR) effect. The TMR can reach to 100% in a certain Fermi energy interval around the electrostatic potential. This energy interval can be adjusted significantly by the magnetic field and/or electric gate voltage. The results obtained may be useful for future valleytronic and spintronic applications, as well as magnetoresistance device based on silicene.展开更多
文摘The quantum tunneling effect (QTE) in a cavity-resonator-coupled (CRC) array was analytically and numerically investigated. The underlying mechanism was interpreted by treating electromagnetic waves as photons, and then was generalized to acoustic waves and matter waves. It is indicated that for the three kinds of waves, the QTE can be excited by cavity resonance in a CRC array, resulting in sub-wavelength transparency through the narrow splits between cavities. This opens up opportunities for designing new types of crystals based on CRC arrays, which may find potential applications such as quantum devices, micro-optic transmission, and acoustic manipulation.
文摘In this paper are illustrated the main features of tunneling travelling between two deuterons within a lattice. Considering thescreening effect due to lattice electrons we compare the d-d fusion rate evaluated from different authors assuming different screeningefficiency and different d-d potentials. Then, we propose an effective potential which describes very well the attractive contribution dueto Plasmon exchange between two deuterons and by means of it we will compute the d-d fusion rates for different energy values.
基金supported by the CSIR-Central Scientific Instruments Organisation(CSIO),Chandigarh,Indiathe Aeronautical Development Agency,Bangalore,India
文摘Head-up displays (HUDs) enable a pilot to manage aircraft activities by facilitating simultaneous access to the flight instrument data and to the outside scene. However, HUDs can also distract a pilot. This study shows that HUD luminance non-uniformity may force inappropriate distribution of attention between the events shown on HUD symbology and the outside scene because of the resultant differential contrast in the display area. Results of statistical analysis demonstrate considerable effects of HUD image luminance and ambient luminance, as well as their interaction, on the detection of events displayed on an HUD and the outside scene.
基金Project supported by in part by the National Natural Science Foundation of China(Nos.61534005,61675195)the Beijing Science and Technology Commission(No.Z151100003315019)the Natural Science Foundation of Beijing Municipality(No.4162063)
文摘This study presents a theoretical investigation of a novel Ge/Si tunneling avalanche photodiode(TAPD)with an ultra-thin barrier layer between the absorption and p+ contact layer. A high-frequency tunneling effect is introduced into the structure of the barrier layer to increase the high-frequency response when frequency is larger than 0.1 GHz, and the-3 dB bandwidth of the device increases evidently. The results demonstrate that the avalanche gain and-3 dB bandwidth of the TAPD can be influenced by the thickness and bandgap of the barrier layer.When the barrier thickness is 2 nm and the bandgap is 4.5 eV, the avalanche gain loss is negligible and the gainbandwidth product of the TAPD is 286 GHz, which is 18% higher than that of an avalanche photodiode without a barrier layer. The total noise in the TAPD was an order of magnitude smaller than that in APD without barrier layer.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10974068)
文摘The tunneling effect of Bose-Einstein condensate (BEC) in a harmonic trap with a Gaussian energy barrier is studied in this paper. The initial condensate evolves into two separate moving condensates after the tunneling time under certain conditions. The interference pattern between the two moving condensates is given as a comparison and as a further demonstration of the existence of the global phase.
基金supported by Hibah Penelitian Berbasi Kompetensi 2018 RISTEKDIKTI Republic of Indonesia
文摘The tunneling current in a graphene nanoribbon tunnel field effect transistor(GNR-TFET) has been quantum mechanically modeled. The tunneling current in the GNR-TFET was compared based on calculations of the Dirac-like equation and Schrodinger’s equation. To calculate the electron transmittance, a numerical approach-namely the transfer matrix method(TMM)-was employed and the Launder formula was used to compute the tunneling current. The results suggest that the tunneling currents that were calculated using both equations have similar characteristics for the same parameters, even though they have different values. The tunneling currents that were calculated by applying the Dirac-like equation were lower than those calculated using Schrodinger’s equation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62004119 and 62201332)the Applied Basic Research Plan of Shanxi Province, China (Grant Nos. 20210302124647 and 20210302124028)。
文摘Nanowires with gate-all-around(GAA) structures are widely considered as the most promising candidate for 3-nm technology with the best ability of suppressing the short channel effects,and tunneling field effect transistors(TFETs)based on GAA structures also present improved performance.In this paper,a non-quasi-static(NQS) device model is developed for nanowire GAA TFETs.The model can predict the transient current and capacitance varying with operation frequency,which is beyond the ability of the quasi-static(QS) model published before.Excellent agreements between the model results and numerical simulations are obtained.Moreover,the NQS model is derived from the published QS model including the current-voltage(I-V) and capacitance-voltage(C-V) characteristics.Therefore,the NQS model is compatible with the QS model for giving comprehensive understanding of GAA TFETs and would be helpful for further study of TFET circuits based on nanowire GAA structure.
基金supported by the National Natural Science Foundation of China(Grant Nos.61274096,61204043,61306042,61306045,and 61306132)the Guangdong Natural Science Foundation,China(Grant Nos.S2012010010533 and S2013040016878)+2 种基金the Shenzhen Science&Technology Foundation,China(Grant No.ZDSY20120618161735041)the Fundamental Research Project of the Shenzhen Science&Technology Foundation,China(Grant Nos.JCYJ20120618162600041,JCYJ20120618162526384,JCYJ20130402164725025,and JCYJ20120618162946025)the International Collaboration Project of the Shenzhen Science&Technology Foundation,China(Grant Nos.GJHZ20120618162120759,GJHZ20130417170946221,GJHZ20130417170908049,and GJHZ20120615142829482)
文摘An analytical model of gate-all-around (GAA) silicon nanowire tunneling field effect transistors (NW-TFETs) is developted based on the surface potential solutions in the channel direction and considering the band to band tunneling (BTBT) efficiency. The three-dimensional Poisson equation is solved to obtain the surface potential distributions in the partition regions along the channel direction for the NW-TFET, and a tunneling current model using Kane's expression is developed. The validity of the developed model is shown by the good agreement between the model predictions and the TCAD simulation results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11604019,61574020,and 61376018)the Ministry of Science and Technology of China(Grant No.2016YFA0301300)+1 种基金the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications),Chinathe Fundamental Research Funds for the Central Universities,China(Grant No.2016RCGD22)
文摘Tunneling field effect transistors(TFETs) based on two-dimensional materials are promising contenders to the traditional metal oxide semiconductor field effect transistor, mainly due to potential applications in low power devices. Here,we investigate the TFETs based on two different integration types: in-plane and vertical heterostructures composed of two kinds of layered phosphorous(β-P and δ-P) by ab initio quantum transport simulations. NDR effects have been observed in both in-plane and vertical heterostructures, and the effects become significant with the highest peak-to-valley ratio(PVR)when the intrinsic region length is near zero. Compared with the in-plane TFET based on β-P and δ-P, better performance with a higher on/off current ratio of - 10-6 and a steeper subthreshold swing(SS) of - 23 mV/dec is achieved in the vertical TFET. Such differences in the NDR effects, on/off current ratio and SS are attributed to the distinct interaction nature of theβ-P and δ-P layers in the in-plane and vertical heterostructures.
基金Supported by the National Defense Advance Research Foundation under Grant No 9140A08XXXXXX0DZ106the Basic Research Program of Ministry of Education of China under Grant No JY10000925005+2 种基金the Scientific Research Program Funded by Shaanxi Provincial Education Department under Grant No 11JK0912the Scientific Research Foundation of Xi'an University of Science and Technology under Grant No 2010011the Doctoral Research Startup Fund of Xi'an University of Science and Technology under Grant No 2010QDJ029
文摘To study the influence of CoFeB/MgO interface on tunneling magnetoresistance (TMR), different structures of magnetic tunnel junctions (MTJs) are successfully prepared by the magnetron sputtering technique and characterized by atomic force microscopy, a physical property measurement system, x-ray photoelectron spectroscopy, and transmission electron microscopy. The experimental results show that TMR of the CoFeB/Mg/MgO/CoFeB structure is evidently improved in comparison with the CoFeB/MgO/CoFeB structure because the inserted Mg layer prevents Fe-oxide formation at the CoFeB/MgO interface, which occurs in CoFeB/MgO/CoFeB MTJs. The inherent properties of the CoFeB/MgO/CoFeB, CoFeB/Fe-oxide/MgO/CoFeB and CoFeB/Mg/MgO/CoFeB MTJs are simulated by using the theories of density functions and non-equilibrium Green functions. The simulated results demonstrate that TMR of CoFeB/Fe-oxide/MgO/CoFeB MTJs is severely decreased and is only half the value of the CoFeB/Mg/MgO/CoFeB MTJs. Based on the experimental results and theoretical analysis, it is believed that in CoFeB/MgO/CoFeB MTJs, the interface oxidation of the CoFeB layer is the main reason to cause a remarkable reduction of TMR, and the inserted Mg layer may play an important role in protecting Fe atoms from oxidation, and then increasing TMR.
文摘A tunneling accelerometer is fabricated and characterized based on the extension of the silicon-glass anodic-bonding and deep etching releasing process provided by Peking University.The tunneling current under open loop operation is tested in the air by HP4145B semiconductor analyzer,which verifies the presence of tunneling current and the exponential relationship between tunneling gap and tunneling current.The tunneling barrier is extrapolated to be from 1.182 to 2.177eV.The threshold voltages are tested to be 14~16V for most of the devices.The threshold voltages under -1,0,and +1g are tested,respectively,which shows the sensitivity of the accelerometer is about 87mV/g.
文摘Effects of soft-magnetic MnZn ferrite (Mn0.5Zn0.5Fe2O4, MZF) and hard-magnetic Ba ferrite (BaO.6Fe2O3, BaM) on the structure and magnetic transport properties of [La2/3Srl/3MnO3] (LSMO)/(x) [ferrites] (ferrites=MZF, BaM) composites have been investigated. It was found that the inclusion of MZF phase reduces magnetization and ferromagnetic-paramagnetic transition temperature (To) of the composites. With increasing the content of the dopants, the high-temperature magnetoresistance (MR) decreases, whereas low-temperature MR increases and reaches 42% at 150 K and x=0.1. However, for the LSMO/BaM composites, magnetization and ferromagneticparamagnetic transition temperature (To) decrease firstly as x〈5%, and then increase as x〉5%. The resistivity of the composites increases by five orders of magnitude at x=1% and is out of measured range at x=5%. High magnetic field has little effect on the resistivity and magnetoresistance originate from the pinning effect of BaM for the composites with x〉5%, which may grains.
文摘The influence of characteristics’ measurement sequence on total ionizing dose effect in partially-depleted SOI nMOSFET is comprehensively studied. We find that measuring the front-gate curves has no influence on total ionizing dose effect.However, the back-gate curves’ measurement has a great influence on total ionizing dose effect due to high electric field in the buried oxide during measuring. In this paper, we analyze their mechanisms and we find that there are three kinds of electrons tunneling mechanisms at the bottom corner of the shallow trench isolation and in the buried oxide during the backgate curves’ measurement, which are: Fowler–Nordheim tunneling, trap-assisted tunneling, and charge-assisted tunneling.The tunneling electrons neutralize the radiation-induced positive trapped charges, which weakens the total ionizing dose effect. As the total ionizing dose level increases, the charge-assisted tunneling is enhanced by the radiation-induced positive trapped charges. Hence, the influence of the back-gate curves’ measurement is enhanced as the total ionizing dose level increases. Different irradiation biases are compared with each other. An appropriate measurement sequence and voltage bias are proposed to eliminate the influence of measurement.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10373003, 10475013 and the State Key Development for Basic Research of China (Grant No 2003CB716300).Acknowledgement We would like to thank Guihua Tian for help.
文摘In this paper, we extend Parikh' recent work to the Vaidya-de Sitter black hole which is non-stationary. We view Hawking radiation as a tunnelling process across the event horizon and calculate the tunnelling probability when the particle crosses the event horizon. From the tunnelling probability we also find a leading correction to the semiclassical emission rate.
基金Acknowledgments 0ne of the authors (Y.C. Huang) is grateful to Profs R.G. Cai and D.H. Zhang for useful discussions.
文摘This paper uses the relation of the cosmic scale factor and scalar field to solve Wheeler-De Witt equation,gives the tunnel effect of the cosmic scale factor a and quantum potential well of scalar field, and makes it fit with the physics of cosmic quantum birth. By solving Wheeler-De Witt equation we achieve a general probability distribution of the cosmic birth, and give the analysis of cosmic quantum birth.
文摘The influence of vibration is already one of main obstacles for improving the nano measuring accuracy.The techniques of anti-vibration,vibration isolation and vibration compensation become an important branch in nano measuring field.Starting with the research of sensitivity to vibration of scanning tunneling microscope(STM),the theory,techniques and realization methods of nano vibration sensor based on tunnel effect are initially investigated,followed by developing the experimental devices.The experiments of the vibration detection and vibration compensation are carried out.The experimental results show that vibration sensor based on tunnel effect is characterized by high sensitivity,good frequency characteristic and the same vibratory response characteristic consistent with STM.
基金supported by the National Natural Science Foundation of China (90715040)
文摘Most previous investigations on interference effects of tall buildings under wind actions focused on the wind induced interference effects between two buildings,and the interference effects of three or more buildings have seldom been studied so far due to the huge workload involved in experiments and data processing.In this paper,mean and dynamic force/response interference effects and peak wind pressure interference effects of two and three tall buildings,especially the three-building configuration,are investigated through a series of wind tunnel tests on typical tall building models using high frequency force balance technique and wind pressure measurements.Furthermore,the present paper focuses on the effects of parameters,including breadth ratio and height ratio of the buildings and terrain category,on the interference factors and derives relevant regression results for the interference factors.
文摘A new 'twice loose shoe' method in the Wheeler–DeWitt equation of the universe wavefunction on the cosmic scale factor and a scalar field is suggested. We analyze both the affections coming from the tunnelling effect of and the potential well effect of , and obtain the initial values and about a primary closed universe which is born with the largest probability in the quantum manner. Our result is able to overcome the 'large field difficulty' of the universe quantum creation probability with only tunnelling effect. This new born universe has to suffer a startup of inflation, and then comes into the usual slow rolling inflation. The universe with the largest probability maybe has a 'gentle' inflation or an eternal chaotic inflation, this depends on a new parameter which describes the tunnelling character.
基金This work is supported by the National Natural Science Foundation of China(Grant 11972341)the fundamental research project of Lomonosov Moscow State University"Mathematical models for multi-phase media and wave processes in natural,technical and social systems".
文摘To explore tunnel effects on ring road traffic flow,a macroscopic urgent-gentle class traffic model is put forward.The model identifies vehicles with urgent and gentle classes,chooses the tunnel speed limit as free flow speed to express the fundamental diagram in the tunnel,and adopts algebraic expressions to describe traffic pressure and sound speed.With two speed trajectories at the Kobotoke tunnel in Japan,the model is validated,with good agreement with observed data.Numerical results indicate that in the case of having no ramp effects,tunnel mean travel time is almost constant dependent on tunnel length.When initial density normalized by jam density is above a threshold of about 0.21,a traffic shock wave originates at the tunnel entrance and propagates backward.Such a threshold drops slightly as a result of on-ramp merging effect,the mean travel time drops as off-ramp diversion effect intensifies gradually.These findings deepen the understanding of tunnel effects on traffic flow in reality.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11547249,51501102,and 11647157)the Science Foundation for Excellent Youth Doctors of Three Gorges University,China(Grant No.KJ2014B076)
文摘The transport property of electrons tunneling through arrays of magnetic and electric barriers is studied in silicene. In the tunneling transmission spectrum, the spin-valley-dependent filtered states can be achieved in an incident energy range which can be controlled by the electric gate voltage. For the parallel magnetization configuration, the transmission is asymmetric with respect to the incident angle θ, and electrons with a very large negative incident angle can always transmit in propagating modes for one of the spin-valley filtered states under a certain electromagnetic condition. But for the antiparallel configuration, the transmission is symmetric about θ and there is no such transmission channel. The difference of the transmission between the two configurations leads to a giant tunneling magnetoresistance (TMR) effect. The TMR can reach to 100% in a certain Fermi energy interval around the electrostatic potential. This energy interval can be adjusted significantly by the magnetic field and/or electric gate voltage. The results obtained may be useful for future valleytronic and spintronic applications, as well as magnetoresistance device based on silicene.