We present theoretical calculations of spin transport in spin filtering magnetic tunnelling junctions based on the Landauer Biittiker formalism and taking into account the spin-orbit coupling (SOC). It is shown that...We present theoretical calculations of spin transport in spin filtering magnetic tunnelling junctions based on the Landauer Biittiker formalism and taking into account the spin-orbit coupling (SOC). It is shown that spin-flip scattering induced by SOC is stronger in parallel alignment of magnetization of the ferromegnet barrier (FB) and the ferromagnetic electrode than that in antiparallel case. The increase of negative tunnelling magnetoresistance with bias is in agreement with recent experimental observation.展开更多
The terahertz band,a unique segment of the electromagnetic spectrum,is crucial for observing the cold,dark universe and plays a pivotal role in cutting-edge scientific research,including the study of cosmic environmen...The terahertz band,a unique segment of the electromagnetic spectrum,is crucial for observing the cold,dark universe and plays a pivotal role in cutting-edge scientific research,including the study of cosmic environments that support life and imaging black holes.High-sensitivity superconductor–insulator–superconductor(SIS)mixers are essential detectors for terahertz astronomical telescopes and interferometric arrays.Compared to the commonly used classical Nb/AlO_(x)/Nb superconducting tunnel junction,the Nb/AlN/NbN hybrid superconducting tunnel junction has a higher energy gap voltage and can achieve a higher critical current density.This makes it particularly promising for the development of ultra-wideband,high-sensitivity coherent detectors or mixers in various scientific research fields.In this paper,we present a superconducting SIS mixer based on Nb/AlN/NbN parallel-connected twin junctions(PCTJ),which has a bandwidth extending up to490 GHz–720 GHz.The best achieved double-sideband(DSB)noise temperature(sensitivity)is below three times the quantum noise level.展开更多
The InGaN films and GaN/InGaN/GaN tunnel junctions(TJs)were grown on GaN templates with plasma-assisted molecular beam epitaxy.As the In content increases,the quality of InGaN films grown on GaN templates decreases an...The InGaN films and GaN/InGaN/GaN tunnel junctions(TJs)were grown on GaN templates with plasma-assisted molecular beam epitaxy.As the In content increases,the quality of InGaN films grown on GaN templates decreases and the surface roughness of the samples increases.V-pits and trench defects were not found in the AFM images.p++-GaN/InGaN/n++-GaN TJs were investigated for various In content,InGaN thicknesses and doping concentration in the InGaN insert layer.The InGaN insert layer can promote good interband tunneling in GaN/InGaN/GaN TJ and significantly reduce operating voltage when doping is sufficiently high.The current density increases with increasing In content for the 3 nm InGaN insert layer,which is achieved by reducing the depletion zone width and the height of the potential barrier.At a forward current density of 500 A/cm^(2),the measured voltage was 4.31 V and the differential resistance was measured to be 3.75×10^(−3)Ω·cm^(2)for the device with a 3 nm p++-In_(0.35)Ga_(0.65)N insert layer.When the thickness of the In_(0.35)Ga_(0.65)N layer is closer to the“balanced”thickness,the TJ current density is higher.If the thickness is too high or too low,the width of the depletion zone will increase and the current density will decrease.The undoped InGaN layer has a better performance than n-type doping in the TJ.Polarization-engineered tunnel junctions can enhance the functionality and performance of electronic and optoelectronic devices.展开更多
We study theoretically the electrical shot noise properties of tunnel junctions between a normal metal and a superconductor with the mixture of singlet s-wave and chiral triplet p-wave pairing due to broken inversion ...We study theoretically the electrical shot noise properties of tunnel junctions between a normal metal and a superconductor with the mixture of singlet s-wave and chiral triplet p-wave pairing due to broken inversion symmetry. We investigate how the shot noise properties vary as the relative amplitude between the two parity components in the pairing potential is changed. It is demonstrated that some characteristics of the electrical shot noise properties of such tunnel junctions may depend sensitively on the relative amplitude between the two parity components in the pairing potential, and some significant changes may occur in the electrical shot noise properties when the relative amplitude between the two parity components is varied from the singlet s-wave pairing dominated regime to the chiral triplet p-wave pairing dominated regime. In the chiral triplet p-wave pairing dominated regime, the ratio of noise power to electric current is close to 2e both in the in-gap and in the out-gap region. In the singlet s-wave pairing dominated regime, the value of this ratio is close to 4e in the inner gap region but may reduce to about 2e in the outer gap region as the relative amplitude of the chiral triplet pairing component is increased. The variations of the differential shot noise with the bias voltage also exhibit some significantly different features in different regimes. Such different features can serve as useful diagnostic tools for the determination of the relative magnitude of the two parity components in the pairing potential.展开更多
The n type GaAs substrates are used and their conductive type is changed to p type by tunnel junction for AlGaInP light emitting diodes(TJ LED),then n type GaP layer is used as current spreading layer.Because resi...The n type GaAs substrates are used and their conductive type is changed to p type by tunnel junction for AlGaInP light emitting diodes(TJ LED),then n type GaP layer is used as current spreading layer.Because resistivity of the n type GaP is lower than that of p type,the effect of current spreading layer is enhanced and the light extraction efficiency is increased by the n type GaP current spreading layer.For TJ LED with 3μm n type GaP current spreading layer,experimental results show that compared with conventional LED with p type GaP current spreading layer,light output power is increased for 50% at 20mA and for 66 7% at 100mA.展开更多
This paper proposes a novel single electron random number generator (RNG). The generator consists of multiple tunneling junctions (MTJ) and a hybrid single electron transistor (SET)/MOS output circuit. It is an ...This paper proposes a novel single electron random number generator (RNG). The generator consists of multiple tunneling junctions (MTJ) and a hybrid single electron transistor (SET)/MOS output circuit. It is an oscillator-based RNG. MTJ is used to implement a high-frequency oscillator, which uses the inherent physical randomness in tunneling events of the MTJ to achieve large frequency drift. The hybrid SET and MOS output circuit is used to amplify and buffer the output signal of the MTJ oscillator. The RNG circuit generates high-quality random digital sequences with a simple structure. The operation speed of this circuit is as high as 1GHz. The circuit also has good driven capability and low power dissipation. This novel random number generator is a promising device for future cryptographic systems and communication applications.展开更多
Modulation between optical and ferroelectric properties was realized in a lateral structured ferroelectric CuInP_(2)S_(6)(CIPS)/semiconductor MoS_(2) van der Waals heterojunction.The ferroelectric hysteresis loop area...Modulation between optical and ferroelectric properties was realized in a lateral structured ferroelectric CuInP_(2)S_(6)(CIPS)/semiconductor MoS_(2) van der Waals heterojunction.The ferroelectric hysteresis loop area was modulated by the optical field.Two types of photodetection properties can be realized in a device by changing the ON and OFF states of the ferroelectric layer.The device was used as a photodetector in the OFF state but not in the ON state.The higher tunnelling electroresistance(~1.4×10^(4))in a lateral structured ferroelectric tunnelling junction was crucial,and it was analyzed and modulated by the barrier height and width of the ferroelectric CIPS/semiconductor MoS_(2) Schottky junction.The new parameter of the ferroelectric hysteresis loop area as a function of light intensity was introduced to analyze the relationship between the ferroelectric and photodetection properties.The proposed device has potential application as an optoelectronic sensory cell in the biological nervous system or as a new type of photodetector.展开更多
Nano-ring-type magnetic tunnel junctions (NR-MTJs) with the layer structure of Ta(5)/Ir22Mn78(10)/ Co75Fe25(2)/Ru(0.75)/CoooFe20B20(3)/Al(0.6)-oxide/Co60Fe20B20(2.5)/Ta(3)/Ru(5) (thickness unit:...Nano-ring-type magnetic tunnel junctions (NR-MTJs) with the layer structure of Ta(5)/Ir22Mn78(10)/ Co75Fe25(2)/Ru(0.75)/CoooFe20B20(3)/Al(0.6)-oxide/Co60Fe20B20(2.5)/Ta(3)/Ru(5) (thickness unit: nm) were nano-fabricated on the Si(100)/SiO2 substrate using magnetron sputtering deposition combined with the optical lithography, electron beam lithography (EBL) and Ar ion-beam etching techniques. The smaller NR-MTJs with the inner- and outer-diameter of around 50 and 100 nm and also their corresponding NR-MTJ arrays were nano-patterned. The tunnelling magnetoresistance (TMR & R) versus driving current (I) loops for a spin-polarized current switching were measured, and the TMR ratio of around 35% at room temperature were observed. The critical values of switching current for the free Co60Fe20B20 layer relative to the reference Co6oFe2oB2o layer between parallel and anti-parallel magnetization states were between 0.50 and 0.75 mA in such NR-MTJs. It is suggested that the applicable MRAM fabrication with the density and capacity higher than 256 Mbit/inch2 even 6 Gbite/inch2 are possible using both I NR-MTJ+1 transistor structure and current switching mechanism based on based on our fabricated 4×4 MRAM demo devices.展开更多
This paper reports that a double N layer (a-Si:H/μc-Si:H) is used to substitute the single microcrystalline silicon n layer (n-μc-Si:H) in n/p tunnel recombination junction between subcells in a-Si:H/μc-Si...This paper reports that a double N layer (a-Si:H/μc-Si:H) is used to substitute the single microcrystalline silicon n layer (n-μc-Si:H) in n/p tunnel recombination junction between subcells in a-Si:H/μc-Si:H tandem solar cells. The electrical transport and optical properties of these tunnel recombination junctions are investigated by current voltage measurement and transmission measurement. The new n/p tunnel recombination junction shows a better ohmic contact. In addition, the n/p interface is exposed to the air to examine the effect of oxidation on the tunnel recombination junction performance. The open circuit voltage and FF of a-Si:H/μc-Si:H tandem solar cell are all improved and the current leakage of the subcells can be effectively prevented efficiently when the new n/p junction is implemented as tunnel recombination junction.展开更多
To improve the energy resolution(?E) of Nb/Al superconducting tunnel junctions(STJs), an ozone(O3) oxidation process has been developed to fabricate a thin defect-free tunnel barrier that simultaneously shows h...To improve the energy resolution(?E) of Nb/Al superconducting tunnel junctions(STJs), an ozone(O3) oxidation process has been developed to fabricate a thin defect-free tunnel barrier that simultaneously shows high critical current JC〉 1000 A/cm^2 and high normalized dynamic resistance RDA 〉 100 MΩ·μm^2, where A is the size of the STJ. The 50-μm^2 STJs produced by O3 exposure of 0.26 Pa·min with an indirect spray of O3 gas, which is a much lower level of exposure than the O2 exposure used in a conventional O2 oxidation process, exhibit a maximum JC= 800 A/cm^2 and a high RDA = 372 MΩ ·μm^2. The 100-pixel array of the 100-μm^2STJs produced using the same O3 oxidation conditions exhibits a constant leak current I leak= 14.9 ± 3.2 n A at a bias point around △ /e(where e is half the energy gap of an STJ),and a high fabrication yield of 87%. Although the I leak values are slightly larger than those of STJs produced using the conventional O2 oxidation process, the STJ produced using O3 oxidation shows a ?E = 10 eV for the C-Kα line, which is the best value of our Nb/Al STJ x-ray detectors.展开更多
A new tunnel recombination junction is fabricated for n-i-p type micromorph tandem solar cells. We insert a thin heavily doped hydrogenated amorphous silicon (a-Si:H) p^+ recombination layer between the n a-Si:H ...A new tunnel recombination junction is fabricated for n-i-p type micromorph tandem solar cells. We insert a thin heavily doped hydrogenated amorphous silicon (a-Si:H) p^+ recombination layer between the n a-Si:H and the p hydrogenated nanocrystalline silicon (nc-Si:H) layers to improve the performance of the n-i-p tandem solar cells. The effects of the boron doping gas ratio and the deposition time of the p-a-Si:H recombination layer on the tunnel recombination junctions have been investigated. The current-voltage characteristic of the tunnel recombination junction shows a nearly ohmic characteristic, and the resistance of the tunnel recombination junction can be as low as 1.5 Ω-cm^2 by using the optimized p-a-Si:H recombination layer. We obtain tandem solar cells with open circuit voltage Voc = 1.4 V, which is nearly the sum of the Vocs of the two corresponding single cells, indicating no Voc losses at the tunnel recombination junction.展开更多
Magnetic tunnel junctions(MTJs) based on MgO barrier have been fabricated by sputtering single crystal MgO target and metal Mg target, respectively, using magnetic sputtering system Nordiko 2000. MgO barriers have bee...Magnetic tunnel junctions(MTJs) based on MgO barrier have been fabricated by sputtering single crystal MgO target and metal Mg target, respectively, using magnetic sputtering system Nordiko 2000. MgO barriers have been formed by a multi-step deposition and natural oxidization of Mg layer. Mg layer thickness,oxygen flow rate and oxidization time were adjusted and the tunnel magnetoresistance(TMR) ratio of optimal MTJs is over 60% at annealing temperature 385. The(001) MgO crystal structure was obtained when the separation distance between MgO target and substrate is less than 6 cm. The TMR ratio of most MgO based MTJs are over 100% at the separation distance of 5 cm and annealing temperature 340. The TMR ratios of MTJs are almost zero when the separation distance ranges from 6 to 10 cm, due to the amorphous nature of the MgO film.展开更多
We report a p24(HIV disease biomarker)detection assay using an MgO-based magnetic tunnel junction(MTJ)sensor and 20-nm magnetic nanoparticles.The MTJ array sensor with sensing area of 890×890μ2 possessing a sens...We report a p24(HIV disease biomarker)detection assay using an MgO-based magnetic tunnel junction(MTJ)sensor and 20-nm magnetic nanoparticles.The MTJ array sensor with sensing area of 890×890μ2 possessing a sensitivity of 1.39%/Oe was used to detect p24 antigens.It is demonstrated that the p24 antigens could be detected at a concentration of 0.01μg/ml.The development of bio-detection systems based on magnetic tunnel junction sensors with high-sensitivity will greatly benefit the early diagnosis of HIV.展开更多
The interface with a pinned dipole within the composite barrier in a ferroelectric tunnel junction(FTJ) with symmetric electrodes is investigated.Different from the detrimental effect of the interface between the el...The interface with a pinned dipole within the composite barrier in a ferroelectric tunnel junction(FTJ) with symmetric electrodes is investigated.Different from the detrimental effect of the interface between the electrode and barrier in previous studies,the existence of an interface between the dielectric SrTiO_3 slab and ferroelectric BaTiO_3 slab in FTJs will enhance the tunneling electroresistance(TER) effect.Specifically,the interface with a lower dielectric constant and larger polarization pointing to the ferroelectric slab favors the increase of TER ratio.Therefore,interface control of high performance FTJ can be achieved.展开更多
Recent progresses in magnetic tunnel junctions with perpendicular magnetic anisotropy (PMA) are reviewed and summarized. At first, the concept and source of perpendicular magnetic anisotropy (PMA) are introduced. ...Recent progresses in magnetic tunnel junctions with perpendicular magnetic anisotropy (PMA) are reviewed and summarized. At first, the concept and source of perpendicular magnetic anisotropy (PMA) are introduced. Next, a historical overview of PMA materials as magnetic electrodes, such as the RE-TM alloys TbFeCo and GdFeCo, novel tetragonal manganese alloys Mn-Ga, L10-ordered (Co, Fe)/Pt alloy, multilayer film [Co, Fe, CoFe/Pt, Pd, Ni, AU]N, and ultra-thin magnetic metal/oxidized barrier is offered. The other part of the article focuses on the optimization and fabrication of CoFeB/MgO/CoFeB p-MTJs, which is thought to have high potential to meet the main demands for non-volatile magnetic random access memory.展开更多
A new mechanism of light-to-electricity conversion that uses InGaN/GaN QWs with a p-n junction is reported.According to the well established light-to-electricity conversion theory,quantum wells(QWs) cannot be used i...A new mechanism of light-to-electricity conversion that uses InGaN/GaN QWs with a p-n junction is reported.According to the well established light-to-electricity conversion theory,quantum wells(QWs) cannot be used in solar cells and photodetectors because the photogenerated carriers in QWs usually relax to ground energy levels,owing to quantum confinement,and cannot form a photocurrent.We observe directly that more than 95% of the photoexcited carriers escape from InGaN/GaN QWs to generate a photocurrent,indicating that the thermionic emission and tunneling processes proposed previously cannot explain carriers escaping from QWs.We show that photoexcited carriers can escape directly from the QWs when the device is under working conditions.Our finding challenges the current theory and demonstrates a new prospect for developing highly efficient solar cells and photodetectors.展开更多
An explicit function expression for the bias voltage or/and temperature dependences of tunnel magnetoresistance ratio and resistances were obtained with a unique set of intrinsic parameters. Two of these intrinsic par...An explicit function expression for the bias voltage or/and temperature dependences of tunnel magnetoresistance ratio and resistances were obtained with a unique set of intrinsic parameters. Two of these intrinsic parameters are the Curie temperature TC and the density of state (DOS) for itinerant majority and minority electrons ξ(ρM/ρm), which are the eigen parameters of ferromagnetic electrodes. Others are the spin-dependent matrix-element ratio (i.e., |Td|2/|TJ|2 ) and the anisotropic-wavelength-cutoff energy ECγ of spin-wave spectrum in magnetic tunnel junction (MTJ), which are the structure parameters of an MTJ. These intrinsic parameters can be predetermined using the experimental measurement or, in principle, using the first-principle calculation method for an MTJ with the three key layers of FM/I/FM. Furthermore, a series of experimental data for an MTJ, for example, a spin-valve-type MTJ of Ta (5 nm)/Ni79Fe21(25 nm)/lr22Mn78(12 nm)/Co75Fe25(4 nm)/AI(0.8 nm)-oxide/Co75Fe25(4 nm)/Ni79Fe21(20 nm)/Ta (5 nm) in this work, can be self-consistently evaluated and explained using such concise explicit function formulations.展开更多
To study the influence of CoFeB/MgO interface on tunneling magnetoresistance (TMR), different structures of magnetic tunnel junctions (MTJs) are successfully prepared by the magnetron sputtering technique and char...To study the influence of CoFeB/MgO interface on tunneling magnetoresistance (TMR), different structures of magnetic tunnel junctions (MTJs) are successfully prepared by the magnetron sputtering technique and characterized by atomic force microscopy, a physical property measurement system, x-ray photoelectron spectroscopy, and transmission electron microscopy. The experimental results show that TMR of the CoFeB/Mg/MgO/CoFeB structure is evidently improved in comparison with the CoFeB/MgO/CoFeB structure because the inserted Mg layer prevents Fe-oxide formation at the CoFeB/MgO interface, which occurs in CoFeB/MgO/CoFeB MTJs. The inherent properties of the CoFeB/MgO/CoFeB, CoFeB/Fe-oxide/MgO/CoFeB and CoFeB/Mg/MgO/CoFeB MTJs are simulated by using the theories of density functions and non-equilibrium Green functions. The simulated results demonstrate that TMR of CoFeB/Fe-oxide/MgO/CoFeB MTJs is severely decreased and is only half the value of the CoFeB/Mg/MgO/CoFeB MTJs. Based on the experimental results and theoretical analysis, it is believed that in CoFeB/MgO/CoFeB MTJs, the interface oxidation of the CoFeB layer is the main reason to cause a remarkable reduction of TMR, and the inserted Mg layer may play an important role in protecting Fe atoms from oxidation, and then increasing TMR.展开更多
Single barrier magnetic-tunnel-junctions (MTJs) with the layer structure of Ta(5)/Cu(30)/Ta(5)/Ni79Fe21(5)/Ir22 Mn78(12)/Co60Fe20B20(4)/Al(0.8)-oxide/Co60Fe20B20(4)/Cu(30)/Ta(5) [thickness unit: nm] using the amorphou...Single barrier magnetic-tunnel-junctions (MTJs) with the layer structure of Ta(5)/Cu(30)/Ta(5)/Ni79Fe21(5)/Ir22 Mn78(12)/Co60Fe20B20(4)/Al(0.8)-oxide/Co60Fe20B20(4)/Cu(30)/Ta(5) [thickness unit: nm] using the amorphous Co60Fe20B20 alloy as free and pinned layers were micro-fabricated. The experimental investigations showed that the tunnel magnetoresistance (TMR) ratio and the resistance decrease with increasing dc bias voltage from 0 to 500 mV or with increasing temperature from 4.2 K to RT. A high TMR ratio of 86.2% at 4.2 K, which corresponds to the high spin polarization of Co60Fe20B20, 55%, was observed in the MTJs after annealing at 270℃ for 1 h. High TMR ratio of 53.1%, low junction resistance-area product RS of 3.56 kΩμm2, small coercivity HC of ≤4 Oe, and relatively large bias-voltage-at-half-maximum TMR with the value V1/2 of greater than 570 mV at RT have been achieved in such Co-Fe-B MTJs.展开更多
Low frequency noise has been investigated at room temperature for asymmetric double barrier magnetic tunnel junctions(DBMTJs), where the coupling between the top and middle CoFeB layers is antiferromagnetic with a 0...Low frequency noise has been investigated at room temperature for asymmetric double barrier magnetic tunnel junctions(DBMTJs), where the coupling between the top and middle CoFeB layers is antiferromagnetic with a 0.8-nm thin top Mg O barrier of the CoFeB/MgO/CoFe/CoFeB/MgO/CoFe B DBMTJ. At enough large bias, 1/f noise dominates the voltage noise power spectra in the low frequency region, and is conventionally characterized by the Hooge parameter αmag.With increasing external field, the top and bottom ferromagnetic layers are aligned by the field, and then the middle free layer rotates from antiparallel state(antiferromagnetic coupling between top and middle ferromagnetic layers) to parallel state. In this rotation process αmag and magnetoresistance-sensitivity-product show a linear dependence, consistent with the fluctuation dissipation relation. With the magnetic field applied at different angles(θ) to the easy axis of the free layer,the linear dependence persists while the intercept of the linear fit satisfies a cos(θ) dependence, similar to that for the magnetoresistance, suggesting intrinsic relation between magnetic losses and magnetoresistance.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 10564004)Korea Research Foundation(Grant No. KRF-2005-070-C00065)
文摘We present theoretical calculations of spin transport in spin filtering magnetic tunnelling junctions based on the Landauer Biittiker formalism and taking into account the spin-orbit coupling (SOC). It is shown that spin-flip scattering induced by SOC is stronger in parallel alignment of magnetization of the ferromegnet barrier (FB) and the ferromagnetic electrode than that in antiparallel case. The increase of negative tunnelling magnetoresistance with bias is in agreement with recent experimental observation.
基金Project supported in part by the National Key Research and Development Program of China(Grant Nos.2023YFA1608201 and 2023YFF0722301)the National Natural Science Foundation of China(Grant Nos.11925304,12020101002,12333013,12273119,and 12103093)supported by grant from the Russian Science Foundation(Grant No.23-7900019)。
文摘The terahertz band,a unique segment of the electromagnetic spectrum,is crucial for observing the cold,dark universe and plays a pivotal role in cutting-edge scientific research,including the study of cosmic environments that support life and imaging black holes.High-sensitivity superconductor–insulator–superconductor(SIS)mixers are essential detectors for terahertz astronomical telescopes and interferometric arrays.Compared to the commonly used classical Nb/AlO_(x)/Nb superconducting tunnel junction,the Nb/AlN/NbN hybrid superconducting tunnel junction has a higher energy gap voltage and can achieve a higher critical current density.This makes it particularly promising for the development of ultra-wideband,high-sensitivity coherent detectors or mixers in various scientific research fields.In this paper,we present a superconducting SIS mixer based on Nb/AlN/NbN parallel-connected twin junctions(PCTJ),which has a bandwidth extending up to490 GHz–720 GHz.The best achieved double-sideband(DSB)noise temperature(sensitivity)is below three times the quantum noise level.
基金supported by the National Key Research and Development Program of China (2017YFE0131500, 2022YFB2802801)the National Natural Science Foundation of China (61834008, U21A20493)+1 种基金the Key Research and Development Program of Jiangsu Province (BE2020004, BE2021008-1)the Suzhou Key Laboratory of New-type Laser Display Technology (SZS2022007)
文摘The InGaN films and GaN/InGaN/GaN tunnel junctions(TJs)were grown on GaN templates with plasma-assisted molecular beam epitaxy.As the In content increases,the quality of InGaN films grown on GaN templates decreases and the surface roughness of the samples increases.V-pits and trench defects were not found in the AFM images.p++-GaN/InGaN/n++-GaN TJs were investigated for various In content,InGaN thicknesses and doping concentration in the InGaN insert layer.The InGaN insert layer can promote good interband tunneling in GaN/InGaN/GaN TJ and significantly reduce operating voltage when doping is sufficiently high.The current density increases with increasing In content for the 3 nm InGaN insert layer,which is achieved by reducing the depletion zone width and the height of the potential barrier.At a forward current density of 500 A/cm^(2),the measured voltage was 4.31 V and the differential resistance was measured to be 3.75×10^(−3)Ω·cm^(2)for the device with a 3 nm p++-In_(0.35)Ga_(0.65)N insert layer.When the thickness of the In_(0.35)Ga_(0.65)N layer is closer to the“balanced”thickness,the TJ current density is higher.If the thickness is too high or too low,the width of the depletion zone will increase and the current density will decrease.The undoped InGaN layer has a better performance than n-type doping in the TJ.Polarization-engineered tunnel junctions can enhance the functionality and performance of electronic and optoelectronic devices.
文摘We study theoretically the electrical shot noise properties of tunnel junctions between a normal metal and a superconductor with the mixture of singlet s-wave and chiral triplet p-wave pairing due to broken inversion symmetry. We investigate how the shot noise properties vary as the relative amplitude between the two parity components in the pairing potential is changed. It is demonstrated that some characteristics of the electrical shot noise properties of such tunnel junctions may depend sensitively on the relative amplitude between the two parity components in the pairing potential, and some significant changes may occur in the electrical shot noise properties when the relative amplitude between the two parity components is varied from the singlet s-wave pairing dominated regime to the chiral triplet p-wave pairing dominated regime. In the chiral triplet p-wave pairing dominated regime, the ratio of noise power to electric current is close to 2e both in the in-gap and in the out-gap region. In the singlet s-wave pairing dominated regime, the value of this ratio is close to 4e in the inner gap region but may reduce to about 2e in the outer gap region as the relative amplitude of the chiral triplet pairing component is increased. The variations of the differential shot noise with the bias voltage also exhibit some significantly different features in different regimes. Such different features can serve as useful diagnostic tools for the determination of the relative magnitude of the two parity components in the pairing potential.
文摘The n type GaAs substrates are used and their conductive type is changed to p type by tunnel junction for AlGaInP light emitting diodes(TJ LED),then n type GaP layer is used as current spreading layer.Because resistivity of the n type GaP is lower than that of p type,the effect of current spreading layer is enhanced and the light extraction efficiency is increased by the n type GaP current spreading layer.For TJ LED with 3μm n type GaP current spreading layer,experimental results show that compared with conventional LED with p type GaP current spreading layer,light output power is increased for 50% at 20mA and for 66 7% at 100mA.
文摘This paper proposes a novel single electron random number generator (RNG). The generator consists of multiple tunneling junctions (MTJ) and a hybrid single electron transistor (SET)/MOS output circuit. It is an oscillator-based RNG. MTJ is used to implement a high-frequency oscillator, which uses the inherent physical randomness in tunneling events of the MTJ to achieve large frequency drift. The hybrid SET and MOS output circuit is used to amplify and buffer the output signal of the MTJ oscillator. The RNG circuit generates high-quality random digital sequences with a simple structure. The operation speed of this circuit is as high as 1GHz. The circuit also has good driven capability and low power dissipation. This novel random number generator is a promising device for future cryptographic systems and communication applications.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11874244 and 11974222)。
文摘Modulation between optical and ferroelectric properties was realized in a lateral structured ferroelectric CuInP_(2)S_(6)(CIPS)/semiconductor MoS_(2) van der Waals heterojunction.The ferroelectric hysteresis loop area was modulated by the optical field.Two types of photodetection properties can be realized in a device by changing the ON and OFF states of the ferroelectric layer.The device was used as a photodetector in the OFF state but not in the ON state.The higher tunnelling electroresistance(~1.4×10^(4))in a lateral structured ferroelectric tunnelling junction was crucial,and it was analyzed and modulated by the barrier height and width of the ferroelectric CIPS/semiconductor MoS_(2) Schottky junction.The new parameter of the ferroelectric hysteresis loop area as a function of light intensity was introduced to analyze the relationship between the ferroelectric and photodetection properties.The proposed device has potential application as an optoelectronic sensory cell in the biological nervous system or as a new type of photodetector.
基金the State Key Project of Fundamental Research of Ministry of Science and Technology (No. 2006CB932200) the National Natural Science Foundation of China (NSFC, No. 10574156)+2 种基金 the Knowledge Innovation Program of Chinese Aca.demy of Sciencesthe protial support of 0utstanding Young Researcher Foundation (Nos. 50325104 and 50528101) K.C.Wong Education Foundation, Hong Kong.
文摘Nano-ring-type magnetic tunnel junctions (NR-MTJs) with the layer structure of Ta(5)/Ir22Mn78(10)/ Co75Fe25(2)/Ru(0.75)/CoooFe20B20(3)/Al(0.6)-oxide/Co60Fe20B20(2.5)/Ta(3)/Ru(5) (thickness unit: nm) were nano-fabricated on the Si(100)/SiO2 substrate using magnetron sputtering deposition combined with the optical lithography, electron beam lithography (EBL) and Ar ion-beam etching techniques. The smaller NR-MTJs with the inner- and outer-diameter of around 50 and 100 nm and also their corresponding NR-MTJ arrays were nano-patterned. The tunnelling magnetoresistance (TMR & R) versus driving current (I) loops for a spin-polarized current switching were measured, and the TMR ratio of around 35% at room temperature were observed. The critical values of switching current for the free Co60Fe20B20 layer relative to the reference Co6oFe2oB2o layer between parallel and anti-parallel magnetization states were between 0.50 and 0.75 mA in such NR-MTJs. It is suggested that the applicable MRAM fabrication with the density and capacity higher than 256 Mbit/inch2 even 6 Gbite/inch2 are possible using both I NR-MTJ+1 transistor structure and current switching mechanism based on based on our fabricated 4×4 MRAM demo devices.
基金Project supported by the State Key Development Program for Basic Research of China (Grant Nos 2006CB202602 and2006CB202603)the National Natural Science Foundation of China (Grant No 60506003)
文摘This paper reports that a double N layer (a-Si:H/μc-Si:H) is used to substitute the single microcrystalline silicon n layer (n-μc-Si:H) in n/p tunnel recombination junction between subcells in a-Si:H/μc-Si:H tandem solar cells. The electrical transport and optical properties of these tunnel recombination junctions are investigated by current voltage measurement and transmission measurement. The new n/p tunnel recombination junction shows a better ohmic contact. In addition, the n/p interface is exposed to the air to examine the effect of oxidation on the tunnel recombination junction performance. The open circuit voltage and FF of a-Si:H/μc-Si:H tandem solar cell are all improved and the current leakage of the subcells can be effectively prevented efficiently when the new n/p junction is implemented as tunnel recombination junction.
文摘To improve the energy resolution(?E) of Nb/Al superconducting tunnel junctions(STJs), an ozone(O3) oxidation process has been developed to fabricate a thin defect-free tunnel barrier that simultaneously shows high critical current JC〉 1000 A/cm^2 and high normalized dynamic resistance RDA 〉 100 MΩ·μm^2, where A is the size of the STJ. The 50-μm^2 STJs produced by O3 exposure of 0.26 Pa·min with an indirect spray of O3 gas, which is a much lower level of exposure than the O2 exposure used in a conventional O2 oxidation process, exhibit a maximum JC= 800 A/cm^2 and a high RDA = 372 MΩ ·μm^2. The 100-pixel array of the 100-μm^2STJs produced using the same O3 oxidation conditions exhibits a constant leak current I leak= 14.9 ± 3.2 n A at a bias point around △ /e(where e is half the energy gap of an STJ),and a high fabrication yield of 87%. Although the I leak values are slightly larger than those of STJs produced using the conventional O2 oxidation process, the STJ produced using O3 oxidation shows a ?E = 10 eV for the C-Kα line, which is the best value of our Nb/Al STJ x-ray detectors.
基金Project supported by the National Basic Research Program of China (Grant No. 2006CB202604)the Knowledge Innovation Program of Chinese Academy of Sciences (Grant No. 1KGCX2-YW-383-1)the National High Technology Research and Development Program of China (Grant No. SQ2010AA0521758001)
文摘A new tunnel recombination junction is fabricated for n-i-p type micromorph tandem solar cells. We insert a thin heavily doped hydrogenated amorphous silicon (a-Si:H) p^+ recombination layer between the n a-Si:H and the p hydrogenated nanocrystalline silicon (nc-Si:H) layers to improve the performance of the n-i-p tandem solar cells. The effects of the boron doping gas ratio and the deposition time of the p-a-Si:H recombination layer on the tunnel recombination junctions have been investigated. The current-voltage characteristic of the tunnel recombination junction shows a nearly ohmic characteristic, and the resistance of the tunnel recombination junction can be as low as 1.5 Ω-cm^2 by using the optimized p-a-Si:H recombination layer. We obtain tandem solar cells with open circuit voltage Voc = 1.4 V, which is nearly the sum of the Vocs of the two corresponding single cells, indicating no Voc losses at the tunnel recombination junction.
基金Natural Science Foundation of Shanghai Science and Technology Commission (grant No. 11ZR1411300)Pujiang Talent Program of Shanghai Science and Technology Commission (grant No. 11PJ1402700) for the financial support
文摘Magnetic tunnel junctions(MTJs) based on MgO barrier have been fabricated by sputtering single crystal MgO target and metal Mg target, respectively, using magnetic sputtering system Nordiko 2000. MgO barriers have been formed by a multi-step deposition and natural oxidization of Mg layer. Mg layer thickness,oxygen flow rate and oxidization time were adjusted and the tunnel magnetoresistance(TMR) ratio of optimal MTJs is over 60% at annealing temperature 385. The(001) MgO crystal structure was obtained when the separation distance between MgO target and substrate is less than 6 cm. The TMR ratio of most MgO based MTJs are over 100% at the separation distance of 5 cm and annealing temperature 340. The TMR ratios of MTJs are almost zero when the separation distance ranges from 6 to 10 cm, due to the amorphous nature of the MgO film.
基金President’s Fund of CUHKSZ,Longgang Key Laboratory of Applied Spintronics,at The Chinese University of Hong Kong,the National Natural Science Foundation of China(Grant Nos.11974298 and 61961136006)the Shenzhen Fundamental Research Fund,China(Grant No.JCYJ20170410171958839)Shenzhen Peacock Group Plan,China(Grant No.KQTD20180413181702403).
文摘We report a p24(HIV disease biomarker)detection assay using an MgO-based magnetic tunnel junction(MTJ)sensor and 20-nm magnetic nanoparticles.The MTJ array sensor with sensing area of 890×890μ2 possessing a sensitivity of 1.39%/Oe was used to detect p24 antigens.It is demonstrated that the p24 antigens could be detected at a concentration of 0.01μg/ml.The development of bio-detection systems based on magnetic tunnel junction sensors with high-sensitivity will greatly benefit the early diagnosis of HIV.
基金supported by the National Natural Science Foundation of China(Grant No.11274054)the Open Project of Jiangsu Provincial Laboratory of Advanced Functional Materials,China(Grant No.12KFJJ005)
文摘The interface with a pinned dipole within the composite barrier in a ferroelectric tunnel junction(FTJ) with symmetric electrodes is investigated.Different from the detrimental effect of the interface between the electrode and barrier in previous studies,the existence of an interface between the dielectric SrTiO_3 slab and ferroelectric BaTiO_3 slab in FTJs will enhance the tunneling electroresistance(TER) effect.Specifically,the interface with a lower dielectric constant and larger polarization pointing to the ferroelectric slab favors the increase of TER ratio.Therefore,interface control of high performance FTJ can be achieved.
基金supported by the State Key Project of Fundamental Research of Ministry of Science and Technology,China(Grant No.2010CB934400)the National Natural Science Foundation of China(Grant Nos.51229101 and 11374351)
文摘Recent progresses in magnetic tunnel junctions with perpendicular magnetic anisotropy (PMA) are reviewed and summarized. At first, the concept and source of perpendicular magnetic anisotropy (PMA) are introduced. Next, a historical overview of PMA materials as magnetic electrodes, such as the RE-TM alloys TbFeCo and GdFeCo, novel tetragonal manganese alloys Mn-Ga, L10-ordered (Co, Fe)/Pt alloy, multilayer film [Co, Fe, CoFe/Pt, Pd, Ni, AU]N, and ultra-thin magnetic metal/oxidized barrier is offered. The other part of the article focuses on the optimization and fabrication of CoFeB/MgO/CoFeB p-MTJs, which is thought to have high potential to meet the main demands for non-volatile magnetic random access memory.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574362,61210014,and 11374340)the Innovative Clean-energy Research and Application Program of Beijing Municipal Science and Technology Commission,China(Grant No.Z151100003515001)
文摘A new mechanism of light-to-electricity conversion that uses InGaN/GaN QWs with a p-n junction is reported.According to the well established light-to-electricity conversion theory,quantum wells(QWs) cannot be used in solar cells and photodetectors because the photogenerated carriers in QWs usually relax to ground energy levels,owing to quantum confinement,and cannot form a photocurrent.We observe directly that more than 95% of the photoexcited carriers escape from InGaN/GaN QWs to generate a photocurrent,indicating that the thermionic emission and tunneling processes proposed previously cannot explain carriers escaping from QWs.We show that photoexcited carriers can escape directly from the QWs when the device is under working conditions.Our finding challenges the current theory and demonstrates a new prospect for developing highly efficient solar cells and photodetectors.
基金This work was supported by 2000 Hundred Talents Program project of Chinese Academy of Sciences and 973 project with Grant No. 2001CB610601 of PRC Ministry of Science and Technology. X.F.Han also gratefully acknowledges the partial support of K.C.Wong Edu
文摘An explicit function expression for the bias voltage or/and temperature dependences of tunnel magnetoresistance ratio and resistances were obtained with a unique set of intrinsic parameters. Two of these intrinsic parameters are the Curie temperature TC and the density of state (DOS) for itinerant majority and minority electrons ξ(ρM/ρm), which are the eigen parameters of ferromagnetic electrodes. Others are the spin-dependent matrix-element ratio (i.e., |Td|2/|TJ|2 ) and the anisotropic-wavelength-cutoff energy ECγ of spin-wave spectrum in magnetic tunnel junction (MTJ), which are the structure parameters of an MTJ. These intrinsic parameters can be predetermined using the experimental measurement or, in principle, using the first-principle calculation method for an MTJ with the three key layers of FM/I/FM. Furthermore, a series of experimental data for an MTJ, for example, a spin-valve-type MTJ of Ta (5 nm)/Ni79Fe21(25 nm)/lr22Mn78(12 nm)/Co75Fe25(4 nm)/AI(0.8 nm)-oxide/Co75Fe25(4 nm)/Ni79Fe21(20 nm)/Ta (5 nm) in this work, can be self-consistently evaluated and explained using such concise explicit function formulations.
基金Supported by the National Defense Advance Research Foundation under Grant No 9140A08XXXXXX0DZ106the Basic Research Program of Ministry of Education of China under Grant No JY10000925005+2 种基金the Scientific Research Program Funded by Shaanxi Provincial Education Department under Grant No 11JK0912the Scientific Research Foundation of Xi'an University of Science and Technology under Grant No 2010011the Doctoral Research Startup Fund of Xi'an University of Science and Technology under Grant No 2010QDJ029
文摘To study the influence of CoFeB/MgO interface on tunneling magnetoresistance (TMR), different structures of magnetic tunnel junctions (MTJs) are successfully prepared by the magnetron sputtering technique and characterized by atomic force microscopy, a physical property measurement system, x-ray photoelectron spectroscopy, and transmission electron microscopy. The experimental results show that TMR of the CoFeB/Mg/MgO/CoFeB structure is evidently improved in comparison with the CoFeB/MgO/CoFeB structure because the inserted Mg layer prevents Fe-oxide formation at the CoFeB/MgO interface, which occurs in CoFeB/MgO/CoFeB MTJs. The inherent properties of the CoFeB/MgO/CoFeB, CoFeB/Fe-oxide/MgO/CoFeB and CoFeB/Mg/MgO/CoFeB MTJs are simulated by using the theories of density functions and non-equilibrium Green functions. The simulated results demonstrate that TMR of CoFeB/Fe-oxide/MgO/CoFeB MTJs is severely decreased and is only half the value of the CoFeB/Mg/MgO/CoFeB MTJs. Based on the experimental results and theoretical analysis, it is believed that in CoFeB/MgO/CoFeB MTJs, the interface oxidation of the CoFeB layer is the main reason to cause a remarkable reduction of TMR, and the inserted Mg layer may play an important role in protecting Fe atoms from oxidation, and then increasing TMR.
基金Project supported by the State Key Project of Fundamen-tal Research of Ministry of Science and Technology(MOST,China,Grant No.2001CB610601)Chinese Academy of Science.X.F.Han gratefully thanks the partial support of the National Natural Science Foundation of China(50271081 and 10274103)Distinct Young Researcher Foundation(50325104).
文摘Single barrier magnetic-tunnel-junctions (MTJs) with the layer structure of Ta(5)/Cu(30)/Ta(5)/Ni79Fe21(5)/Ir22 Mn78(12)/Co60Fe20B20(4)/Al(0.8)-oxide/Co60Fe20B20(4)/Cu(30)/Ta(5) [thickness unit: nm] using the amorphous Co60Fe20B20 alloy as free and pinned layers were micro-fabricated. The experimental investigations showed that the tunnel magnetoresistance (TMR) ratio and the resistance decrease with increasing dc bias voltage from 0 to 500 mV or with increasing temperature from 4.2 K to RT. A high TMR ratio of 86.2% at 4.2 K, which corresponds to the high spin polarization of Co60Fe20B20, 55%, was observed in the MTJs after annealing at 270℃ for 1 h. High TMR ratio of 53.1%, low junction resistance-area product RS of 3.56 kΩμm2, small coercivity HC of ≤4 Oe, and relatively large bias-voltage-at-half-maximum TMR with the value V1/2 of greater than 570 mV at RT have been achieved in such Co-Fe-B MTJs.
基金supported by the National Basic Research Program of China(Grant Nos.2011CBA00106,2012CB927400,2010CB934401,and 2014AA032904)the National High Technology Research and Development Program of China(Grant No.2014AA032904)the National Natural Science Foundation of China(Grant Nos.11434014 and 11104252)
文摘Low frequency noise has been investigated at room temperature for asymmetric double barrier magnetic tunnel junctions(DBMTJs), where the coupling between the top and middle CoFeB layers is antiferromagnetic with a 0.8-nm thin top Mg O barrier of the CoFeB/MgO/CoFe/CoFeB/MgO/CoFe B DBMTJ. At enough large bias, 1/f noise dominates the voltage noise power spectra in the low frequency region, and is conventionally characterized by the Hooge parameter αmag.With increasing external field, the top and bottom ferromagnetic layers are aligned by the field, and then the middle free layer rotates from antiparallel state(antiferromagnetic coupling between top and middle ferromagnetic layers) to parallel state. In this rotation process αmag and magnetoresistance-sensitivity-product show a linear dependence, consistent with the fluctuation dissipation relation. With the magnetic field applied at different angles(θ) to the easy axis of the free layer,the linear dependence persists while the intercept of the linear fit satisfies a cos(θ) dependence, similar to that for the magnetoresistance, suggesting intrinsic relation between magnetic losses and magnetoresistance.