期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
The failure propagation of weakly stable sediment:A reason for the formation of high-velocity turbidity currents in submarine canyons
1
作者 Yupeng REN Yi ZHANG +3 位作者 Guohui XU Xingbei XU Houjie WANG Zhiyuan CHEN 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第1期100-117,共18页
The long-distance movement of turbidity currents in submarine canyons can transport large amounts of sediment to deep-sea plains.Previous studies show obvious differences in the turbidity current velocities derived fr... The long-distance movement of turbidity currents in submarine canyons can transport large amounts of sediment to deep-sea plains.Previous studies show obvious differences in the turbidity current velocities derived from the multiple cables damage events ranging from 5.9 to 28.0 m/s and those of field observations between 0.15 and 7.2 m/s.Therefore,questions remain regarding whether a turbid fluid in an undersea environment can flow through a submarine canyon for a long distance at a high speed.A new model based on weakly stable sediment is proposed(proposed failure propagation model for weakly stable sediments,WS S-PFP model for short)to explain the high-speed and long-range motion of turbidity currents in submarine canyons through the combination of laboratory tests and numerical analogs.The model is based on two mechanisms:1)the original turbidity current triggers the destabilization of the weakly stable sediment bed and promotes the destabilization and transport of the soft sediment in the downstream direction and 2)the excitation wave that forms when the original turbidity current moves into the canyon leads to the destabilization and transport of the weakly stable sediment in the downstream direction.The proposed model will provide dynamic process interpretation for the study of deep-sea deposition,pollutant transport,and optical cable damage. 展开更多
关键词 turbidity current excitation wave dense basal layer velocity WSS-PFP model
下载PDF
Evaluation of flow regime of turbidity currents entering Dez Reservoir using extended shallow water model
2
作者 Valery Ivanovich ELFIMOV Hamid KHAKZAD 《Water Science and Engineering》 EI CAS CSCD 2014年第3期267-276,共10页
In this study, the performance of the extended shallow water model (ESWM) in evaluation of the flow regime of turbidity currents entering the Dez Reservoir was investigated. The continuity equations for fluid and pa... In this study, the performance of the extended shallow water model (ESWM) in evaluation of the flow regime of turbidity currents entering the Dez Reservoir was investigated. The continuity equations for fluid and particles and the Navier-Stokes equations govern the entire flow of turbidity currents. The shallow water equations governing the flow of the depositing phase of turbidity currents are derived from these equations. A case study was conducted on the flow regime of turbidity currents entering the Dez Reservoir in Iran from January 2002 to July 2003. Facing a serious sedimentation problem, the dead storage of the Dez Reservoir will be full in the coming 10 years, and the inflowing water in the hydropower conduit system is now becoming turbid. Based on the values of the dimensionless friction number ( Nf ≤1 ) and dimensionless entrainment number ( NE≤ 1 ) of turbidity currents, and the coefficient of determination between the observed and predicted deposit depths (R2 = 0.86) for the flow regime of negligible friction and negligible entrainment (NFNE), the flow regime of turbidity currents coming into the Dez Reservoir is considered to be NFNE. The results suggest that the ESWM is an appropriate approach for evaluation of the flow regime of turbidity currents in dam reservoirs where the characteristics of turbidity currents, such as the deposit depth, must be evaluated. 展开更多
关键词 flow regime turbidity current Dez Reservoir extended shallow water model Navier-Stokes equations
下载PDF
On a Shallow Water Model for the Simulation of Turbidity Currents 被引量:3
3
作者 T.Morales de Luna M.J.Castro Dıaz +1 位作者 C.Pares Madronal E.D.Fernandez Nieto 《Communications in Computational Physics》 SCIE 2009年第9期848-882,共35页
We present a model for hyperpycnal plumes or turbidity currents that takes into account the interaction between the turbidity current and the bottom,considering deposition and erosion effects as well as solid transpor... We present a model for hyperpycnal plumes or turbidity currents that takes into account the interaction between the turbidity current and the bottom,considering deposition and erosion effects as well as solid transport of particles at the bed load due to the current.Water entrainment from the ambient water in which the turbidity current plunges is also considered.Motion of ambient water is neglected and the rigid lid assumption is considered.The model is obtained as a depth-average system of equations under the shallow water hypothesis describing the balance of fluid mass,sediment mass and mean flow.The character of the system is analyzed and numerical simulations are carried out using finite volume schemes and path-conservative Roe schemes. 展开更多
关键词 turbidity currents hyperbolic systems finite volume methods path-conservative schemes numerical modeling
原文传递
CHARACTERISTIC ANALYSIS OF THE PLUNGING OF TURBIDITY CURRENTS 被引量:5
4
作者 AN Rui-dong LI Jia 《Journal of Hydrodynamics》 SCIE EI CSCD 2010年第2期274-282,共9页
Turbidity currents are flows driven by suspended sediment of flood-induced turbid river water with excess density.Such currents are often the governing factor in reservoir sedimentation by transporting fine materials ... Turbidity currents are flows driven by suspended sediment of flood-induced turbid river water with excess density.Such currents are often the governing factor in reservoir sedimentation by transporting fine materials over long distances and delivering the majority of deposition,which thus reduces the storage capacity.Therefore,the design and operation of a reservoir requires an accurate prediction of its occurrence condition and plunging position,which is the objective of the present study.This article presents a verified algebraic slip mixture model including momentum,continuity and algebraic velocity expressions to simulate 2-D turbidity currents.Test experiments in a multiphase flume were carried out.Reynolds number,sediment concentration and densimetric Froude number were used as parameters in the occurrence condition analysis.The plunging of turbidity currents may produce reflux and backflow due to the diving flow at the surface of the clear water.The similar experimental results were also obtained by PIV measurements 展开更多
关键词 turbidity current plunge suspend sediment algebraic slip mixture model densimetric Froude number
原文传递
Numerical and experimental study of continuous and discontinuous turbidity currents on a flat slope
5
作者 Zhong-luan Yan Rui-dong An +3 位作者 Jia Li Yun Deng Yong Li Ya-ya Xu 《Journal of Hydrodynamics》 SCIE EI CSCD 2018年第6期1083-1092,共10页
When the sediment and the dissolved matter laden in the river meet a clear water in reservoirs, the turbid water will plunge and spread into the clear water, forming the turbidity current and influencing the water qua... When the sediment and the dissolved matter laden in the river meet a clear water in reservoirs, the turbid water will plunge and spread into the clear water, forming the turbidity current and influencing the water quality and the life of the reservoir. Due to the unsteady nature of the flood, the turbidity current is unsteady. In the present study, we use the MIKE 3 computational fluid dynamics code to simulate continuous and discontinuous turbidity currents on a flat slope. With the model used by us, the turbulence is divided into two parts: the horizontal turbulence and the vertical turbulence, which are separately modeled by the Smagorinsky model and our model to capture the anisotropic turbulence. In this model, the sediment settling and deposition are considered. The simulation results concerning the flume water surface level, the front velocity and sediment concentration profiles are found consistent with the experimental data, particularly, for the sediment concentration profiles with an absolute mean error of 0.026 kg/m3and the root mean square error of 0.046 kg/m3. This finding suggests that this model can be used to well predict the turbidity current on the flat slope. 展开更多
关键词 turbidity current DISCONTINUITY numerical model TURBULENCE Smagorinsky model
原文传递
CFD simulation on the generation of turbidites in deepwater areas: a case study of turbidity current processes in Qiongdongnan Basin, northern South China Sea 被引量:5
6
作者 JIANG Tao ZHANG Yingzhao +6 位作者 TANG Sulin ZHANG Daojun ZUO Qianmei LIN Weiren WANG Yahui SUN Hui WANG Bo 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第12期127-137,共11页
Turbidity currents represent a major agent for sediment transport in lakes, seas and oceans. In particu-lar, they formulate the most significant clastic accumulations in the deep sea, which become many of the world's... Turbidity currents represent a major agent for sediment transport in lakes, seas and oceans. In particu-lar, they formulate the most significant clastic accumulations in the deep sea, which become many of the world's most important hydrocarbon reservoirs. Several boreholes in the Qiongdongnan Basin, the north-western South China Sea, have recently revealed turbidity current deposits as significant hydrocarbon res-ervoirs. However, there are some arguments for the potential provenances. To solve this problem, it is es-sential to delineate their sedimentary processes as well as to evaluate their qualities as reservoir. Numerical simulations have been developed rapidly over the last several years, offering insights into turbidity current behaviors, as geologically significant turbidity currents are difficult to directly investigate due to their large scale and often destructive nature. Combined with the interpretation of the turbidity system based on high-resolution 3D seismic data, the paleotophography is acquired via a back-stripping seismic profile integrated with a borehole, i.e., Well A, in the western Qiongdongnan Basin; then a numerical model is built on the basis of this back-stripped profile. After defining the various turbidity current initial boundary conditions, includ-ing grain size, velocity and sediment concentration, the structures and behaviors of turbidity currents are investigated via numerical simulation software ANSYS FLUENT. Finally, the simulated turbidity deposits are compared with the interpreted sedimentary bodies based on 3D seismic data and the potential provenances of the revealed turbidites by Well A are discussed in details. The simulation results indicate that a sedimen-tary body develops far away from its source with an average grain size of 0.1 mm, i.e., sand-size sediment. Taking into account the location and orientation of the simulated seismic line, the consistence between normal forward simulation results and the revealed cores in Well A indicates that the turbidites should have been transported from Vietnam instead of Hainan Island. This interpretation has also been verified by the planar maps of sedimentary systems based on integration of boreholes and seismic data. The identification of the turbidity provenance will benefit the evaluation of extensively distributed submarine fans for hydro-carbon exploration in the deepwater areas. 展开更多
关键词 turbidity current CFD simulation 3D seismic interpretation sedimentary process
下载PDF
Features and Origin of Turbidity Current Sediment Waves in the Huatung Basin off the Eastern Taiwan Island 被引量:1
7
作者 LIU Jie SUN Meijing +1 位作者 GAO Hongfang LI Xuejie 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第4期1088-1096,共9页
Based on numerous high-resolution seismic profiles,sediment waves and their distribution,morphological characteristics,internal structure,and potential origins were revealed in the eastern waters of Taiwan.The sedimen... Based on numerous high-resolution seismic profiles,sediment waves and their distribution,morphological characteristics,internal structure,and potential origins were revealed in the eastern waters of Taiwan.The sediment waves are located at the junction between the Taitung Canyon and other canyons in the slope.The wave length and the wave height of a single waveform ranged from 0.8 to 7.2 km and from 18 to 75 m,respectively(NE-SW direction).Sediment waves,located inside the bend of the Taitung Canyon,were characterized by an upward migration and showed mass transport deposits(MTDs)at the bottom,while the inner curve of the bend was subdivided into lower and upper wavy transition units.The sediment waves on the outer curve of the bend were characterized by vertical accumulation,and there was no mass flow deposit at the bottom.According to the geometry of the sediment waves,the calculated flow thicknesses across the entire wave field ranged from 196 to 356 m,and the current velocity ranged from 15 to 21 cm/s.The morphological characteristics,the internal structure,and the distribution of sediment waves,as well as the numerical calculations,evidenced that these sediment waves had formed by turbidity currents.The development of the sediment wave field in eastern Taiwan was found to be similar to that in southwestern Taiwan.It was the sedimentary response of the tectonic movement between 3 and^1 Ma which created the sedimentary systems where gravity flow processes predominated.Turbidity current sediments settled in the place of less topographical constraints or overflowed in the bend section of the Taitung Canyon,which resulted in the formation of sediment wave fields. 展开更多
关键词 Huatung Basin Taitung Canyon sediment wave turbidity current formation mechanism
下载PDF
Steady Lateral Growth of Three-Dimensional Particle Laden Density Currents
8
作者 M.R.Moossavi Hekmati M.Najafi N.Ashrafi khorasani 《China Ocean Engineering》 SCIE EI CSCD 2018年第4期467-475,共9页
In this paper the steady lateral growth of three-dimensional turbulent inclined turbidity current is investigated. To simulate the current, an experimental setup is developed to analyze the turbidity current for diffe... In this paper the steady lateral growth of three-dimensional turbulent inclined turbidity current is investigated. To simulate the current, an experimental setup is developed to analyze the turbidity current for different regimes in the particle laden density currents environment. The Buckingham’s π theorem together with a dimensional analysis is implemented to derive the appropriate non-dimensional variables. The experimental results were normalized and plotted in the form of non-dimensional graphs from which a theoretical model is developed and analyzed. Based on the results obtained for the steady lateral growth, three different regimes, namely, inertia-viscous one as the first regime, buoyancy-viscous and gravity-viscous as the second and third regimes are distinguished within the current.In these regimes, the force balance is between the driving and resisting forces. Namely, in the first regime, the force balance is between the inertia and viscous forces, in the second regime, the buoyancy and viscous forces, and in the third regime, gravity and viscous forces are balanced. The experimental results indicate that the lateral growth rate in the first regime is smaller than that in the second and third regimes due to the magnitude and type of the forces involved in those regimes. According to the graphical results, the three different lateral growth rates appear when the normalized current length is smaller than about 3, between about 3 and 10, and larger than about 10. In those regions,the slopes of the data are different with respect to one another. 展开更多
关键词 turbidity current STEADY PARTICLE lateral growth TURBULENCE supercritical initial conditions
下载PDF
CFD Modeling of Turbidity Current Deposition
9
作者 Sergio Perez 《Journal of Marine Science and Application》 2010年第1期42-47,共6页
Simulation of the flow and deposition from a laboratory turbidity current, in which dense mixtures of sediment move down a narrow, sloping channel and flow into a large tank. SSIIM CFD software is used to model 3-D fl... Simulation of the flow and deposition from a laboratory turbidity current, in which dense mixtures of sediment move down a narrow, sloping channel and flow into a large tank. SSIIM CFD software is used to model 3-D flow and deposition. SSIIM predicts the height of the accumulated mound to within 25% of experimental values, and the volume of the mound to 20%-50%, depending on the concentration of sediment and slope of the channel. The SSIIM predictions were consistently lower than experimental values. In simulations with initial sediment volumetric concentrations greater than 14%, SSIIM dumped some of the sediment load at the entry gate into the channel, which was not the case with the experimental runs. This is likely due to the fact that the fall velocity of sediment particles in SSIIM does not vary with sediment concentration. Further simulations of deposition from turbidity currents should be attempted when more complete experimental results are available, but it appears for now that SSIIM can be used to give approximate estimates of turbidity current deposition. 展开更多
关键词 SEDIMENT turbidity current computational fluid dynamics SSIIM density current
下载PDF
Two Kinds of Waves Causing the Resuspension of Deep-Sea Sediments:Excitation and Internal Solitary Waves
10
作者 REN Yupeng TIAN Hao +3 位作者 CHEN Zhiyuan XU Guohui LIU Lejun LI Yibing 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第2期429-440,共12页
The resuspension of marine sediments plays a key role in the biogeochemical cycle and marine ecology system.Internal solitary waves are considered to be important driving forces of the resuspension of bottom sediments... The resuspension of marine sediments plays a key role in the biogeochemical cycle and marine ecology system.Internal solitary waves are considered to be important driving forces of the resuspension of bottom sediments.In this paper,the movement of turbidity currents,the generation and the effects on the bottom bed of internal solitary waves and excitation waves are studied by flume tests and numerical simulations,and the sediment resuspension are analyzed.The results show that the excitation wave can lead to the resuspension of the bottom sediments under all the conditions,while the internal solitary wave can lead to the resuspension of the sediment only under some special conditions,such as high amplitude or large underwater slope.Under the experimental conditions,the change in the near-bottom velocity caused by the excitation wave is close to three times that of the internal solitary wave. 展开更多
关键词 DEEP-SEA sediment resuspension internal solitary wave turbidity current excitation wave
下载PDF
Deep-water gravity flow deposits in a lacustrine rift basin and their oil and gas geological significance in eastern China 被引量:5
11
作者 CAO Yingchang JIN Jiehua +5 位作者 LIU Haining YANG Tian LIU Keyu WANG Yanzhong WANG Jian LIANG Chao 《Petroleum Exploration and Development》 CSCD 2021年第2期286-298,共13页
The types,evolution processes,formation mechanisms,and depositional models of deep-water gravity flow deposits in a lacustrine rift basin are studied through core observation and systematic analysis.Massive transport ... The types,evolution processes,formation mechanisms,and depositional models of deep-water gravity flow deposits in a lacustrine rift basin are studied through core observation and systematic analysis.Massive transport of slide and slump,fluid transport of debris flow and turbidity currents are driven by gravity in deep-water lacustrine environment.The transformation between debris flow and turbidity current,and the transformation of turbidity current between supercritical and subcritical conditions are the main dynamic mechanisms of gravity flow deposits in a lake basin.The erosion of supercritical turbidity current controls the formation of gravity-flow channel.Debris flow deposition gives rise to tongue shape lobe rather than channel.Deep-water gravity flow deposits are of two origins,intrabasinal and extrabasinal.Intrabasinal gravity flow deposits occur as single tongue-shape lobe or fan of stacking multiple lobes.Extrabasinal gravity-flow deposits occur as sublacustrine fan with channel or single channel sand body.However,the nearshore subaqueous fan is characterized by fan of stacking multiple tongue shape lobes without channel.The differential diagenesis caused by differentiation in the nearshore subaqueous fan facies belt results in the formation of diagenetic trap.The extrabasinal gravity flow deposits are one of the important reasons for the abundant deep-water sand bodies in a lake basin.Slide mass-transport deposits form a very important type of lithologic trap near the delta front often ignored.The fine-grained sediment caused by flow transformation is the potential"sweet spot"of shale oil and gas. 展开更多
关键词 turbidity current debris flow deep-water gravity-flow deposits depositional model oil and gas geological significance fault lake basin
下载PDF
Lithofacies Characters and Significance of the Submarine Fan of the Liufengguan Group in Qinling 被引量:2
12
作者 ZHENG Ning LI Tingdong +3 位作者 YOU Guoqing ZHANG Shuanhou CUI Jiantang CHENG Muwei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第1期174-188,共15页
Field investigation and laboratory research on flysch of the Liufengguan Group in Qinling indicate the following: (1) Sandstone of the Liufengguan Group is categorized as feldspathic lithic graywacke with a minor a... Field investigation and laboratory research on flysch of the Liufengguan Group in Qinling indicate the following: (1) Sandstone of the Liufengguan Group is categorized as feldspathic lithic graywacke with a minor amount of lithic graywacke in the QFR triangular diagram. Grain size〈0.3 mm. Bedding plane structures such as groove casts and suspected flute casts can be found at the bottom of the sandstone. It is inferred that currents may have come from the southeast during deposition. Bedding structures such as ripple marks, graded bedding, parallel bedding, small-scale cross bedding, climbing bedding, suspected convolute bedding, microlamination and sliding structures have also been observed, which are of indicative significance. It is thought that the Liufengguan Group has the sedimentary characteristics of bedding, bedding plane structures and lithologicai assemblages of deep-sea low-density turbidity current deposits. The vertical succession of the Bouma sequence in the inner fan subfacies zone is generally incomplete: the assemblage of Ta and Tabc is commonly seen; the succession of the middle fan subfacies zone is relatively complete; and divisions Te and Tb are common in the outer fan subfacies zone. (2) The flysh of the Liufengguan Group is a sequence of deep-sea argillaceous-arenaceous submarine fan deposits, in which the authors recognize the inner, middle and outer fan subfacies and also nine types of lithofacies: normal graded sandstone (A1), medium- to thick-bedded, fine-grained sandstone (A2), medium- to thick-bedded and massive siltstone (A3), thin-bedded, fine-grained sandstone and mudstone (B1), irregular interbeds of thinbedded, fine-grained sandstone and siltstone (B2), thin-bedded, fine-grained sandstone (C1), very thin-bedded, fine-grained sandstone (D1), olistostromes (El) anddeep-sea mudstone (F). The inner fan consists of four microfacies: natural levee (A1), water channel (A2, A3) and olistostrome (El); in the middle fan there also occur four microfacies, i.e., branch channel (B1), branch channel (B2), interdistributary bay (D1) and olistostrome. The outer fan is made up of the branch channel (C1) and sheet sand (D1) microfacies, which alternate vertically with sediments of deep-sea plain subfacies (F). There occur fining- and thinning-upward channel deposits in the outer-fan subfacies zone of the submarine fan of the Liufengguan Group observed in this study. The quartz content of the graywacke of the deposits is all higher than 40% and may reach as high as 60%. Therefore, on the basis of the aforementioned features, this flysh should be formed in a passive continental-margin tectonic environment. 展开更多
关键词 Liufengguan Group flysh lithofacies low-density turbidity current submarine fan
下载PDF
Research on Characteristics of Density Current Under the Action of Waves
13
作者 Li, DS Shen, Y +1 位作者 Ren, RS Chen, Y 《China Ocean Engineering》 SCIE EI 1997年第1期69-78,共10页
In this paper, the characteristics of density current under the action of waves are described with the help of flume experiment and theoretical analysis. The study shows that turbid water under the action of the waves... In this paper, the characteristics of density current under the action of waves are described with the help of flume experiment and theoretical analysis. The study shows that turbid water under the action of the waves can present three types of motion, i. e. significant stratification, fragile stratification and strong mixing. The motion gf turbid;,ater presents significant stratification when (H/D)/root Delta rho/rho less than or equal to 4.5, generally this state is known as density current. The formulas of motion velocity, thickness, and discharge of density current moving on horizontal bottom are derived by use of basic equations such as momemtum equation, equation of energy conservation and continuity equation of fluid. The time-average velocity and the thickness of density current under the action of waves have a relationship with such parameters as relative density (Delta rho/rho), wave height (H), and water depth (D). When these parameters are determined, the time-average thickness and motion velocity of density current are also determined. The relative thickness of density current (D-t/D) decreases with the increase of Delta rho/rho and increases with the increase of H/D. On the other hand, the motion velocity of density current increases with the increase of Delta rho/rho and decreases with the increase of the relative thickness (D-t/D) of density current. It is shown that the calculated results are in agreement with those of the flume experiment. 展开更多
关键词 turbid current density current gravity current wave action motion velocity thickness
下载PDF
Deepwater Canyons Reworked by Bottom Currents:Sedimentary Evolution and Genetic Model 被引量:3
14
作者 吕彩丽 姚永坚 +2 位作者 龚月华 吴时国 李学杰 《Journal of Earth Science》 SCIE CAS CSCD 2012年第5期731-743,共13页
Based on multi-beam bathymetric data and 2D high-resolution, multi-channel seismic prof'des, combing ODPl148 drilling data, the morphology, internal sedimentary architecture, and evo-lution pattern of 17 deepwater ca... Based on multi-beam bathymetric data and 2D high-resolution, multi-channel seismic prof'des, combing ODPl148 drilling data, the morphology, internal sedimentary architecture, and evo-lution pattern of 17 deepwater canyons from the Middle Miocene to present are documented in the northern Baiyun (白云) sag (BS), Pearl River Mouth basin (PRMB), and northern South China Sea (SCS). There exist six seismic architectural elements in these canyons, including basal erosive surfaces (BES), thalweg deposits (TD), lateral migration packages (LMP), mass transport deposits (MTD), can- yon margin deposits (CMD), and drape deposits (DD). According to the stratigraphical ages and geo-metrical features of these canyons, their formation and evolution processes are divided into three stages: (1) Middle Miocene scouring-filling, (2) Late Miocene lateral migration, and (3) Pliocene-Quaternary vertical overlay. An auto-cyclic progressive process of eroding and filling by turbidity currents results in the scouring-filling and vertical overlay; bottom currents are responsible for the remarkable asym-metry between the two flanks of canyons; and faults are inherent dynamic forces triggering these can yons. It is inferred that these canyons are caused by the double effects of turbidity and bottom currents under the control of faults as inherent dynamic forces. 展开更多
关键词 deepwater canyon-channel bot-tom current turbidity current lateral migration South China Sea.
原文传递
150 Years(1872-2022)of research on deep-water processes,deposits,settings,triggers,and deformation:A difficult domain of progress,dichotomy,diversion,omission,and groupthink 被引量:2
15
作者 G.Shanmugam 《Journal of Palaeogeography》 SCIE CSCD 2022年第4期469-564,共96页
In capturing a snapshot of 150 years(1872-2022)of research on deep-water processes,deposits,settings,triggers,and deformation,the following 22 topics are selected:(1)H.M.S.Challenger expedition(1872-1876):The discover... In capturing a snapshot of 150 years(1872-2022)of research on deep-water processes,deposits,settings,triggers,and deformation,the following 22 topics are selected:(1)H.M.S.Challenger expedition(1872-1876):The discovering of the“Challenger Deep”by the H.M.S.Challenger in the Mariana Trench has been the single most important achievement in deep-water research.(2)Five pioneers amid 50 notable contributors:R.A.Bagnold,J.E.Sanders,G.D.Klein,F.P.Shepard,and C.D.Hollister.(3)Mass transport:Mass-transport deposits(MTD)are the most important deep-water facies in terms of volume,geohazards,and petroleum reservoirs.(4)Gravity flows:There are six basic types,namely(a)hyperpycnal flows,(b)turbidity currents,(c)debris flows,(d)liquefied/fluidized flows,(e)grain flows,and(f)thermohaline contour currents.Sandy debrites are the most important petroleum reservoir facies.Despite their popularity,turbidites are not an important reservoir facies.(5)Kelvin-Helmholtz(KH)waves:Turbidites,related to KH waves,with internal hiatus are not qualified to function as predictive facies models;nor are they fit for stratigraphic correlations.(6)High-density turbidity currents(HDTC):Misclassification of density-stratified gravity flows with laminar debris flows and turbulent turbidity currents as HDTC is flawed.Experimental generation of density-stratified gravity flows in flume studies has debunked the concept of HDTC.(7)Classification of turbidites:Contrary to the popular groupthink,turbidites are exclusive deposits of turbidity currents.(8)Bottom currents:The four basic types of deep-marine bottom currents are:(a)thermohaline-induced geotropic contour currents,(b)wind-driven bottom currents,(c)tide-driven bottom currents(mostly in submarine canyons),and(d)internal wave/tide-driven baroclinic currents.(9)Classification of contourites:Contrary to the popular groupthink,contourites are the exclusive deposits of thermohaline-induced geotropic contour currents.(10)Tidal currents in submarine canyons:Their velocity measurements have been the single most important achievement in deep-water process sedimentology.(11)Modern and ancient systems:There is a dichotomy between rare observations of turbidity currents in modern settings and overwhelming cases of interpretations of ancient turbidites in outcrops and cores.The reason is that turbidity currents are truly rare in nature,but the omnipotent presence of turbidites in the ancient rock record is the manifestation of groupthink induced by the turbidite facies model(i.e.,the Bouma Sequence).(12)Internal waves and tides:Despite their ubiquitous documentation in modern oceans,their ancient counterparts in outcrops are extremely rare.This is another dichotomy.(13)Hybrid flows:They are commonly developed by intersecting of down-slope gravity flows with along-slope contour currents.However,they are often misapplied to down-slope flow transformation of gravity flows.(14)Density(sediment)plumes:Deflected sediment plumes by wind forcing are common.Despite their importance in provenance studies,they are not adequately studied.(15)Hyperpycnal flows:They occur near the shoreline,next to the plunge point;but are of no relevance in deep-water environments.However,their importance in deep-marine settings is overhyped in recent literature.(16)Omission of erosional contact and internal hiatus:In order to promote genetic facies models that must not contain internal hiatuses,some researchers selectively omit internal hiatuses observed by the original authors.(17)Triggers of sediment failures:There are 22 types,but short-term triggers,such as earthquakes and meteorite impacts are more important than the conventional long-term trigger known as Eustasy.(18)Tsunami waves:Despite their sedimentologic importance,there are no reliable criteria for recognizing tsunami deposits in the ancient rock record.(19)Soft-Sediment Deformation Structures(SSDS):Although most SSDS are routinely interpreted as seismites,not all SSDS are caused by earthquakes.There are 10 other mechanisms,such as sediment loading,which can trigger liquefaction that can develop SSDS.(20)The Jackfork Group,Pennsylvanian,Ouachita Mountains,USA:Our reinterpretation of this classic North American flysch turbidites as MTD and bottomcurrent reworked sands has resulted in the longest academic debate with 42 printed pages in the AAPG Bulletin history since its founding in 1917.(21)Basin-floor fan model,Tertiary,North Sea:Our examination of nearly 12,000 ft(3658 m)of conventional core from Paleogene and Cretaceous deep-water sandstone reservoirs cored in 50 wells in 10 different areas or fields in the North Sea and Norwegian Sea reveals that these reservoirs are predominantly composed of MTDs,mainly sandy slumps and sandy debrites,and bottom-current reworked sands.Our core-seismic calibration debunked the conventional wisdom(groupthink)that basin-floor fans are composed of sandy turbidites in a sequence-stratigraphic framework.(22)Turbidite groupthink:A case study in illustrating how turbidite groupthink functions,without sound scientific methods,on the basis of published information on modern turbidity currents in Bute Inlet(fjord and estuary),British Columbia,Canada.This compendium is hybrid in composition between an atlas(with 108 figures)and a review article(with 348 references).The author admonishes scientists against deep-sea groupthink and provides a roadmap for future researchers by identifying potential topics for research involving density plumes,internal waves,tidal currents,tsunami waves,sediment deformation,and lowstand braid deltas. 展开更多
关键词 Mass transport Gravity flows Bottom currents High-density turbidity currents Contour currents Tidal currents Internal waves and tides Kelvin-helmholtz waves Hybrid flows The Bouma Sequence Tsunami waves Deflected sediment plumes Basin-floor fans Tutbidite groupthink Bute Inlet(BC Canada) Soft-Sediment Deformation structures(SSDS)
原文传递
Submarine fans: A critical retrospective (1950-2015) 被引量:8
16
作者 G. Shanmugam 《Journal of Palaeogeography》 SCIE CSCD 2016年第2期110-184,共75页
When we look back the contributions on submarine fans during the past 65 years (1950 -2015), the empirical data on 21 modern submarine fans and I0 ancient deep-water sys- tems, published by the results of the First ... When we look back the contributions on submarine fans during the past 65 years (1950 -2015), the empirical data on 21 modern submarine fans and I0 ancient deep-water sys- tems, published by the results of the First COMFAN (Committee on FANs) Meeting (Bouma eta|., 1985a), have remained the single most significant compilation of data on submarine fans. The 1970s were the "heyday" of submarine fan models. In the 21st century, the general focus has shifted from submarine fans to submarine mass movements, internal waves and tides, and contourites. The purpose of this review is to illustrate the complexity of issues surrounding the origin and classification of submarine fans. The principal ele- ments of submarine fans, composed of canyons, channels, and lobes, are discussed using nine modern case studies from the Mediterranean Sea, the Equatorial Atlantic, the Gulf of Mexico, the North Pacific, the NE Indian Ocean (Bay of Bengal), and the East Sea (Korea). The Annot Sandstone (Eocene-Oligocene), exposed at Peira-Cava area, SE France, which served as the type locality for the "Bouma Sequence", was reexamined. The field details are documented in questioning the validity of the model, which was the basis for the turbidite- fan link. The 29 fan-related models that are of conceptual significance, developed during the period 1970-2015, are discussed using modem and ancient systems. They are: (I) the classic submarine fan model with attached lobes, (2) the detached-lobe model, (3) the channel-levee complex without lobes, (4) the delta-fed ramp model, (5) the gully-lobe model, (6) the suprafan lobe model, (7) the depositional lobe model, (8) the fan lobe model, (9) the ponded lobe model, (I0) the nine models based on grain size and sediment source, (11) the four fan models based on tectonic settings, (12) the Jackfork debrite model, (13) the basin-floor fan model, (14) supercritical and subcritical fans, and (15) the three types of fan reservoirs. Each model is unique, and the long-standing belief that submarine fans are composed of turbidites, in particular, of gravelly and sandy high-density turbi- dites, is a myth. This is because there are no empirical data to validate the existence of gravelly and sandy high-density turbidity currents in the modern marine environments. Also, there are no experimental documentation of true turbidity currents that can trans- port gravels and coarse sands in turbulent suspension. Mass-transport processes, which include slides, slumps, and debris flows (but not turbidity currenrs), are the most viable mechanisms for transporting gravels and sands into the deep sea. The prevailing notion that submarine fans develop during periods of sea-level lowstands is also a myth. The geologic reality is that frequent short-term events that last for only a few minutes to several hours or days (e.g., earthquakes, meteorite impacts, tsunamis, tropical cyclones, etc.) are more important in controlling deposition of deep-water sands than sporadic long- term events that last for thousands to millions of years (e.g., lowstand systems tract). Submarine fans are still in a stage of muddled turbidite paradigm because the concept of high-density turbidity currents is incommensurable. 展开更多
关键词 The Bouma Sequence High-density turbidity currents Sandy debris flows Turbidite facies models Submarine fans Submarine canyons Submarine channels Submarine lobes Lowstand systems tract
原文传递
The turbidite-contourite-tidalite-baroclinite-hybridite problem: orthodoxy vs. empirical evidence behind the “Bouma Sequence” 被引量:1
17
作者 G.Shanmugam 《Journal of Palaeogeography》 SCIE CSCD 2021年第2期125-156,共32页
The underpinning problems of deep-water facies still remain unresolved.(1) The Tb, Tc, and Td divisions of the turbidite facies model, with traction structures, are an integral part of the "Bouma Sequence"(T... The underpinning problems of deep-water facies still remain unresolved.(1) The Tb, Tc, and Td divisions of the turbidite facies model, with traction structures, are an integral part of the "Bouma Sequence"(Ta, Tb, Tc, Td, Te).However, deposits of thermohaline contour currents, wind-driven bottom currents, deep-marine tidal currents, and baroclinic currents(internal waves and tides) also develop discrete rippled units, mimicking Tc.(2) The application of "cut-out" logic of sequences, which was originally introduced for the "Bouma Sequence", with sharp basal contacts and sandy divisions containing well-developed traction structures, to muddy contorts with gradational basal contacts and an absence of well-developed traction structures is incongruent.(3) The presence of five internal divisions and hiatus in the muddy contoured facies model is in dispute.(4) Intersection of along slope contour currents with down slope sediment-gravity flows, triggering hybrid flows, also develops traction structures.(5) The comparison of genuine hybrid flows with down slope flow transformation of gravity flows is inconsistent with etymology of the term "hybrid".(6) A reexamination of the Annot Sandstone at the Peira Cava type locality in SE France fails to validate either the orthodoxy of five internal divisions of the "Bouma Sequence" or their origin by turbidity currents. For example, the "Ta" division is composed of amalgamated units with inverse grading and floating mudstone clasts, suggesting a mass-transport deposit(MTD). The "Tb" and "Tc" divisions are composed of double mud layers and sigmoidal cross bedding, respectively, which suggest a tidalite origin.(7) Although it was reasonable to introduce a simplistic "Bouma Sequence" in 1962, at a time of limited knowledge on deep-water processes, it is obsolete now in 2021 to apply this model to the rock record amid a wealth of new knowledge.(8)The disconnect between 12 observed, but questionable, modern turbidity currents and over 10,000 interpreted ancient turbidites defies the doctrine of uniformitarianism. This disconnect is attributed to routine application of genetic facies models, without a pragmatic interpretation of empirical data.(9) A suggested solution to these problems is to interpret traction structures in the sedimentary record pragmatically on the basis of empirical field and experimental evidence, without any built-in bias using facies models, such as the "Bouma Sequence".(10) Until reliable criteria are developed to distinguish traction structures of each type of bottom currents based on uniformitarianism, a general term "BCRS"(i.e., bottom-current reworked sands) is appropriate for deposits of all four kinds of bottom currents. 展开更多
关键词 turbidity currents Contour currents Tidal currents Internal waves and tides Hybrid flows The Bouma Sequence BCRS(i.e. bottom-current reworked sands)
原文传递
Characteristics, Genesis, and Sedimentary Environment of Duplex-Like Structures in the Jurassic Sediments of Western Qaidam Basin, China 被引量:3
18
作者 Liangtian Ni Jianhua Zhong +3 位作者 Zhufu Shao Yong Li Cui Mao Shengxin Liu 《Journal of Earth Science》 SCIE CAS CSCD 2015年第5期677-689,共13页
A particular type of soft-sediment deformation structure, similar to imbricate structure, is developed in the Jurassic strata at Honggouzi, western Qaidam Basin, China. We refer to this structure as a duplex-like defo... A particular type of soft-sediment deformation structure, similar to imbricate structure, is developed in the Jurassic strata at Honggouzi, western Qaidam Basin, China. We refer to this structure as a duplex-like deformation structure, because it is inferred to have been formed by the action of fast-moving, submarine gravity current sediments gliding across a pre-existing semiconsolidated sedimentary layer. The layers of duplex-like structure crop out in the southeastern limb of the core of a medium-sized anticline. The average dip direction of the duplex-like structure is 301.2° and the average dip angle is 54.7°. Duplex-like deformed laminations are composed mainly of weakly metamorphosed, extremely poorly sorted, feldspathic lithic graywacke. Sericite can be observed along bedding planes. The duplex-like structure occurs within a sequence of river-channel fine conglomerate, interchannel carbonaceous mudstone(shale), shallow-water delta sand-shale, shallow-lake calcareous mudstone, olistostromes, and a turbidite. At the bottom of the sequence, we found brownish-red shallow-lake calcareous mudstone and carbonaceous mudstone and at the top olistostromes whose genesis is related to the slip and drag of a slumped body of submarine sediment. In combination with other symbiotic and associated structures, it is considered that the duplex-like structure was formed by the slumping and subsequent movement and traction of delta-front semiconsolidated sediments over the bottom sediments of a shore or shallow-lake sedimentary environment, probably triggered by an earthquake. The attitude of the duplex-like structure indicates that the direction of gliding was from NW301.2° toward SE121°, which is consistent with the current location of the Altun Mountains, indicating that the Altun Mountains existed in the Jurassic. The orogenesis of these mountains likely involved seismic activity, and an earthquake was the triggering factor in the formation of the duplex-like structure by causing the slumping/gliding of the olistostrome sediments. 展开更多
关键词 duplex-like structure soft-sediment deformation turbidity current slumping and glid-ing western Qaidam Basin
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部