期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
Particle modulations to turbulence in two-phase round jets 被引量:1
1
作者 Bing Wang Huiqiang Zhang Yi Liu Xiaofen Yan Xilin Wang School of Aerospace, Tsinghua University, 100084 Beijing, China 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第5期611-617,共7页
The particle modulations to turbulence in round jets were experimentally studied by means of two-phase velocity measurements with Phase Doppler Anemometer (PDA). Laden with very large particles, no significant atten... The particle modulations to turbulence in round jets were experimentally studied by means of two-phase velocity measurements with Phase Doppler Anemometer (PDA). Laden with very large particles, no significant attenuations of turbulence intensities were measured in the farfields, due to small two-phase slip velocities and particle Reynolds number. The gas-phase turbulence is enhanced by particles in the near-fields, but it is significantly attenuated by the small particles in the far-fields. The smaller particles have a more profound effect on the attenuation of turbulence intensities. The enhancements or attenuations of turbulence intensities in the far-fields depends on the energy production, transport and dissipation mechanisms between the two phases, which are determined by the particle prop- erties and two-phase velocity slips. The non-dimensional parameter CTI is introduced to represent the change of turbulence intensity. 展开更多
关键词 Particle modulations turbulence intensity Particle sizes Two-phase slip velocity Particle-laden round turbulent jet
下载PDF
Numerical simulation of flow field of single-hole oxygen lance jet
2
作者 LIU Kun HAN Ren-zhi BAO Li-ming 《Journal of Energy and Power Engineering》 2007年第1期22-28,共7页
The numerical simulation of jet flow field in Laval tube was carried out first by commercial software CFX4.4, and it is used to determine inlet pressure condition out of nozzle in order to its numerical simulation. Th... The numerical simulation of jet flow field in Laval tube was carried out first by commercial software CFX4.4, and it is used to determine inlet pressure condition out of nozzle in order to its numerical simulation. The decay rule of jet middle line velocity of axial symmetry turbulence jet and cross section's expand situation out of the tube in different stagnation pressure and surrounding temperature were analyzed systematically. The result showed that K-e model is suitable for numerical simulation. The conclusion will have important guide and referent function to research of two important craft parameters, impact depth and the impact area which are related to steel-making production practice. 展开更多
关键词 Laval tube axis symmetry turbulence jet simulation
下载PDF
Research on the jet characteristics of the deflector–jet mechanism of the servo valve 被引量:8
3
作者 延皓 王凤聚 +1 位作者 李长春 黄静 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第4期252-260,共9页
In view of the complicated structure of the deflector-jet mechanism,a mathematical model based on the turbulent jet flow theory in the deflector-jet amplifier is proposed.Considering the energy transformation and mome... In view of the complicated structure of the deflector-jet mechanism,a mathematical model based on the turbulent jet flow theory in the deflector-jet amplifier is proposed.Considering the energy transformation and momentum variation,an equation of the flow velocity distribution at the key fluid region is established to describe the morphological changes of the fluid when it passes through the deflector and jets into the receiver.Moreover,the process is segmented into four stages.According to the research results,the oil enters the deflector and impinges with the side wall.Then one part of the oil's flow velocity decreases and a high pressure zone is formed by the oil accumulation,the other part of the oil reverses out of the deflector along the side wall.Prior to entering the receiver,the flow is a kind of plane impinging jet.Virtually,the working pressure of the receiver is generated by the impact force,while the high speed fluid flows out of the receiver and forms a violent vortex,which generates negative pressure and causes the oil to be gasified.Compared with the numerical simulation results,the turbulent jet model that can effectively describe the characteristics of the deflector-jet mechanism is accurate.In addition,the calculation results of the prestage pressure characteristic have been verified by experiments. 展开更多
关键词 servo valve prestage turbulent jet deflector jet
下载PDF
Numerical Investigation of Vertical Turbulent Jets in Different Types of Waves 被引量:7
4
作者 鲁俊 王玲玲 +1 位作者 唐洪武 丁全林 《China Ocean Engineering》 SCIE EI 2010年第4期611-626,共16页
The eftects of various types of waves on vertical plane turbulent jets are studied numerically in the paper. A ttn'ee- dimensional numerical model in a-coordinate is developed to study these problems by use of large ... The eftects of various types of waves on vertical plane turbulent jets are studied numerically in the paper. A ttn'ee- dimensional numerical model in a-coordinate is developed to study these problems by use of large eddy simulation method. Turbulence is modeled by a dynamic coherent eddy model. Numerical results including the distribution of veloci- ty, the decay law of the mean velocity along axis, the turbulent Reynolds stresses and the volume flux per unit width without wave, in the first-order Stokes waves, in the second-order Stokes waves, in the fifth-order Stokes waves, in the solitary waves and in random waves are compared and analyzed. A focus on coherent structures, probability density func- tions and correlation functions of jets is also investigated. The numerical results are of great theoretical importance for un- derstanding jet turbulent behaviors in different types of waves. 展开更多
关键词 LES turbulent jet wave a-coordinate dynamic coherent eddy model
下载PDF
The Structure of A Turbulent Jet in A Crossflow-Effect of Jet-Crossflow Velocity 被引量:6
5
作者 李行伟 匡翠萍 陈国谦 《China Ocean Engineering》 SCIE EI 2002年第1期1-20,共20页
A comprehensive numerical study on the three-dimensional structure of a turbulent jet in crossflow is performed. The jet-to-crossflow velocity ratio (R) varies in the range of 2 - 16; both vertical jets and inclined j... A comprehensive numerical study on the three-dimensional structure of a turbulent jet in crossflow is performed. The jet-to-crossflow velocity ratio (R) varies in the range of 2 - 16; both vertical jets and inclined jets without excess streamwise momentum are considered. The numerical results of the Standard two-equation k-ε model show that the turbulent structure can be broadly categorised according to the jet-to-crossflow velocity ratio. For strong to moderate jet discharges, i.e. R> 4, the jet is characterized by a longitudinal transition through a bent-over phase during which the jet becomes almost parallel with the main freestream, to a sectional vortex-pair flow with double concentration maxima; the computed flow details and scalar mixing characteristics can be described by self-similar relations beyond a dimensionless distance of around 20-60. The similarity coefficients are only weakly dependent on R. The cross-section scalar field is kidney-shaped and bifurcated, vvith distinct double concentration maxima; the aspect ratio is found to be around 1.2. A loss in vertical momentum is ob-served and the added mass coefficient of the jet motion is found to be approximately 1. On the other hand, for weak jets in strong crossflow, i. e. R ≥ 2, the lee of the jet is characterized by a negative pressure region. Although the double vortex flow can stili be noted, the scalar field becomes more symmetrical and no longer bifurcated. The similarity coeffcients are al-so noticeably different. The predicted jet flovv characteristics and mixing rates are well supported by experimental and field dala 展开更多
关键词 turbulent jet CROSSFLOW advected line puff mixing concentration dilution double-vortex momentim added mass SELF-SIMILARITY turbulence modeling bifurcation environmental fluid mechanics
下载PDF
Coherent structures and wavepackets in subsonic transitional turbulent jets 被引量:4
6
作者 Haihua Yang Xingchen Zhang +2 位作者 Lingke Ran Dejun Sun Zhenhua Wan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第1期10-19,共10页
A large eddy simulation (LES) is performed for two subsonic jets with a Reynolds number of , which have different core temperatures, i.e., the cold and hot jet. The far-field overall sound pressure levels (OASPL) and ... A large eddy simulation (LES) is performed for two subsonic jets with a Reynolds number of , which have different core temperatures, i.e., the cold and hot jet. The far-field overall sound pressure levels (OASPL) and noise spectra are well validated against previous experimental results. It is found that the OASPL is raised by heating at shallow angles. The most energetic coherent structures are extracted with specified frequencies using the filter based on the frequency domain variant of the snapshot method of proper orthogonal decomposition (POD). The modes have high coherence of near-field pressure for both jets, while the coherence of modes is enhanced greatly by heating. Based on the coherent structures, spatial wavepackets are educed and the characteristics of growth, saturation and decay are analyzed and compared between the two jets in detail. The results show that heating would enhance the linear growth rate for high frequency components, and nonlinear growth rates for low frequency components in general, which are responsible for higher OASPL in the hot jet. The far-field sound generated by wavepackets is computed using the Kirchhoff extrapolation, which matches well with that of LES at shallow angles. This indicates that the wavepackets associated with coherent structures are dominant sound sources in forced transitional turbulent jets. Additionally, the present POD method is proven to be a robust tool to extract the salient features of the wavepackets in turbulent flows. 展开更多
关键词 WAVEPACKET Noise Coherent structure Turbulent jet
下载PDF
Direct Numerical Simulation of Particle Dispersion in Gas-Solid Compressible Turbulent Jets 被引量:4
7
作者 罗坤 金军 +1 位作者 郑友取 岑可法 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第2期161-166,共6页
A numerical method was developed to directly simulate the compressible, particle-laden turbulent jets.The fourth order compact finite difference schemes were used to discretize the space derivatives. The Lagrangian me... A numerical method was developed to directly simulate the compressible, particle-laden turbulent jets.The fourth order compact finite difference schemes were used to discretize the space derivatives. The Lagrangian method was adopted to simulate the particle motion based on one-way coupling. It is found that the turbulent intensity profiles attain self-similar status in the jet downstream regions. At the Stokes number of 1, particles are concentrated largely in the outer boundaries of the large-scale vortex structures with the most uneven distribution and the widest dispersion in the lateral direction. Particles at the much smaller Stokes numbers are distributed evenly in the flow field, and the lateral dispersion is also considerable. Distribution of particles at much larger Stokes numbers is more uniform and the lateral dispersion becomes small. In addition, the inflow conditions have different effects on the particle dispersion. The direct numerical simulation (DNS) results accord with the previous experiments and numerical studies. 展开更多
关键词 direct numerical simulation compressible turbulent jet coherent structure particle dispersion
下载PDF
Initial Dilution of A Vertical Round Non-Buoyant Jet in Wavy Cross-Flow Environment 被引量:3
8
作者 王娅娜 陈永平 +3 位作者 徐振山 潘毅 张长宽 李志伟 《China Ocean Engineering》 SCIE EI CSCD 2015年第6期847-858,共12页
The phenomenon of wastewater discharged into coastal waters can be simplified as a turbulent jet under the effect of waves and currents. Previous studies have been carried out to investigate the jet behaviors under th... The phenomenon of wastewater discharged into coastal waters can be simplified as a turbulent jet under the effect of waves and currents. Previous studies have been carried out to investigate the jet behaviors under the current only or the wave only environment. To obtain better understanding of the jet behaviors in a realistic situation, a series of physical experiments on the initial dilution of a vertical round jet in the wavy cross-flow environment are conducted. The diluted processes of the jet are recorded by a high-resolution camcorder and the concentration fields of the jet are measured with a peristaltic suction pumping system. When the jet is discharged into the wavy cross-flow environment, a distinctive phenomenon, namely "effluent clouds", is observed. According to the quantitative measurements, the jet width in the wavy cross-flow environment increases more significantly than that does in the cross-flow only environment, indicating that the waves impose a positive effect on the enhancement of jet initial dilution. In order to generalize the experimental findings, a comprehensive velocity scale ua and a characteristic length scale l are introduced. Through dimensional analysis, it is found that the dimensionless centerline concentration trajectories cy/l is in proportion to 1/3 power of the dimensionless downstream distance x/l, and the dimensionless centerline dilution 2c aS Q/(u l) is proportional to the square of the dimensionless centerline trajectory cy/l. Several empirical equations are then derived by using the Froude number of cross-flow Frc as a reference coefficient. This paper provides a better understanding and new estimations of the jet initial dilution under the combined effect of waves and cross-flow current. 展开更多
关键词 turbulent jet initial dilution wavy cross-flow environment experimental study dimensional analysis
下载PDF
Large eddy simulation of vertical turbulent jets under JONSWAP waves 被引量:2
9
作者 Jun Lu Ling-Ling Wang +1 位作者 Hong-Wu Tang Hui-Chao Dai 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第2期189-199,共11页
The effect of random waves on vertical plane turbulent jets is studied numerically and the mechanism behind the interaction of the jet and waves is analyzed. The large eddy simulation method is used and the σ-coordin... The effect of random waves on vertical plane turbulent jets is studied numerically and the mechanism behind the interaction of the jet and waves is analyzed. The large eddy simulation method is used and the σ-coordinate system is adopted. Turbulence is modeled by a dynamic coherent eddy model. The σ-coordinate transformation is introduced to map the irregular physical domain with a wavy free surface and an uneven bottom onto a regular computational domain. The fractional step method is used to solve the filtered Navier–Stokes equations. Results presented include the distribution of velocity, the decay law of the mean velocity along the jet axis, self-similar characteristics and volume flux per unit width. In particular, the role of coherent structures on the momentum transfer along the jet centerline and the jet instantaneous characteristics in JONSWAP waves are a special focus of this research. The numerical results obtained are of great theoretical importance in understanding the behavior of turbulent jets in random wave environments. 展开更多
关键词 Large eddy simulation Dynamic coherent eddy model Σ-COORDINATE Turbulent jet JONSWAP wave
下载PDF
Mean and fluctuating velocity fields of a diamond turbulent jet 被引量:2
10
作者 徐敏义 张健鹏 +2 位作者 米建春 Nathan G.J. Kalt P.A.M. 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第3期344-351,共8页
The present paper reports the first investigation on a turbulent jet issuing from a diamond orifice(hereafter termed a "diamond jet") with an aspect ratio of 1.7.Velocity measurements were conducted in the transit... The present paper reports the first investigation on a turbulent jet issuing from a diamond orifice(hereafter termed a "diamond jet") with an aspect ratio of 1.7.Velocity measurements were conducted in the transitional region,and the exit Reynolds number of the jet was 50000.For comparison,a round jet with identical normalized boundary conditions was also measured.It is shown that the diamond jet decays and spreads faster than the round jet does over the measured flow region.The axis-switching phenomenon is observed in the diamond jet.Although both jets display primary coherent structures in the near field,these structures are found to break down more rapidly in the diamond jet,due to the higher three-dimensionality of the flow.Moreover,the streamwise components of the Reynolds normal stress and all the shear stresses reach their maxima around the location of the maximal mean shear while the maxima of the lateral components of the Reynolds normal stresses occur around the centreline of the jet. 展开更多
关键词 turbulent jet non-circular jet PIV measurement jet entrainment
下载PDF
Proper orthogonal decomposition analysis of coherent motions in a turbulent annular jet 被引量:1
11
作者 Y.ZHANG M.VANIERSCHOT 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第9期1297-1310,共14页
A three-dimensional incompressible annular jet is simulated by the large eddy simulation(LES)method at a Reynolds number Re=8500.The time-averaged velocity field shows an asymmetric wake behind the central bluff-body ... A three-dimensional incompressible annular jet is simulated by the large eddy simulation(LES)method at a Reynolds number Re=8500.The time-averaged velocity field shows an asymmetric wake behind the central bluff-body although the flow geometry is symmetric.The proper orthogonal decomposition(POD)analysis of the velocity fluctuation vectors is conducted to study the flow dynamics of the wake flow.The distribution of turbulent kinetic energy across the three-dimensional POD modes shows that the first four eigenmodes each capture more than 1%of the turbulent kinetic energy,and hence their impact on the wake dynamics is studied.The results demonstrate that the asymmetric mean flow in the near-field of the annular jet is related to the first two POD modes which correspond to a radial shift of the stagnation point.The modes 3 and 4 involve the stretching or squeezing effects of the recirculation region in the radial direction.In addition,the spatial structure of these four POD eigenmodes also shows the counter-rotating vortices in the streamwise direction downstream of the flow reversal region. 展开更多
关键词 coherent structure proper orthogonal decomposition(POD) turbulent annular jet large eddy simulation(LES)
下载PDF
Influences of initial velocity,diameter and Reynolds number on a circular turbulent air/air jet
12
作者 米建春 杜诚 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第12期273-278,共6页
This paper assesses the suitability of the inflow Reynolds number defined by Reo -- UoD/v (here Uo and D are respectively the initial jet velocity and diameter while v is kinematic viscosity) for a round air/air jet... This paper assesses the suitability of the inflow Reynolds number defined by Reo -- UoD/v (here Uo and D are respectively the initial jet velocity and diameter while v is kinematic viscosity) for a round air/air jet. Specifically an experimental investigation is performed for the influences of Uo, D and Reo on the mean-velocity decay and spread coefficients (Ku, Kr) in the far field of a circular air jet into air from a smoothly contracting nozzle. Present measurements agree well with those previously obtained under similar inflow conditions. The relations Ku ∝ Uo and Kr ∝ 1/Uo for Uo 〈 5 m/s appear to work, while each coefficient approaches asymptotically to a constant for Uo 〉 6 m/s, regardless of the magnitudes of Reo and D. It is revealed that Reo may not be an appropriate dimensionless parameter to characterize the entire flow of a free air/air jet. This paper is the first paper that has challenged the suitability of Reo for turbulent free jets. 展开更多
关键词 turbulent jet momentum conservation Reynolds number
下载PDF
Flapping Characteristics of 2D Submerged Turbulent Jets in Narrow Channels
13
作者 孙建红 陈悦 +1 位作者 周涛 刘可 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第1期26-31,共6页
Flapping characteristics of the self-excited flapping motion of submerged vertical turbulent jet in narrow channels are studied theoretically and experimentally.It is found that the water depth is a most important par... Flapping characteristics of the self-excited flapping motion of submerged vertical turbulent jet in narrow channels are studied theoretically and experimentally.It is found that the water depth is a most important parameter to the critical jet exit velocity and the jet flapping frequency.The results indicate that the critical jet exit velocity increases with water depth and the jet flapping frequency is inversely proportional to the water depth.Meanwhile,experimental result also shows that the surface disturbance wave changes the frequency of flapping motion,i.e.the flapping frequency locks-in the disturbing frequency when the disturbing frequency is near and less than the natural flapping frequency. 展开更多
关键词 turbulent plane jet flapping motion critical velocity flapping frequency
下载PDF
Analytical investigation on mean and turbulent velocity fields of a plane jet
14
作者 米建春 冯宝平 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第7期279-285,共7页
This paper analyses the downstream developments of the mean and the turbulent velocity fields of a plane jet. Based on the conservation of mass and the conservation of momentum, the mean-velocity half width (reflecti... This paper analyses the downstream developments of the mean and the turbulent velocity fields of a plane jet. Based on the conservation of mass and the conservation of momentum, the mean-velocity half width (reflecting the jet spread rate) and the relative mass flow rate (jet entrainment) are related to the decay rate of the centreline mean velocity. These relations are not subject to self-preservation. Both analytical and experimental results suggest that the jet spread rate (K1) and the entrainment rate (K3) (and thus the decay rate K2) can be well estimated from the centreline velocity, i.e., K1 ≈ 0.6K2 and K3 ∝K2. The effect of initial mean velocity and RMS velocity profiles on the downstream mean velocity field appears to be embodied in the constants K1 K2 and K3. The analytical relationship for the self-preserving Reynolds shear stress, obtained for the first time, works well. 展开更多
关键词 turbulent plane jet momentum conservation Reynolds shear stress
下载PDF
On two distinct Reynolds number regimes of a turbulent square jet
15
作者 Minyi Xu Jianpeng Zhang +1 位作者 Pengfei Li Jianchun Mi 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2015年第3期117-120,共4页
The effects of Reynolds number on both large-scale and small-scale turbulence properties are investigated in a square jet issuing from a square pipe. The detailed velocity fields were measured at five different exit R... The effects of Reynolds number on both large-scale and small-scale turbulence properties are investigated in a square jet issuing from a square pipe. The detailed velocity fields were measured at five different exit Reynolds numbers of 8 × 10^3 〈 Re 〈 5 × 10^4. It is found that both large-scale properties (e.g,, rates of mean velocity decay and spread) and small-scale properties (e.g., the dimensionless dissipation rate constant A = εL/(u^2)^3/2) are dependent on Re for Re ≤ 3 ×10^4 or Reλ ≤ 190, but virtually become Re-independent with increasing Re or Reλ. In addition, for Reλ 〉 190, the value ofA = εL/(u^2)^3/2 in the present square jet converges to 0.5, which is consistent with the observation in direct numerical simulations of box turbulence, but lower than that in circular jet, plate wake flows, and grid turbulence. The discrepancies in critical Reynolds number and A = εL/(u^2)^3/2 among different turbulent flows most likely result from the flow type and initial conditions. 展开更多
关键词 Square jet Hot-wire Reynolds number Small-scale turbulence Mean energy dissipation rate
下载PDF
Calculation of Vertical Mixing in Plane Turbulent Buoyant Jets on the Basis of the Algebraic Model of Turbulence
16
作者 O.G.Martynenko V.N.Korovkin 《Journal of Thermal Science》 SCIE EI CAS CSCD 1992年第2期108-113,共6页
An algebraic model of turbulence,involving buoyancy forces,is used for calculating velocity and temperature fields in plane turbulent vertical jets in a non-homogeneous stagnant medium.A new approach to the solution o... An algebraic model of turbulence,involving buoyancy forces,is used for calculating velocity and temperature fields in plane turbulent vertical jets in a non-homogeneous stagnant medium.A new approach to the solution of the governing system of partial differential equations (continuity,conservation of momentum,heat (buoyancy), turbulent kinetic energy,dissipation rate and mean quadratic temperature fluctuation) is suggested which is based on the introduction of mathematical variables.Comparison is made between the results of the present calculations with experimental and numerical data of other authors. 展开更多
关键词 turbulence model buoyancy force velocity and temperature fields turbulent vertical jets non-homogeneous medium
原文传递
AN INVESTIGATION OF TURBULENT RECTANGULAR JET DISCHARGED INTO A NARROW CHANNEL WEAK CROSSFLOW 被引量:5
17
作者 PATHAK Manabendra DASS Anoop K. DEWAN Anupam 《Journal of Hydrodynamics》 SCIE EI CSCD 2008年第2期154-163,共10页
A computational investigation of the mean flow field of turbulent rectangular jets issuing into a narrow channel crossflow is presented. The length of the jet slot spans more than 55% of the crossflow channel bed, lea... A computational investigation of the mean flow field of turbulent rectangular jets issuing into a narrow channel crossflow is presented. The length of the jet slot spans more than 55% of the crossflow channel bed, leaving a small clearance between the jet edge and sidewalls. A finite volume code employing the standard k-εmodel is used to predict the mean, three-dimensional flow field. The mean flow field is investigated for two velocity ratios (6 and 9). Important flow features, such as the formation of different vortical structures and their characteristics owing to different values of the velocity ratio, are discussed. Some predicted results are compared with the experimental data reported in the literature. The predicted mean and turbulent flow properties are shown to be in good agreement with the experimental data. 展开更多
关键词 turbulent jet CROSSFLOW narrow charmel velocity ratio VORTICES
原文传递
Numerical simulation and analysis of confined turbulent buoyant jet with variable source 被引量:4
18
作者 EL-AMIN Mohamed F. AL-GHAMDI Abdulmajeed +1 位作者 SALAMA Amgad SUN Shuyu 《Journal of Hydrodynamics》 SCIE EI CSCD 2015年第6期955-968,共14页
In this work, experimental and numerical investigations are undertaken for confined buoyant turbulent jet with varying inlet temperatures. Results of the experimental work and numerical simulations for the problem und... In this work, experimental and numerical investigations are undertaken for confined buoyant turbulent jet with varying inlet temperatures. Results of the experimental work and numerical simulations for the problem under consideration are presented. Four cases of different variable inlet temperatures and different flow rates are considered. The realizable k-ε turbulence model is used to model the turbulent flow. Comparisons show good agreements between simulated and measured results. The average devia- tion of the simulated temperature by realizable k-ε turbulent model and the measured temperature is within 2%. The results indicate that temperatures along the vertical axis vary, generally, in nonlinear fashion as opposed to the approximately linear varia- tion that was observed for the constant inlet temperature that was done in a previous work. Furthermore, thermal stratification exits, particularly closer to the entrance region. Further away from the entrance region the variation in temperatures becomes relatively smaller. The stratification is observed since the start of the experiment and continues during the whole course. Numerical experime- nts for constant, monotone increasing and monotone decreasing of inlet temperature are done to show its effect on the buoyancy force in terms of Richardson number. 展开更多
关键词 realizable k-ε model turbulent jet STRATIFICATION heat stores CFD
原文传递
Experimental and numerical study on the flapping motion of submerged turbulent plane jet 被引量:4
19
作者 SUN JianHong ZHAO LiQing HSU ChinTsau 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第10期2391-2397,共7页
A submerged,vertical turbulent plane water jet impinging onto a free surface will be self-excited into a flapping oscillation when the jet velocity,leaving the jet orifice,exceeds a critical value.The flapping phenome... A submerged,vertical turbulent plane water jet impinging onto a free surface will be self-excited into a flapping oscillation when the jet velocity,leaving the jet orifice,exceeds a critical value.The flapping phenomenon was verified simultaneously in this paper by laser Doppler velocimeter measurement and numerical analyses with volume of fluid approach coupled with a large eddy simulation turbulent model.The general agreement of mean velocities between numerical predictions and experimental results in self-similar region is good for two cases:Reynolds numbers 2090 and 2970,which correspond to the stable impinging jet and flapping jet.Results show that the flapping jet is a new flow pattern for submerged turbulent plane jets with characteristic flapping frequency,and that the decay of the mean velocity along the jet centerline is considerably faster than that of the stable impinging state. 展开更多
关键词 turbulent plane jet flapping motion laser Doppler velocimeter volume of fluid large eddy simulation
原文传递
FLOW CHARACTERISTICS OF TURBULENT JETS INJECTED OBLIQUELY IN CROSSFLOW 被引量:1
20
作者 GUOTing-ting LIShao-hua XUZhong 《Journal of Hydrodynamics》 SCIE EI CSCD 2004年第3期312-315,共4页
Numerical simulation has been performed to investigate the characteristics ofthe turbulent jet issuing obliquely into a crossflow, at the injection angles of 90° and 60°. TheSIMPLEC algorithm in the body-fit... Numerical simulation has been performed to investigate the characteristics ofthe turbulent jet issuing obliquely into a crossflow, at the injection angles of 90° and 60°. TheSIMPLEC algorithm in the body-fitted coordinates and the wall-function method using the RNG k-εturbulence model have been adopted to simulate this flow at two jet-to-crossflow velocity ratios, 2and 4. The numerical results are good agreement with the experimental measurements, the jettrajectories have been given, the separation events in the lee of the jet exit have been found, andthe forming mechanism has been analyzed. 展开更多
关键词 CROSSFLOW turbulent jet turbulence model numerical simulation WAKE
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部