Many recent laboratory experiments and numerical simulations support a non-equilibrium dissipation scaling in decaying turbulence before it reaches an equilibrium state.By analyzing a direct numerical simulation(DNS)d...Many recent laboratory experiments and numerical simulations support a non-equilibrium dissipation scaling in decaying turbulence before it reaches an equilibrium state.By analyzing a direct numerical simulation(DNS)database of a transitional boundary-layer flow,we show that the transition region and the non-equilibrium turbulence region,which are located in different streamwise zones,present different non-equilibrium scalings.Moreover,in the wall-normal direction,the viscous sublayer,log layer,and outer layer show different non-equilibrium phenomena which differ from those in grid-generated turbulence and transitional channel flows.These findings are expected to shed light on the modelling of various types of non-equilibrium turbulent flows.展开更多
Based on measurements at the Beijing 325-m Meteorological Tower,this study reports an analysis of atmospheric stability conditions and turbulent exchange during consecutive episodes of particle air pollution in Beijin...Based on measurements at the Beijing 325-m Meteorological Tower,this study reports an analysis of atmospheric stability conditions and turbulent exchange during consecutive episodes of particle air pollution in Beijing(China),primarily due to haze and dust events(15–30 April 2012).Of particular interest were relevant vertical variations within the lower urban boundary layer(UBL).First,the haze and dust events were characterized by different atmospheric conditions,as quite low wind speed and high humidity are typically observed during haze events.In addition,for the description of stability conditions,the bulk Richardson number(RiB) was calculated for three different height intervals: 8–47,47–140,and 140–280 m.The values of RiB indicated an apparent increase in the occurrence frequency of stably-stratified air layers in the upper height interval—for the 140–280-m height interval,positive values of RiB occurred for about 85% of the time.The downward turbulent exchange of sensible heat was observed at 280 m for the full diurnal cycle,which,by contrast,was rarely seen at 140 m during daytime.These results reinforce the importance of implementing high-resolution UBL profile observations and addressing issues related to stably-stratified flows.展开更多
A direct numerical simulation (DNS) on an oblique shock wave with an incident angle of 33.2° impinging on a Mach 2.25 supersonic turbulent boundary layer is performed. The numerical results are confirmed to be ...A direct numerical simulation (DNS) on an oblique shock wave with an incident angle of 33.2° impinging on a Mach 2.25 supersonic turbulent boundary layer is performed. The numerical results are confirmed to be of high accuracy by comparison with the reference data. Particular efforts have been made on the investigation of the near-wall behaviors in the interaction region, where the pressure gradient is so significant that a certain separation zone emerges. It is found that, the traditional linear and loga- rithmic laws, which describe the mean-velocity profiles in the viscous and meso sublayers, respectively, cease to be valid in the neighborhood of the interaction region, and two new laws of the wall are proposed by elevating the pressure gradient to the leading order. The new laws are inspired by the analysis on the incompressible separation flows, while the compressibility is additionally taken into account. It is verified by the DNS results that the new laws are adequate to reproduce the mean-velocity profiles both inside and outside the interaction region. Moreover, the normalization adopted in the new laws is able to regularize the Reynolds stress into an almost universal distribution even with a salient adverse pressure gradient (APG).展开更多
The turbulence data are decomposed to multi-scales and its respective fractal dimensions are computed. The conclusions are drawn from investigating the variation of fractal dimensions. With the level of decomposition ...The turbulence data are decomposed to multi-scales and its respective fractal dimensions are computed. The conclusions are drawn from investigating the variation of fractal dimensions. With the level of decomposition increasing, the low-frequency part extracted from the turbulence signals tends to be simple and smooth, the dimensions decrease; the high-frequency part shows complex, the dimensions are fixed, about 1.70 on the average, which indicates clear self-similarity characteristics.展开更多
The phenomena associated with the entrainment of free-stream turbulence (FST) into boundary-layer flows are relevant for a number of subjects. It has been be- lieved that the continuous spectra of the Orr-Sommerfeld...The phenomena associated with the entrainment of free-stream turbulence (FST) into boundary-layer flows are relevant for a number of subjects. It has been be- lieved that the continuous spectra of the Orr-Sommerfeld (O-S)/Squire equations describe the entrainment process, and thus they are used to specify the inlet condition in simulation of bypass transition. However, Dong and Wu (Dong, M. and Wu, X. On continuous spectra of the Orr-Sommerfeld/Squire equations and entrainment of free-stream vortical disturbances. Journal of Fluid Mechanics, 732, 616-659 (2013)) pointed out that continuous spectra exhibit several non-physical features due to neglecting the non-parallelism. They further proposed a large-Reynolds-number asymptotic approach, and showed that the non-parallelism is a leading-order effect even for the short-wavelength disturbance, for which the response concentrates in the edge layer. In this paper, the asymptotic solution is verified numerically by studying its evolution in incompressible boundary layers. It is found that the numerical results can be accurately predicted by the asymptotic solution, implying that the latter is adequate for moderate Reynolds numbers. By introducing a series of such solutions as the inflow perturbations, the bypass transition is investigated via the direct numerical simulation (DNS). The transition processes, including the evolution of streaks, the amplification of secondary-instability modes, and the emergence of turbulent spots, agree with the experimental observations.展开更多
Turbulent fluidized bed possesses a distinct advantage over bubbling fluidized bed in high solids contact efficiency and thus exerts great potential in applications to many industrial processes.Simulation for fluidiza...Turbulent fluidized bed possesses a distinct advantage over bubbling fluidized bed in high solids contact efficiency and thus exerts great potential in applications to many industrial processes.Simulation for fluidization of fluid catalytic cracking(FCC)particles and the catalytic reaction of ozone decomposition in turbulent fluidized bed is conducted using the EulerianeEulerian approach,where the recently developed two-equation turbulent(TET)model is introduced to describe the turbulent mass diffusion.The energy minimization multi-scale(EMMS)drag model and the kinetic theory of granular flow(KTGF)are adopted to describe gaseparticles interaction and particleeparticle interaction respectively.The TET model features the rigorous closure for the turbulent mass transfer equations and thus enables more reliable simulation.With this model,distributions of ozone concentration and gaseparticles two-phase velocity as well as volume fraction are obtained and compared against experimental data.The average absolute relative deviation for the simulated ozone concentration is 9.67%which confirms the validity of the proposed model.Moreover,it is found that the transition velocity from bubbling fluidization to turbulent fluidization for FCC particles is about 0.5 m$se1 which is consistent with experimental observation.展开更多
The outstanding issue to overcoming atmospheric turbulence on distant imaging is a fundamental interest and technological challenge.We propose a novel scenario and technique to restore the optical image in turbulent e...The outstanding issue to overcoming atmospheric turbulence on distant imaging is a fundamental interest and technological challenge.We propose a novel scenario and technique to restore the optical image in turbulent environmental by referring to Cyclopean image with binocular vision.With human visual intelligence,image distortion resulting from the turbulence is shown to be substantially suppressed.Numerical simulation results taking into account of the atmospheric turbulence,optical image system,image sensors,display and binocular vision perception are presented to demonstrate the robustness of the image restoration,which is compared with a single channel planar optical imaging and sensing.Experiment involving binocular telescope,image recording and the stereo-image display is conducted and good agreement is obtained between the simulation with perceptive experience.A natural extension of the scenario is to enhance the capability of anti-vibration or anti-shaking for general optical imaging with Cyclopean image.展开更多
The boundary-layer receptivity under the interaction of free-stream turbu- lence (FST) and localized wall roughness is studied by the direct numerical simulation (DNS) and the fast Fourier transform. The results s...The boundary-layer receptivity under the interaction of free-stream turbu- lence (FST) and localized wall roughness is studied by the direct numerical simulation (DNS) and the fast Fourier transform. The results show that the Tollmien-Schlichting (T-S) wave packets superposed by a group of stability, neutral, and instability T-S waves are generated in the boundary layer. The propagation speeds of the T-S wave packets are calculated. The relation among the boundary-layer receptivity response, the amplitude of the FST, the roughness height, and the roughness width is determined. The results agree well with Dietz's experiments. The effect of the roughness geometries on the receptivity is also studied.展开更多
Turbulent fluxes at the air-sea interface were estimated with data collected in 2011-2020 with a low-profile platform named OCARINA during eight experiments in five regions:2011,2015,and 2016 in the Iroise Sea;2012 in...Turbulent fluxes at the air-sea interface were estimated with data collected in 2011-2020 with a low-profile platform named OCARINA during eight experiments in five regions:2011,2015,and 2016 in the Iroise Sea;2012 in the tropical Atlantic;2014 in the Chilie-Peru upwelling;2017 and 2018 in the Mediterranean Sea,and 2018 and 2020 in Barbados.The observations were carried out with moderate winds(2-10 m s^(-1))and average wave heights of 1.5 m.In this study,the authors used the fluxes calculated by the bulk method using OCARINA-sampled data as the input.These data can validate the fluxes estimated from ERAS reanalysis data.The OCARINA and ERA5 data were taken concomitantly.To do this,the authors established an algorithm to extract the OCARINA data as closely as possible to the reanalysis data in time and position.The measurements of the OCARINA platform can conclude on the relevance of the widely used reanalysis data.展开更多
Any biogas produced by the anaerobic fermentation of organic materials has the advantage of being an environmentally friendly biofuel.Nevertheless,the relatively low calorific value of such gases makes their effective...Any biogas produced by the anaerobic fermentation of organic materials has the advantage of being an environmentally friendly biofuel.Nevertheless,the relatively low calorific value of such gases makes their effective utilization in practical applications relatively difficult.The present study considers the addition of hydrogen as a potential solution to mitigate this issue.In particular,the properties of turbulent diffusion jet flames and the related pollutant emissions are investigated numerically for different operating pressures.The related numerical simulations are conducted by solving the RANS equations in the frame of the Reynolds Stress Model in combination with the flamelet approach.Radiation effects are also taken into account and the combustion kinetics are described via the GRI-Mech 3.0 reaction model.The considered hydrogen fuel enrichment spans the range from 0%to 50%in terms of volume.Pressure varies between 1 and 10 atm.The results show that both hydrogen addition and pressure increase lead to an improvement in terms of mixing quality and have a significant effect on flame temperature and height.They also reduce CO_(2) emissions but increase NOx production.Prompt NO is shown to be the predominant NO formation mechanism.展开更多
Buildings with large open spaces in which chemicals are handled are often exposed to the risk of explosions.Computational fluid dynamics is a useful and convenient way to investigate contaminant dispersion in such lar...Buildings with large open spaces in which chemicals are handled are often exposed to the risk of explosions.Computational fluid dynamics is a useful and convenient way to investigate contaminant dispersion in such large spaces.The turbulent Schmidt number(Sc_(t))concept has typically been used in this regard,and most studies have adopted a default value.We studied the concentration distribution for sulfur hexafluoride(SF_(6))assuming different emission rates and considering the effect of Sc_(t).Then we examined the same problem for a light gas by assuming hydrogen gas(H_(2))as the contaminant.When SF_(6) was considered as the contaminant gas,a variation in the emission rate completely changed the concentration distribution.When the emission rate was low,the gravitational effect did not take place.For both low and high emission rates,an increase in S_(ct) accelerated the transport rate of SF_(6).In contrast,for H_(2) as the contaminant gas,a larger S_(ct) could induce a decrease in the H_(2) transport rate.展开更多
As a typical nonlinear wave,forward-leaning waves can be frequently encountered in the near-shore areas,which can impact coastal sediment transport significantly.Hence,it is of significance to describe the characteris...As a typical nonlinear wave,forward-leaning waves can be frequently encountered in the near-shore areas,which can impact coastal sediment transport significantly.Hence,it is of significance to describe the characteristics of the boundary layer beneath forward-leaning waves accurately,especially for the turbulent boundary layer.In this work,the linearized turbulent boundary layer model with a linear turbulent viscosity coefficient is applied,and the novel expression of the near-bed orbital velocity that has been worked out by the authors for forward-leaning waves of arbitrary forward-leaning degrees is further used to specify the free stream boundary condition of the bottom boundary layer.Then,a variable transformation is found so as to make the equation of the turbulent boundary layer model be solved analytically through a modified Bessel function.Consequently,an explicit analytical solution of the turbulent boundary layer beneath forward-leaning waves is derived by means of variable separation and variable transformation.The analytical solutions of the velocity profile and bottom shear stress of the turbulent boundary layer beneath forward-leaning waves are verified by comparing the present analytical results with typical experimental data available in the previous literature.展开更多
Highly turbulent water flows,often encountered near human constructions like bridge piers,spillways,and weirs,display intricate dynamics characterized by the formation of eddies and vortices.These formations,varying i...Highly turbulent water flows,often encountered near human constructions like bridge piers,spillways,and weirs,display intricate dynamics characterized by the formation of eddies and vortices.These formations,varying in sizes and lifespans,significantly influence the distribution of fluid velocities within the flow.Subsequently,the rapid velocity fluctuations in highly turbulent flows lead to elevated shear and normal stress levels.For this reason,to meticulously study these dynamics,more often than not,physical modeling is employed for studying the impact of turbulent flows on the stability and longevity of nearby structures.Despite the effectiveness of physical modeling,various monitoring challenges arise,including flow disruption,the necessity for concurrent gauging at multiple locations,and the duration of measurements.Addressing these challenges,image velocimetry emerges as an ideal method in fluid mechanics,particularly for studying turbulent flows.To account for measurement duration,a probabilistic approach utilizing a probability density function(PDF)is suggested to mitigate uncertainty in estimated average and maximum values.However,it becomes evident that deriving the PDF is not straightforward for all turbulence-induced stresses.In response,this study proposes a novel approach by combining image velocimetry with a stochastic model to provide a generic yet accurate description of flow dynamics in such applications.This integration enables an approach based on the probability of failure,facilitating a more comprehensive analysis of turbulent flows.Such an approach is essential for estimating both short-and long-term stresses on hydraulic constructions under assessment.展开更多
In this study,the fluid flow and mixing process in an impinging stream-rotating packed bed(IS-RPB)is simulated by using a new three-dimensional computational fluid dynamics model.Specifically,the gaseliquid flow is si...In this study,the fluid flow and mixing process in an impinging stream-rotating packed bed(IS-RPB)is simulated by using a new three-dimensional computational fluid dynamics model.Specifically,the gaseliquid flow is simulated by the Euler-Euler model,the hydrodynamics of the reactor is predicted by the RNG k-εmethod,and the high-gravity environment is simulated by the sliding mesh model.The turbulent mass transfer process is characterized by the concentration variance c^(2) and its dissipation rateεc formulations,and therefore the turbulent mass diffusivity can be directly obtained.The simulated segregation index Xs is in agreement with our previous experimental results.The simulated results reveal that the fringe effect of IS can be offset by the end effect at the inner radius of RPB,so the investigation of the coupling mechanism between IS and RPB is critical to intensify the mixing process in IS-RPB.展开更多
Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of t...Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of turbulent heat flux(THF).By combining multiple buoy observations along the south north storm track,we investigated the THF anomalies associated with tropical storm Danas(2019)in the East China Sea(ECS)during its complete life cycle from the intensification stage to the mature stage and finally to its dissipation on land.The storm passage is characterized by strong winds of 10-20 m/s and a sea level pressure below 1000 hPa,resulting in a substantial enhancement of THF.Latent heat(LH)fluxes are most strongly affected by wind speed,with a gradually increasing contribution of humidity along the trajectory.The relative contributions of wind speed and temperature anomalies to sensible heat(SH)depend on the stability of the boundary layer.Under stable conditions,SH variations are driven by wind speed,while under near-neutral conditions,SH variations are driven by temperature.A comparison of the observed THF and associated variables with outputs from the ERA 5 and MERRA 2 reanalysis products reveals that the reanalysis products can reproduce the basic evolution and composition of the observed THF.However,under extreme weather conditions,temperature and humidity variations are poorly captured by ERA 5 and MERRA 2,leading to large LH and SH errors.The differences in the observed and reproduced LH and SH during the passage of Danas amount to 26.1 and 6.6 W/m^(2) for ERA 5,respectively,and to 39.4 and 12.5 W/m^(2) for MERRA 2,respectively.These results demonstrate the need to improve the representation of tropical cyclones in reanalysis products to better predict their intensification process and reduce their damage.展开更多
This paper reviews the authors' recent studies on compressible turbulence by using direct numerical simulation (DNS),including DNS of isotropic(decaying) turbulence, turbulent mixing-layer,turbulent boundary-laye...This paper reviews the authors' recent studies on compressible turbulence by using direct numerical simulation (DNS),including DNS of isotropic(decaying) turbulence, turbulent mixing-layer,turbulent boundary-layer and shock/boundary-layer interaction.Turbulence statistics, compressibility effects,turbulent kinetic energy budget and coherent structures are studied based on the DNS data.The mechanism of sound source in turbulent flows is also analyzed. It shows that DNS is a powerful tool for the mechanistic study of compressible turbulence.展开更多
The low-Reynolds-number full developed turbulent flow in channels is simulated using large eddy simulation(LES)method with the preconditioned algorithm and the dynamic subgrid-scale model,with a given disturbance in...The low-Reynolds-number full developed turbulent flow in channels is simulated using large eddy simulation(LES)method with the preconditioned algorithm and the dynamic subgrid-scale model,with a given disturbance in inlet boundary,after a short development section.The inlet Reynolds number based on momentum thickness is 670.The computed results show good agreement with direct numerical simulation(DNS),which include root mean square fluctuated velocity distribution and average velocity distribution.It is also found that the staggered phenomenon of the coherent structures is caused by sub-harmonic.The results clearly show the formation and evolution of horseshoe vortex in the turbulent boundary layer,including horseshoe vortex structure with a pair of streamwise vortexes and one-side leg of horseshoe vortex.Based on the results,the development of the horseshoe-shaped coherent structures is analyzed in turbulent boundary layer.展开更多
A two-dimensional Reynolds-averaged Navier-Stokes solver is applied to analyze the aerodynamic behavior of the Shock/Boundary-Layer interaction of rocket with a boosted The K-ε turbulence model and a finite volume m...A two-dimensional Reynolds-averaged Navier-Stokes solver is applied to analyze the aerodynamic behavior of the Shock/Boundary-Layer interaction of rocket with a boosted The K-ε turbulence model and a finite volume method in a unstructured body-fitted curvilinear coordinates have been used. The results indicate that the separation and the reattachment occur in the Boundary-Layer of the main rocket because of the shock interaction. The shape of the booster nose effects the flow field obviously. In the case of the hemisphere booster nose the pressure has complicate distributions and the separation is very clear. The distance between the booster and main rocket has the evident effect on the flow field. If the distance is smaller the pressure coefficient is bigger the separation zone even the separation bubble occurs.展开更多
A low Reynolds number k-ε model is used in the numeri cal study on a circular semi-confined turbulent impinging jet . The result is c ompared with that of the standard k-ε model and a refined k-ε mode l, which re-c...A low Reynolds number k-ε model is used in the numeri cal study on a circular semi-confined turbulent impinging jet . The result is c ompared with that of the standard k-ε model and a refined k-ε mode l, which re-consi-dered the fluctuating pressure diffusion term in the dissipa tion rate equation (ε-equation) through modeling. It shows that the low Re ynolds number k-ε model and the standard k-ε model yield very poor performance, while the predicting ability of the refined k-ε model is mu ch improved , especially for the turbulent kinetic energy k. So it can be co ncluded that the poor performance of the standard k-ε model is owing to t he incorrect considering the effect of the fluctuating pressure diffusion term r ather than the use of the wall function near the wall just as presumed in the re ference.展开更多
A hybrid central-upwind scheme is proposed. Two sub-schemes, the central difference scheme and the Roets flux difference splitting scheme, are hybridized by means of a binary sensor function. In order to examine the c...A hybrid central-upwind scheme is proposed. Two sub-schemes, the central difference scheme and the Roets flux difference splitting scheme, are hybridized by means of a binary sensor function. In order to examine the capability of the proposed hybrid scheme in computing compressible turbulent flow around a curved surface body, especially the flow involving shock wave, three typical eases are investigated by using detached-eddy simulation technique. Numerical results show good agreements with the experimental measurements. The present hybrid scheme can be applied to simulating the compressible flow around a curved surface body involving shock wave and turbulence.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.12002318,11572025,11772032,and 51420105008)the Science Foundation of North University of China(No.XJJ201929)。
文摘Many recent laboratory experiments and numerical simulations support a non-equilibrium dissipation scaling in decaying turbulence before it reaches an equilibrium state.By analyzing a direct numerical simulation(DNS)database of a transitional boundary-layer flow,we show that the transition region and the non-equilibrium turbulence region,which are located in different streamwise zones,present different non-equilibrium scalings.Moreover,in the wall-normal direction,the viscous sublayer,log layer,and outer layer show different non-equilibrium phenomena which differ from those in grid-generated turbulence and transitional channel flows.These findings are expected to shed light on the modelling of various types of non-equilibrium turbulent flows.
基金funded by the National Basic Research Program of China (Grant No.2014CB447900)Xiaofeng GUO acknowledges the support of the State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,Institute of Atmospheric Physics,Chinese Academy of Sciences (Grant No.LAPC-KF-2009-02)
文摘Based on measurements at the Beijing 325-m Meteorological Tower,this study reports an analysis of atmospheric stability conditions and turbulent exchange during consecutive episodes of particle air pollution in Beijing(China),primarily due to haze and dust events(15–30 April 2012).Of particular interest were relevant vertical variations within the lower urban boundary layer(UBL).First,the haze and dust events were characterized by different atmospheric conditions,as quite low wind speed and high humidity are typically observed during haze events.In addition,for the description of stability conditions,the bulk Richardson number(RiB) was calculated for three different height intervals: 8–47,47–140,and 140–280 m.The values of RiB indicated an apparent increase in the occurrence frequency of stably-stratified air layers in the upper height interval—for the 140–280-m height interval,positive values of RiB occurred for about 85% of the time.The downward turbulent exchange of sensible heat was observed at 280 m for the full diurnal cycle,which,by contrast,was rarely seen at 140 m during daytime.These results reinforce the importance of implementing high-resolution UBL profile observations and addressing issues related to stably-stratified flows.
基金Project supported by the National Natural Science Foundation of China(Nos.11472189 and11332007)
文摘A direct numerical simulation (DNS) on an oblique shock wave with an incident angle of 33.2° impinging on a Mach 2.25 supersonic turbulent boundary layer is performed. The numerical results are confirmed to be of high accuracy by comparison with the reference data. Particular efforts have been made on the investigation of the near-wall behaviors in the interaction region, where the pressure gradient is so significant that a certain separation zone emerges. It is found that, the traditional linear and loga- rithmic laws, which describe the mean-velocity profiles in the viscous and meso sublayers, respectively, cease to be valid in the neighborhood of the interaction region, and two new laws of the wall are proposed by elevating the pressure gradient to the leading order. The new laws are inspired by the analysis on the incompressible separation flows, while the compressibility is additionally taken into account. It is verified by the DNS results that the new laws are adequate to reproduce the mean-velocity profiles both inside and outside the interaction region. Moreover, the normalization adopted in the new laws is able to regularize the Reynolds stress into an almost universal distribution even with a salient adverse pressure gradient (APG).
基金This research is supported by the Key Project of National Natural Science Foundation of China (No.40035010
文摘The turbulence data are decomposed to multi-scales and its respective fractal dimensions are computed. The conclusions are drawn from investigating the variation of fractal dimensions. With the level of decomposition increasing, the low-frequency part extracted from the turbulence signals tends to be simple and smooth, the dimensions decrease; the high-frequency part shows complex, the dimensions are fixed, about 1.70 on the average, which indicates clear self-similarity characteristics.
基金Project supported by the National Natural Science Foundation of China(Nos.11472189 and11332007)
文摘The phenomena associated with the entrainment of free-stream turbulence (FST) into boundary-layer flows are relevant for a number of subjects. It has been be- lieved that the continuous spectra of the Orr-Sommerfeld (O-S)/Squire equations describe the entrainment process, and thus they are used to specify the inlet condition in simulation of bypass transition. However, Dong and Wu (Dong, M. and Wu, X. On continuous spectra of the Orr-Sommerfeld/Squire equations and entrainment of free-stream vortical disturbances. Journal of Fluid Mechanics, 732, 616-659 (2013)) pointed out that continuous spectra exhibit several non-physical features due to neglecting the non-parallelism. They further proposed a large-Reynolds-number asymptotic approach, and showed that the non-parallelism is a leading-order effect even for the short-wavelength disturbance, for which the response concentrates in the edge layer. In this paper, the asymptotic solution is verified numerically by studying its evolution in incompressible boundary layers. It is found that the numerical results can be accurately predicted by the asymptotic solution, implying that the latter is adequate for moderate Reynolds numbers. By introducing a series of such solutions as the inflow perturbations, the bypass transition is investigated via the direct numerical simulation (DNS). The transition processes, including the evolution of streaks, the amplification of secondary-instability modes, and the emergence of turbulent spots, agree with the experimental observations.
基金financial support from the National Natural Science Foundation of China(22078230)the National Key Research and Development Program of China(2023YFB4103600)the State Key Laboratory of Heavy Oil Processing(SKLHOP202202008).
文摘Turbulent fluidized bed possesses a distinct advantage over bubbling fluidized bed in high solids contact efficiency and thus exerts great potential in applications to many industrial processes.Simulation for fluidization of fluid catalytic cracking(FCC)particles and the catalytic reaction of ozone decomposition in turbulent fluidized bed is conducted using the EulerianeEulerian approach,where the recently developed two-equation turbulent(TET)model is introduced to describe the turbulent mass diffusion.The energy minimization multi-scale(EMMS)drag model and the kinetic theory of granular flow(KTGF)are adopted to describe gaseparticles interaction and particleeparticle interaction respectively.The TET model features the rigorous closure for the turbulent mass transfer equations and thus enables more reliable simulation.With this model,distributions of ozone concentration and gaseparticles two-phase velocity as well as volume fraction are obtained and compared against experimental data.The average absolute relative deviation for the simulated ozone concentration is 9.67%which confirms the validity of the proposed model.Moreover,it is found that the transition velocity from bubbling fluidization to turbulent fluidization for FCC particles is about 0.5 m$se1 which is consistent with experimental observation.
基金supported by the National Natural Science Foundation of China(Grant No.61991452)Guangdong Key Project(Grant No.2020B0301030009)the National Key Research and Development Program of China(Grant No.2021YFB2802204).
文摘The outstanding issue to overcoming atmospheric turbulence on distant imaging is a fundamental interest and technological challenge.We propose a novel scenario and technique to restore the optical image in turbulent environmental by referring to Cyclopean image with binocular vision.With human visual intelligence,image distortion resulting from the turbulence is shown to be substantially suppressed.Numerical simulation results taking into account of the atmospheric turbulence,optical image system,image sensors,display and binocular vision perception are presented to demonstrate the robustness of the image restoration,which is compared with a single channel planar optical imaging and sensing.Experiment involving binocular telescope,image recording and the stereo-image display is conducted and good agreement is obtained between the simulation with perceptive experience.A natural extension of the scenario is to enhance the capability of anti-vibration or anti-shaking for general optical imaging with Cyclopean image.
基金supported by the National Natural Science Foundation of China(No.11172143)the Research Innovation Program for College Graduates of Jiangsu Province(No.CXZZ13 0518)
文摘The boundary-layer receptivity under the interaction of free-stream turbu- lence (FST) and localized wall roughness is studied by the direct numerical simulation (DNS) and the fast Fourier transform. The results show that the Tollmien-Schlichting (T-S) wave packets superposed by a group of stability, neutral, and instability T-S waves are generated in the boundary layer. The propagation speeds of the T-S wave packets are calculated. The relation among the boundary-layer receptivity response, the amplitude of the FST, the roughness height, and the roughness width is determined. The results agree well with Dietz's experiments. The effect of the roughness geometries on the receptivity is also studied.
文摘Turbulent fluxes at the air-sea interface were estimated with data collected in 2011-2020 with a low-profile platform named OCARINA during eight experiments in five regions:2011,2015,and 2016 in the Iroise Sea;2012 in the tropical Atlantic;2014 in the Chilie-Peru upwelling;2017 and 2018 in the Mediterranean Sea,and 2018 and 2020 in Barbados.The observations were carried out with moderate winds(2-10 m s^(-1))and average wave heights of 1.5 m.In this study,the authors used the fluxes calculated by the bulk method using OCARINA-sampled data as the input.These data can validate the fluxes estimated from ERAS reanalysis data.The OCARINA and ERA5 data were taken concomitantly.To do this,the authors established an algorithm to extract the OCARINA data as closely as possible to the reanalysis data in time and position.The measurements of the OCARINA platform can conclude on the relevance of the widely used reanalysis data.
文摘Any biogas produced by the anaerobic fermentation of organic materials has the advantage of being an environmentally friendly biofuel.Nevertheless,the relatively low calorific value of such gases makes their effective utilization in practical applications relatively difficult.The present study considers the addition of hydrogen as a potential solution to mitigate this issue.In particular,the properties of turbulent diffusion jet flames and the related pollutant emissions are investigated numerically for different operating pressures.The related numerical simulations are conducted by solving the RANS equations in the frame of the Reynolds Stress Model in combination with the flamelet approach.Radiation effects are also taken into account and the combustion kinetics are described via the GRI-Mech 3.0 reaction model.The considered hydrogen fuel enrichment spans the range from 0%to 50%in terms of volume.Pressure varies between 1 and 10 atm.The results show that both hydrogen addition and pressure increase lead to an improvement in terms of mixing quality and have a significant effect on flame temperature and height.They also reduce CO_(2) emissions but increase NOx production.Prompt NO is shown to be the predominant NO formation mechanism.
基金funded by the National Natural Science Foundation of China and the Machinery Industry Innovation Platform Construction Project of China Machinery Industry Federation,Grant Numbers 52378103 and 2019SA-10-07.
文摘Buildings with large open spaces in which chemicals are handled are often exposed to the risk of explosions.Computational fluid dynamics is a useful and convenient way to investigate contaminant dispersion in such large spaces.The turbulent Schmidt number(Sc_(t))concept has typically been used in this regard,and most studies have adopted a default value.We studied the concentration distribution for sulfur hexafluoride(SF_(6))assuming different emission rates and considering the effect of Sc_(t).Then we examined the same problem for a light gas by assuming hydrogen gas(H_(2))as the contaminant.When SF_(6) was considered as the contaminant gas,a variation in the emission rate completely changed the concentration distribution.When the emission rate was low,the gravitational effect did not take place.For both low and high emission rates,an increase in S_(ct) accelerated the transport rate of SF_(6).In contrast,for H_(2) as the contaminant gas,a larger S_(ct) could induce a decrease in the H_(2) transport rate.
基金Project supported by the National Key R&D Program of China(No.2022YFC3204303)the National Natural Science Foundation of China(Nos.12202503,12132018,and 52394254)。
文摘As a typical nonlinear wave,forward-leaning waves can be frequently encountered in the near-shore areas,which can impact coastal sediment transport significantly.Hence,it is of significance to describe the characteristics of the boundary layer beneath forward-leaning waves accurately,especially for the turbulent boundary layer.In this work,the linearized turbulent boundary layer model with a linear turbulent viscosity coefficient is applied,and the novel expression of the near-bed orbital velocity that has been worked out by the authors for forward-leaning waves of arbitrary forward-leaning degrees is further used to specify the free stream boundary condition of the bottom boundary layer.Then,a variable transformation is found so as to make the equation of the turbulent boundary layer model be solved analytically through a modified Bessel function.Consequently,an explicit analytical solution of the turbulent boundary layer beneath forward-leaning waves is derived by means of variable separation and variable transformation.The analytical solutions of the velocity profile and bottom shear stress of the turbulent boundary layer beneath forward-leaning waves are verified by comparing the present analytical results with typical experimental data available in the previous literature.
文摘Highly turbulent water flows,often encountered near human constructions like bridge piers,spillways,and weirs,display intricate dynamics characterized by the formation of eddies and vortices.These formations,varying in sizes and lifespans,significantly influence the distribution of fluid velocities within the flow.Subsequently,the rapid velocity fluctuations in highly turbulent flows lead to elevated shear and normal stress levels.For this reason,to meticulously study these dynamics,more often than not,physical modeling is employed for studying the impact of turbulent flows on the stability and longevity of nearby structures.Despite the effectiveness of physical modeling,various monitoring challenges arise,including flow disruption,the necessity for concurrent gauging at multiple locations,and the duration of measurements.Addressing these challenges,image velocimetry emerges as an ideal method in fluid mechanics,particularly for studying turbulent flows.To account for measurement duration,a probabilistic approach utilizing a probability density function(PDF)is suggested to mitigate uncertainty in estimated average and maximum values.However,it becomes evident that deriving the PDF is not straightforward for all turbulence-induced stresses.In response,this study proposes a novel approach by combining image velocimetry with a stochastic model to provide a generic yet accurate description of flow dynamics in such applications.This integration enables an approach based on the probability of failure,facilitating a more comprehensive analysis of turbulent flows.Such an approach is essential for estimating both short-and long-term stresses on hydraulic constructions under assessment.
基金supported by the National Natural Science Foundation of China (22208328, 22378370 and 22108261)Fundamental Research Program of Shanxi Province(20210302124618)
文摘In this study,the fluid flow and mixing process in an impinging stream-rotating packed bed(IS-RPB)is simulated by using a new three-dimensional computational fluid dynamics model.Specifically,the gaseliquid flow is simulated by the Euler-Euler model,the hydrodynamics of the reactor is predicted by the RNG k-εmethod,and the high-gravity environment is simulated by the sliding mesh model.The turbulent mass transfer process is characterized by the concentration variance c^(2) and its dissipation rateεc formulations,and therefore the turbulent mass diffusivity can be directly obtained.The simulated segregation index Xs is in agreement with our previous experimental results.The simulated results reveal that the fringe effect of IS can be offset by the end effect at the inner radius of RPB,so the investigation of the coupling mechanism between IS and RPB is critical to intensify the mixing process in IS-RPB.
基金Supported by the National Natural Science Foundation of China(Nos.42122040,42076016)。
文摘Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of turbulent heat flux(THF).By combining multiple buoy observations along the south north storm track,we investigated the THF anomalies associated with tropical storm Danas(2019)in the East China Sea(ECS)during its complete life cycle from the intensification stage to the mature stage and finally to its dissipation on land.The storm passage is characterized by strong winds of 10-20 m/s and a sea level pressure below 1000 hPa,resulting in a substantial enhancement of THF.Latent heat(LH)fluxes are most strongly affected by wind speed,with a gradually increasing contribution of humidity along the trajectory.The relative contributions of wind speed and temperature anomalies to sensible heat(SH)depend on the stability of the boundary layer.Under stable conditions,SH variations are driven by wind speed,while under near-neutral conditions,SH variations are driven by temperature.A comparison of the observed THF and associated variables with outputs from the ERA 5 and MERRA 2 reanalysis products reveals that the reanalysis products can reproduce the basic evolution and composition of the observed THF.However,under extreme weather conditions,temperature and humidity variations are poorly captured by ERA 5 and MERRA 2,leading to large LH and SH errors.The differences in the observed and reproduced LH and SH during the passage of Danas amount to 26.1 and 6.6 W/m^(2) for ERA 5,respectively,and to 39.4 and 12.5 W/m^(2) for MERRA 2,respectively.These results demonstrate the need to improve the representation of tropical cyclones in reanalysis products to better predict their intensification process and reduce their damage.
基金supported by the National Basic Research Program of China(2009CB724100)the National Natural Science Foundation of China(10632050,10872205,11072248).
文摘This paper reviews the authors' recent studies on compressible turbulence by using direct numerical simulation (DNS),including DNS of isotropic(decaying) turbulence, turbulent mixing-layer,turbulent boundary-layer and shock/boundary-layer interaction.Turbulence statistics, compressibility effects,turbulent kinetic energy budget and coherent structures are studied based on the DNS data.The mechanism of sound source in turbulent flows is also analyzed. It shows that DNS is a powerful tool for the mechanistic study of compressible turbulence.
基金Supported by the National Natural Science Foundation of China(10772082)~~
文摘The low-Reynolds-number full developed turbulent flow in channels is simulated using large eddy simulation(LES)method with the preconditioned algorithm and the dynamic subgrid-scale model,with a given disturbance in inlet boundary,after a short development section.The inlet Reynolds number based on momentum thickness is 670.The computed results show good agreement with direct numerical simulation(DNS),which include root mean square fluctuated velocity distribution and average velocity distribution.It is also found that the staggered phenomenon of the coherent structures is caused by sub-harmonic.The results clearly show the formation and evolution of horseshoe vortex in the turbulent boundary layer,including horseshoe vortex structure with a pair of streamwise vortexes and one-side leg of horseshoe vortex.Based on the results,the development of the horseshoe-shaped coherent structures is analyzed in turbulent boundary layer.
文摘A two-dimensional Reynolds-averaged Navier-Stokes solver is applied to analyze the aerodynamic behavior of the Shock/Boundary-Layer interaction of rocket with a boosted The K-ε turbulence model and a finite volume method in a unstructured body-fitted curvilinear coordinates have been used. The results indicate that the separation and the reattachment occur in the Boundary-Layer of the main rocket because of the shock interaction. The shape of the booster nose effects the flow field obviously. In the case of the hemisphere booster nose the pressure has complicate distributions and the separation is very clear. The distance between the booster and main rocket has the evident effect on the flow field. If the distance is smaller the pressure coefficient is bigger the separation zone even the separation bubble occurs.
文摘A low Reynolds number k-ε model is used in the numeri cal study on a circular semi-confined turbulent impinging jet . The result is c ompared with that of the standard k-ε model and a refined k-ε mode l, which re-consi-dered the fluctuating pressure diffusion term in the dissipa tion rate equation (ε-equation) through modeling. It shows that the low Re ynolds number k-ε model and the standard k-ε model yield very poor performance, while the predicting ability of the refined k-ε model is mu ch improved , especially for the turbulent kinetic energy k. So it can be co ncluded that the poor performance of the standard k-ε model is owing to t he incorrect considering the effect of the fluctuating pressure diffusion term r ather than the use of the wall function near the wall just as presumed in the re ference.
基金Supported by the National Science Foundation for Post-doctoral Scientists of China(20100481141,201104567)the Natural Science Foundation of Jiangsu Province(BK2011723)the Planned Projects for Postdoctoral Research Foundation of Jiangsu Province(0902001C)~~
文摘A hybrid central-upwind scheme is proposed. Two sub-schemes, the central difference scheme and the Roets flux difference splitting scheme, are hybridized by means of a binary sensor function. In order to examine the capability of the proposed hybrid scheme in computing compressible turbulent flow around a curved surface body, especially the flow involving shock wave, three typical eases are investigated by using detached-eddy simulation technique. Numerical results show good agreements with the experimental measurements. The present hybrid scheme can be applied to simulating the compressible flow around a curved surface body involving shock wave and turbulence.