As an important physical process at the air-sea interface, wave movement and breaking have a significant effect on the ocean surface mixed layer (OSML). When breaking waves occur at the ocean surface, turbulent kineti...As an important physical process at the air-sea interface, wave movement and breaking have a significant effect on the ocean surface mixed layer (OSML). When breaking waves occur at the ocean surface, turbulent kinetic energy (TKE) is input downwards, and a sublayer is formed near the surface and turbulence vertical mixing is intensively enhanced. A one-dimensional ocean model including the Mellor-Yamada level 2.5 turbulence closure equations was employed in our research on variations in turbulent energy budget within OSML. The influence of wave breaking could be introduced into the model by modifying an existing surface boundary condition of the TKE equation and specifying its input. The vertical diffusion and dissipation of TKE were effectively enhanced in the sublayer when wave breaking was considered. Turbulent energy dissipated in the sublayer was about 92.0% of the total depth-integrated dissipated TKE, which is twice higher than that of non-wave breaking. The shear production of TKE decreased by 3.5% because the mean flow fields tended to be uniform due to wave-enhanced turbulent mixing. As a result, a new local equilibrium between diffusion and dissipation of TKE was reached in the wave-enhanced layer. Below the sublayer, the local equilibrium between shear production and dissipation of TKE agreed with the conclusion drawn from the classical law-of-the-wall (Craig and Banner, 1994).展开更多
Direct numerical simulations (DNS) were performed for the forced homogeneous isotropic turbulence (FHIT) with/without polymer additives in order to elaborate the characteristics of the turbulent energy cascading i...Direct numerical simulations (DNS) were performed for the forced homogeneous isotropic turbulence (FHIT) with/without polymer additives in order to elaborate the characteristics of the turbulent energy cascading influenced by drag-reducing effects. The finite elastic non-linear extensibility-Peterlin model (FENE-P) was used as the conformation tensor equation for the viscoelastic polymer solution. Detailed analyses of DNS data were carried out in this paper for the turbulence scaling law and the topological dynamics of FHIT as well as the important turbulent parameters, including turbulent kinetic energy spectra, enstrophy and strain, velocity structure function, small-scale intermittency, etc. A natural and straightforward definition for the drag reduction rate was also proposed for the drag-reducing FHIT based on the decrease degree of the turbulent kinetic energy. It was found that the turbulent energy cascading in the FHIT was greatly modified by the drag-reducing polymer additives. The enstrophy and the strain fields in the FH1T of the polymer solution were remarkably weakened as compared with their Newtonian counterparts. The small-scale vortices and the small-scale intermittency were all inhibited by the viscoelastic effects in the FHIT of the polymer solution. However, the scaling law in a fashion of extended self-similarity for the FHIT of the polymer solution, within the presently simulated range of Weissenberg numbers, had no distinct differences compared with that of the Newtonian fluid case.展开更多
The land-atmosphere energy and turbulence exchange is key to understanding land surface processes on the Tibetan Plateau(TP). Using observed data for Aug. 4 to Dec. 3, 2012 from the Bujiao observation point(BJ) of the...The land-atmosphere energy and turbulence exchange is key to understanding land surface processes on the Tibetan Plateau(TP). Using observed data for Aug. 4 to Dec. 3, 2012 from the Bujiao observation point(BJ) of the Nagqu Plateau Climate and Environment Station(NPCE-BJ), different characteristics of the energy flux during the Asian summer monsoon(ASM) season and post-monsoon period were analyzed. This study outlines the impact of the ASM on energy fluxes in the central TP. It also demonstrates that the surface energy closure rate during the ASM season is higher than that of the post-monsoon period. Footprint modeling shows the distribution of data quality assessments(QA) and quality controls(QC) surrounding the observation point. The measured turbulent flux data at the NPCE-BJ site were highly representative of the target land-use type. The target surface contributed more to the fluxes under unstable conditions than under stable conditions. The main wind directions(180° and 210°) with the highest data density showed flux contributions reaching 100%, even under stable conditions. The lowest flux contributions were found in sectors with low data density, e.g., 90.4% in the 360° sector under stable conditions during the ASM season. Lastly, a surface energy water balance(SEWAB) model was used to gap-fill any absent or corrected turbulence data. The potential simulation error was also explored in this study. The Nash-Sutcliffe model efficiency coefficients(NSEs) of the observed fluxes with the SEWAB model runs were 0.78 for sensible heat flux and 0.63 for latent heat flux during the ASM season, but unrealistic values of-0.9 for latent heat flux during the post-monsoon period.展开更多
A deep understanding of turbulence structure is important for investigating the characteristics of the atmospheric boundary layer,especially over heterogeneous terrain.In the present study,turbulence intensity and tur...A deep understanding of turbulence structure is important for investigating the characteristics of the atmospheric boundary layer,especially over heterogeneous terrain.In the present study,turbulence intensity and turbulent kinetic energy(TKE)parameters are analyzed for different conditions with respect to stability,wind direction and wind speed over a valley region of the Loess Plateau of China during December 2003 and January 2004.The purpose of the study is to examine whether the observed turbulence intensity and TKE parameters satisfy Monin–Obukhov similarity theory(MOST),and analyze the wind shear effect on,and thermal buoyancy function of,the TKE,despite the terrain heterogeneity.The results demonstrate that the normalized intensity of turbulence follows MOST for all stability in the horizontal and vertical directions,as well as the normalized TKE in the horizontal direction.The shear effect of the wind speed in the Loess Plateau region is strong in winter and could enhance turbulence for all stability conditions.During daytime,the buoyancy and shear effect together constitute the generation of TKE under unstable conditions.At night,the contribution of buoyancy to TKE is relatively small,and mechanical shearing is the main production form of turbulence.展开更多
This paper aims to investigate and present the numerical investigation of airflow characteristics using Turbulent Kinetic Energy(TKE)to characterize the upper airway with obstructive sleep apnea(OSA)under inhale and e...This paper aims to investigate and present the numerical investigation of airflow characteristics using Turbulent Kinetic Energy(TKE)to characterize the upper airway with obstructive sleep apnea(OSA)under inhale and exhale breathing conditions.The importance of TKE under both breathing conditions is that it showan accuratemethod in expressing the severity of flow in sleep disorder.Computational fluid dynamics simulate the upper airway’s airflow via steady-state Reynolds-averaged Navier-Stokes(RANS)with k–ωshear stress transport(SST)turbulencemodel.The three-dimensional(3D)airway model is created based on the CT scan images of an actual patient,meshed with 1.29 million elements using Materialise Interactive Medical Image Control System(MIMICS)and ANSYS software,respectively.High TKE were noticed around the region after the necking(smaller cross-sectional area)during the inhale and exhale breathing.The turbulent kinetic energy could be used as a valuablemeasure to identify the severity of OSA.This study is expected to provide a better understanding and clear visualization of the airflow characteristics during the inhale and exhale breathing in the upper airway of patients for medical practitioners in the OSA research field.展开更多
A structure function approach is applied to estimate the turbulent kinetic energy (TKE) dissipation rate in the bottom boundary layer of the Pearl River Estuary (PRE). Simultaneous measurements with an acoustic Do...A structure function approach is applied to estimate the turbulent kinetic energy (TKE) dissipation rate in the bottom boundary layer of the Pearl River Estuary (PRE). Simultaneous measurements with an acoustic Doppler velocimeter (ADV) supplied independent data for the verification of the structure function method. The results show that, 1) the structure function approach is reliable and successfully applied method to estimate the TKE dissipation rate. The observed dissipation rates range between 8.3 ×10^-4 W/kg and 4.9× 10^-6 W/kg in YM01 and between 3.4×10^-4 W/kg and 4.8×10^-7 W/kg in YM03, respectively, while exhibiting a strong quarter-diurnal variation. 2) The balance between the shear production and viscous dissipation is better achieved in the straight river. This first-order balance is significantly broken in the estuary by non-shear production/dissipation due to wave-induced fluctuations.展开更多
The streamwise velocity components at different vertical heights in wall turbulence were measured. Wavelet transform was used to study the turbulent energy spectra, indicating that the global spectrum results from the...The streamwise velocity components at different vertical heights in wall turbulence were measured. Wavelet transform was used to study the turbulent energy spectra, indicating that the global spectrum results from the weighted average of Fourier spectrum based on wavelet scales. W'avelet transform with more vanishing moments can express the declining of turbulent spectrum. The local wavelet spectrum shows that the physical phenomena such as deformation position in the boundary layer, and the or breakup of eddies are related to the vertical energy-containing eddies exist in a multi-scale form. Moreover, the size of these eddies increases with the measured points moving out of the wall. In the buffer region, the small scale energy-containing eddies with higher frequency are excited. In the outer region, the maximal energy is concentrated in the low-frequency large-scale eddies, and the frequency domain of energy-containing eddies becomes narrower.展开更多
The turbulent mixing in the upwelling region east of Hainan Island in the South China Sea is analyzed based on in situ microstructure observations made in July 2012. During the observation, strong upwelling appears in...The turbulent mixing in the upwelling region east of Hainan Island in the South China Sea is analyzed based on in situ microstructure observations made in July 2012. During the observation, strong upwelling appears in the coastal waters, which are 3℃ cooler than the offshore waters and have a salinity 1.0 greater than that of the offshore waters. The magnitude of the dissipation rate of turbulent kinetic energy ε in the upwelling region is O(10–9 W/kg), which is comparable to the general oceanic dissipation. The inferred eddy diffusivity Kρ is O(10–6 m2/s), which is one order of magnitude lower than that in the open ocean. The values are elevated to Kρ≈O(10–4 m2/s) near the boundaries. Weak mixing in the upwelling region is consistent with weak instability as a result of moderate shears versus strong stratifications by the joint influence of surface heating and upwelling of cold water.The validity of two fine-scale structure mixing parameterization models are tested by comparison with the observed dissipation rates. The results indicate that the model developed by Mac Kinnon and Gregg in 2003 provides relatively better estimates with magnitudes close to the observations. Mixing parameterization models need to be further improved in the coastal upwelling region.展开更多
Two flow cases for scaled high speed train models with different length are numerically analyzed in the framework of the improved delayed detachededdy simulation model.Specific attention is paid to the shear flows and...Two flow cases for scaled high speed train models with different length are numerically analyzed in the framework of the improved delayed detachededdy simulation model.Specific attention is paid to the shear flows and related mechanisms in the near turbulent wake created by these moving models.In particular,a comparative analysis is made on the distributions of turbulent kinetic energy(TKE)and turbulence production(TP)in planes perpendicular to the streamwise direction.The numerical results suggest that,in the wake region very close to the tail,significant TKE and TP can be ascribed to the dynamic interaction between powerful eddies and strong shear,which explain why these quantities are sensitive to the shear strength.The shear flows are essentially governed by the boundary layers developing along the streamwise direction on the train surfaces,especially from the under-body region and the side walls.For other positions located in the downstream direction away from the tail,the interaction of vortices with the non-slip ground serves as a mechanism to promote transfer of energy from weak eddies to turbulence through the shear present in planes parallel to the ground.展开更多
The turbulence behavior of gas-liquid two-phase flow plays an important role in heat transfer and mass transfer in many chemical processes. In this work, a 2D particle image velocimetry (PIV) was used to investigate t...The turbulence behavior of gas-liquid two-phase flow plays an important role in heat transfer and mass transfer in many chemical processes. In this work, a 2D particle image velocimetry (PIV) was used to investigate the turbulent characteristic of fluid induced by a chain of bubbles rising in Newtonian and non-Newtonian fluids. The instantaneous flow field, turbulent kinetic energy (TKE) and TKE dissipation rate were measured. The results demonstrated that the TKE profiles were almost symmetrical along the column center and showed higher values in the central region of the column. The TKE was enhanced with the increase of gas flow and decrease of liquid viscosity. The maximum TKE dissipation rate appeared on both sides of the bubble chain, and increased with the increase of gas flow rate or liquid viscosity. These results provide an understanding for gas-liquid mass transfer in non-Newtonian fluids.展开更多
Upper-ocean turbulent mixing plays a vital role in mediating air-sea fluxes and determining mixed-layer properties, but its energy source, especially that near the base of the mixed layer, remains unclear. Here we rep...Upper-ocean turbulent mixing plays a vital role in mediating air-sea fluxes and determining mixed-layer properties, but its energy source, especially that near the base of the mixed layer, remains unclear. Here we report a potentially significant yet rarely discussed pathway to turbulent mixing in the convective mixed layer. During convection, as surface fluid drops rapidly in the form of convective plumes, intense turbulence kinetic energy(TKE) generated via surface processes such as wave breaking is advected downward, enhancing TKE and mixing through the layer. The related power, when integrated over the global ocean except near the surface where the direct effect of breaking waves dominates, is estimated at O(1)TW, comparable to that required by maintaining the Meridional Overturning Circulation(MOC). The mechanism in question therefore deserves greater research attention, especially in view of the potential significance of its proper representation in climate models.展开更多
A non-hydrostatic, Boussinesq, and three-dimensional large eddy simulation(LES) model was used to study the impact of the Earth's rotation on turbulence and the redistribution of energy in turbulence kinetic energ...A non-hydrostatic, Boussinesq, and three-dimensional large eddy simulation(LES) model was used to study the impact of the Earth's rotation on turbulence and the redistribution of energy in turbulence kinetic energy(TKE) budget. A set of numerical simulations was conducted,(1) with and without rotation,(2) at different latitudes(10°N, 30°N, 45°N, 60°N, and 80°N),(3) with wave breaking and with Langmuir circulation, and(4) under different wind speeds(5, 10, 20, and 30 m/s). The results show that eddy viscosity decreases when rotation is included, indicating that rotation weakens the turbulence strength. The TKE budget become tight with rotation and the effects of rotation grow with latitude. However, rotation become less important under Langmuir circulation since the transport term is strong in the vertical direction. Finally, simulations were conducted based on field data from the Boundary Layer and Air-Sea Transfer Low Wind(CBLAST-Low) experiment. The results, although more complex, are consistent with the results obtained from earlier simulations using ideal numerical conditions.展开更多
The characteristics of the energy transfer and nonlinear coupling among edge electromagnetic turbulence in thermal quench sub-period of the internal reconnection event (IRE) are studied at the sino-united spherical ...The characteristics of the energy transfer and nonlinear coupling among edge electromagnetic turbulence in thermal quench sub-period of the internal reconnection event (IRE) are studied at the sino-united spherical tokamak device using multiple Langmuir and magnetic probe arrays. The wavelet bispectral analysis and the modified Kim method are applied to investigate linear growth/damping and nonlinear energy transfer rates, along with multi-field turbulence interactions. The results show a multi-field nonlinear energy transfer from electrostatic to magnetic turbulence that results in two-mode coupling in magnetic turbulence, which may play a crucial role to trigger the IRE.展开更多
The effects of Reynolds number on both large-scale and small-scale turbulence properties are investigated in a square jet issuing from a square pipe. The detailed velocity fields were measured at five different exit R...The effects of Reynolds number on both large-scale and small-scale turbulence properties are investigated in a square jet issuing from a square pipe. The detailed velocity fields were measured at five different exit Reynolds numbers of 8 × 10^3 〈 Re 〈 5 × 10^4. It is found that both large-scale properties (e.g,, rates of mean velocity decay and spread) and small-scale properties (e.g., the dimensionless dissipation rate constant A = εL/(u^2)^3/2) are dependent on Re for Re ≤ 3 ×10^4 or Reλ ≤ 190, but virtually become Re-independent with increasing Re or Reλ. In addition, for Reλ 〉 190, the value ofA = εL/(u^2)^3/2 in the present square jet converges to 0.5, which is consistent with the observation in direct numerical simulations of box turbulence, but lower than that in circular jet, plate wake flows, and grid turbulence. The discrepancies in critical Reynolds number and A = εL/(u^2)^3/2 among different turbulent flows most likely result from the flow type and initial conditions.展开更多
A set of laboratory experiments are carried out to investigate the effect of following/opposing currents on wave attenuation.Rigid vegetation canopies with aligned and staggered configurations were tested under the co...A set of laboratory experiments are carried out to investigate the effect of following/opposing currents on wave attenuation.Rigid vegetation canopies with aligned and staggered configurations were tested under the condition of various regular wave heights and current velocities,with the constant water depth being 0.60 m to create the desired submerged scenarios.Results show that the vegetation-induced wave dissipation is enhanced with the increasing incident wave height.A larger velocity magnititude leads to a greater wave height attenuation for both following and opposing current conditions.Moreover,there is a strong positive linear correlation between the damping coefficientβand the relative wave height H_(0)/h,especially for pure wave conditions.For the velocity profile,the distributions of U_(min)and U_(max)show different patterns under combined wave and current.The time-averaged turbulent kinetic energy(TKE)vary little under pure wave and U_(c)=±0.05 m/s conditions.With the increase of flow velocity amplitude,the time-averaged TKE shows a particularly pronounced increase trend at the top of the canopy.The vegetation drag coefficients are obtained by a calibration approach.The empirical relations of drag coefficient with Reynolds and Keulegane-Carpenter numbers are proposed to further understand the wave-current-vegetation interaction mechanism.展开更多
Sediment accumulation on the bed of open sewers and drains reduces hydraulic efficiency and can cause localized flooding.Slotted invert traps installed underneath the bed of open sewers and drains can eliminate sedime...Sediment accumulation on the bed of open sewers and drains reduces hydraulic efficiency and can cause localized flooding.Slotted invert traps installed underneath the bed of open sewers and drains can eliminate sediment build-up by catching sediment load.Previous three-dimensional(3D)computational studies have examined the particle trapping performance of invert traps of different shapes and depths under varied sediment and flow conditions,considering particles as spheres.For two-dimensional and 3D numerical modeling,researchers assumed the lid geometry to be a thin line and a plane,respectively.In this 3D numerical study,the particle trapping efficiency of a slotted irregular hexagonal invert trap fitted at the flume bottom was examined by incorporating the particle shape factor of non-spherical sewage solid particles and the thicknesses of upstream and downstream lids over the trap in the discrete phase model of the ANSYS Fluent 2020 R1 software.The volume of fluid(VOF)and the realizable k-turbulence models were used to predict the velocity field.The two-dimensional particle image velocimetry(PIV)was used to measure the velocity field inside the invert trap.The results showed that the thicknesses of upstream and downstream lids affected the velocity field and turbulent kinetic energy at all flow depths.The joint impact of the particle shape factor and lid thickness on the trap efficiency was significant.When both the lid thickness and particle shape factor were considered in the numerical modeling,trap efficiencies were underestimated,with relative errors of-8.66%to-0.65%in comparison to the experimental values of Mohsin and Kaushal(2017).They were also lower than the values predicted by Mohsin and Kaushal(2017),which showed an overall overestimation with errors of-2.3%to 17.4%.展开更多
To reveal the cavitation forms of tip leakage vortex(TLV)of the axial flow pump and the flow mechanism of the flow field,this research adopts the partially-averaged Navier-Stokes(PANS)model to simulate the cavitation ...To reveal the cavitation forms of tip leakage vortex(TLV)of the axial flow pump and the flow mechanism of the flow field,this research adopts the partially-averaged Navier-Stokes(PANS)model to simulate the cavitation values of an axial flow pump,followed by experimental validation.The experimental result shows that compared with the shear stress transport(SST)k-ωmodel,the PANS model significantly reduces the eddy viscosity of the flow field to make the vortex structure clearer and allow the turbulence scale to be more robustly analyzed.The cavitation area within the axial flow pump mainly comprises of TLV cavitation,clearance cavitation and tip leakage flows combined effect of triangular cloud cavitation formed.The formation and development of cavitation are accompanied by the formation and evolution of vortex,and variations in vortex structure also generate and promote the development of cavitation.In addition,an in-depth analysis of the relationship between the turbulent kinetic energy(TKE)transport equation and cavitation patterns was also conducted,finding that the regions with relatively high TKE are mainly distributed around gas/liquid boundaries with serious cavitation and evident gas-liquid change.This phenomenon is mainly attributed to the combined effect of the pressure action term,stress diffusion term and TKE production term.展开更多
A one-dimensional mixed-layer model, including a Mellor- Yamada level 2.5 turbulence closure scheme, was implemented to investi- gate the dynamical and thermal structures of the ocean surface mixed layer in the northe...A one-dimensional mixed-layer model, including a Mellor- Yamada level 2.5 turbulence closure scheme, was implemented to investi- gate the dynamical and thermal structures of the ocean surface mixed layer in the northern South China Sea. The turbulent kinetic ener- gy released through wave breaking was incorporated into the model as a source of energy at the ocean surface, and the influence of the breaking waves on the mixed layer was studied. The numerical simulations show that the simulated SST is overestimated in summer without the breaking waves. However, the cooler SST is simulated when the effect of the breaking waves is considered, the corre- sponding discrepancy with the observed data decreases up to 20% and the MLD calculated averagely deepens 3.8 m. Owing to the wave-enhanced turbulence mixing in the summertime, the stratification at the bottom of the mixed layer was modified and the tempera- ture gradient spread throughout the whole thermocline compared with the concentrated distribution without wave breaking.展开更多
The kinetic energy variations of mean flow and turbulence at three levels in the surface layer were calculated by using eddy covariance data from observations at Jinta oasis in 2005 summer. It is found that when the m...The kinetic energy variations of mean flow and turbulence at three levels in the surface layer were calculated by using eddy covariance data from observations at Jinta oasis in 2005 summer. It is found that when the mean horizontal flow was stronger, the turbulent kinetic energy was increased at all levels, as well as the downward mean wind at the middle level. Since the mean vertical flow on the top and bottom were both negligible at that time, there was a secondary circulation with convergence in the upper half and divergence in the lower half of the column. After consideration of energy conversion, it was found that the interaction between turbulence and the secondary circulation caused the intensification of each other. The interaction reflected positive feedback between turbulence and the vertical shear of the mean flow. Turbulent sensible and latent heat flux anomaly were also analyzed. The results show that in both daytime and at night, when the surface layer turbulence was intensified as a result of strengthened mean flow, the sensible heat flux was decreased while the latent heat flux was increased. Both anomalous fluxes contributed to the cold island effect and the moisture island effect of the oasis.展开更多
The turbulence structure in the stirred tank with a deep hollow blade(semi-ellispe) disc turbine(HEDT) was investigated by using time-resolved particle image velocimetry(TRPIV) and traditional PIV.In the stirred tank,...The turbulence structure in the stirred tank with a deep hollow blade(semi-ellispe) disc turbine(HEDT) was investigated by using time-resolved particle image velocimetry(TRPIV) and traditional PIV.In the stirred tank,the turbulence generated by blade passage includes the periodic components and the random turbulent ones.Traditional PIV with angle-resolved measurement and TRPIV with wavelet analysis were both used to obtain the random turbulent kinetic energy as a comparison.The wavelet analysis method was successfully used in this work to separate the random turbulent kinetic energy.The distributions of the periodic kinetic energy and the random turbulent kinetic energy were obtained.In the impeller region,the averaged random turbulent kinetic energy was about 2.6 times of the averaged periodic one.The kinetic energies at different wavelet scales from a6 to d1 were also calculated and compared.TRPIV was used to record the sequence of instantaneous velocity in the impeller stream.The evolution of the impeller stream was observed clearly and the sequence of the vorticity field was also obtained for the identification of vortices.The slope of the energy spectrum was approximately-5/3 in high frequency representing the existence of inertial subrange and some isotropic properties in stirred tank.From the power spectral density(PSD) ,one peak existed evidently,which was located at f0(blade passage frequency) generated by the blade passage.展开更多
基金Supported by the NSFC (No. 40476008)Knowledge Innovation Programs of the Chinese Academy of Sciences (No. KZCX3-SW-222)the NSFDYS (No. 40425015)
文摘As an important physical process at the air-sea interface, wave movement and breaking have a significant effect on the ocean surface mixed layer (OSML). When breaking waves occur at the ocean surface, turbulent kinetic energy (TKE) is input downwards, and a sublayer is formed near the surface and turbulence vertical mixing is intensively enhanced. A one-dimensional ocean model including the Mellor-Yamada level 2.5 turbulence closure equations was employed in our research on variations in turbulent energy budget within OSML. The influence of wave breaking could be introduced into the model by modifying an existing surface boundary condition of the TKE equation and specifying its input. The vertical diffusion and dissipation of TKE were effectively enhanced in the sublayer when wave breaking was considered. Turbulent energy dissipated in the sublayer was about 92.0% of the total depth-integrated dissipated TKE, which is twice higher than that of non-wave breaking. The shear production of TKE decreased by 3.5% because the mean flow fields tended to be uniform due to wave-enhanced turbulent mixing. As a result, a new local equilibrium between diffusion and dissipation of TKE was reached in the wave-enhanced layer. Below the sublayer, the local equilibrium between shear production and dissipation of TKE agreed with the conclusion drawn from the classical law-of-the-wall (Craig and Banner, 1994).
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 51076036 and 51206033)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No.51121004)+2 种基金the Fundamental Research Funds for the Central Universities,China (Grant No. HIT.BRET2.2010008)the Doctoral Fund of Ministry of Education of China (Grant No. 20112302110020)the China Postdoctoral Science Foundation (Grant No. 2011M500652)
文摘Direct numerical simulations (DNS) were performed for the forced homogeneous isotropic turbulence (FHIT) with/without polymer additives in order to elaborate the characteristics of the turbulent energy cascading influenced by drag-reducing effects. The finite elastic non-linear extensibility-Peterlin model (FENE-P) was used as the conformation tensor equation for the viscoelastic polymer solution. Detailed analyses of DNS data were carried out in this paper for the turbulence scaling law and the topological dynamics of FHIT as well as the important turbulent parameters, including turbulent kinetic energy spectra, enstrophy and strain, velocity structure function, small-scale intermittency, etc. A natural and straightforward definition for the drag reduction rate was also proposed for the drag-reducing FHIT based on the decrease degree of the turbulent kinetic energy. It was found that the turbulent energy cascading in the FHIT was greatly modified by the drag-reducing polymer additives. The enstrophy and the strain fields in the FH1T of the polymer solution were remarkably weakened as compared with their Newtonian counterparts. The small-scale vortices and the small-scale intermittency were all inhibited by the viscoelastic effects in the FHIT of the polymer solution. However, the scaling law in a fashion of extended self-similarity for the FHIT of the polymer solution, within the presently simulated range of Weissenberg numbers, had no distinct differences compared with that of the Newtonian fluid case.
基金supported by the National Natural Science Foundation of China (Grant Nos. 91337212, 41175008)Cold and Arid Regions Environmental and Engineering Research Institute Youth Science Technology Service Network initiative (STS)+1 种基金the China Exchange Project (Grant No. 13CDP007)the National Natural Science Foundation of China (Grant Nos. 40825015 and 40675012)
文摘The land-atmosphere energy and turbulence exchange is key to understanding land surface processes on the Tibetan Plateau(TP). Using observed data for Aug. 4 to Dec. 3, 2012 from the Bujiao observation point(BJ) of the Nagqu Plateau Climate and Environment Station(NPCE-BJ), different characteristics of the energy flux during the Asian summer monsoon(ASM) season and post-monsoon period were analyzed. This study outlines the impact of the ASM on energy fluxes in the central TP. It also demonstrates that the surface energy closure rate during the ASM season is higher than that of the post-monsoon period. Footprint modeling shows the distribution of data quality assessments(QA) and quality controls(QC) surrounding the observation point. The measured turbulent flux data at the NPCE-BJ site were highly representative of the target land-use type. The target surface contributed more to the fluxes under unstable conditions than under stable conditions. The main wind directions(180° and 210°) with the highest data density showed flux contributions reaching 100%, even under stable conditions. The lowest flux contributions were found in sectors with low data density, e.g., 90.4% in the 360° sector under stable conditions during the ASM season. Lastly, a surface energy water balance(SEWAB) model was used to gap-fill any absent or corrected turbulence data. The potential simulation error was also explored in this study. The Nash-Sutcliffe model efficiency coefficients(NSEs) of the observed fluxes with the SEWAB model runs were 0.78 for sensible heat flux and 0.63 for latent heat flux during the ASM season, but unrealistic values of-0.9 for latent heat flux during the post-monsoon period.
基金supported by the National Basic Research Program of China(Grant No.2012CB955304)the National Natural Science Foundation of China(Grant Nos.41075008 and 40830957)+2 种基金the Special Financial Grant of China Postdoctoral Science Foundation(Grant No.2013T60901)the Arid Meteorology Foundation of the Institute of Arid Meteorology of the China Meteorological Administration(Grant No.IAM201408)the Ten Talents Program of Gansu Meteorology Bureau
文摘A deep understanding of turbulence structure is important for investigating the characteristics of the atmospheric boundary layer,especially over heterogeneous terrain.In the present study,turbulence intensity and turbulent kinetic energy(TKE)parameters are analyzed for different conditions with respect to stability,wind direction and wind speed over a valley region of the Loess Plateau of China during December 2003 and January 2004.The purpose of the study is to examine whether the observed turbulence intensity and TKE parameters satisfy Monin–Obukhov similarity theory(MOST),and analyze the wind shear effect on,and thermal buoyancy function of,the TKE,despite the terrain heterogeneity.The results demonstrate that the normalized intensity of turbulence follows MOST for all stability in the horizontal and vertical directions,as well as the normalized TKE in the horizontal direction.The shear effect of the wind speed in the Loess Plateau region is strong in winter and could enhance turbulence for all stability conditions.During daytime,the buoyancy and shear effect together constitute the generation of TKE under unstable conditions.At night,the contribution of buoyancy to TKE is relatively small,and mechanical shearing is the main production form of turbulence.
基金supported by the Fundamental Research Grant Scheme provided by the Ministry of Higher Education (Ref.No.FRGS/1/2020/TK0/UNIMAP/03/26).
文摘This paper aims to investigate and present the numerical investigation of airflow characteristics using Turbulent Kinetic Energy(TKE)to characterize the upper airway with obstructive sleep apnea(OSA)under inhale and exhale breathing conditions.The importance of TKE under both breathing conditions is that it showan accuratemethod in expressing the severity of flow in sleep disorder.Computational fluid dynamics simulate the upper airway’s airflow via steady-state Reynolds-averaged Navier-Stokes(RANS)with k–ωshear stress transport(SST)turbulencemodel.The three-dimensional(3D)airway model is created based on the CT scan images of an actual patient,meshed with 1.29 million elements using Materialise Interactive Medical Image Control System(MIMICS)and ANSYS software,respectively.High TKE were noticed around the region after the necking(smaller cross-sectional area)during the inhale and exhale breathing.The turbulent kinetic energy could be used as a valuablemeasure to identify the severity of OSA.This study is expected to provide a better understanding and clear visualization of the airflow characteristics during the inhale and exhale breathing in the upper airway of patients for medical practitioners in the OSA research field.
基金supported by the National Natural Science Foundation of China (Grant No. 41006050)the China Postdoctoral Science Foundation (Grant No. 20090460799)the Fundamental Research Funds for the Central Universities (Grant No. 11lgpy59)
文摘A structure function approach is applied to estimate the turbulent kinetic energy (TKE) dissipation rate in the bottom boundary layer of the Pearl River Estuary (PRE). Simultaneous measurements with an acoustic Doppler velocimeter (ADV) supplied independent data for the verification of the structure function method. The results show that, 1) the structure function approach is reliable and successfully applied method to estimate the TKE dissipation rate. The observed dissipation rates range between 8.3 ×10^-4 W/kg and 4.9× 10^-6 W/kg in YM01 and between 3.4×10^-4 W/kg and 4.8×10^-7 W/kg in YM03, respectively, while exhibiting a strong quarter-diurnal variation. 2) The balance between the shear production and viscous dissipation is better achieved in the straight river. This first-order balance is significantly broken in the estuary by non-shear production/dissipation due to wave-induced fluctuations.
基金supported by the National Natural Science Foundation of China (Nos. 10832001 and10872145)the Program for New Century Excellent Talents in Universities of Education Min-istry of China
文摘The streamwise velocity components at different vertical heights in wall turbulence were measured. Wavelet transform was used to study the turbulent energy spectra, indicating that the global spectrum results from the weighted average of Fourier spectrum based on wavelet scales. W'avelet transform with more vanishing moments can express the declining of turbulent spectrum. The local wavelet spectrum shows that the physical phenomena such as deformation position in the boundary layer, and the or breakup of eddies are related to the vertical energy-containing eddies exist in a multi-scale form. Moreover, the size of these eddies increases with the measured points moving out of the wall. In the buffer region, the small scale energy-containing eddies with higher frequency are excited. In the outer region, the maximal energy is concentrated in the low-frequency large-scale eddies, and the frequency domain of energy-containing eddies becomes narrower.
基金The National Natural Science Foundation of China under contract Nos 41476009,41776034 and 41476010the Natural Science Foundation of Guangdong Province of China under contract No.2016A030312004+1 种基金the Global Air-Sea Interaction Project of State Oceanic Administration under contract No.GASI-IPOVAI-01-02the Laboratory of Tropical Ocean Open Foundation under contract No.LT1404
文摘The turbulent mixing in the upwelling region east of Hainan Island in the South China Sea is analyzed based on in situ microstructure observations made in July 2012. During the observation, strong upwelling appears in the coastal waters, which are 3℃ cooler than the offshore waters and have a salinity 1.0 greater than that of the offshore waters. The magnitude of the dissipation rate of turbulent kinetic energy ε in the upwelling region is O(10–9 W/kg), which is comparable to the general oceanic dissipation. The inferred eddy diffusivity Kρ is O(10–6 m2/s), which is one order of magnitude lower than that in the open ocean. The values are elevated to Kρ≈O(10–4 m2/s) near the boundaries. Weak mixing in the upwelling region is consistent with weak instability as a result of moderate shears versus strong stratifications by the joint influence of surface heating and upwelling of cold water.The validity of two fine-scale structure mixing parameterization models are tested by comparison with the observed dissipation rates. The results indicate that the model developed by Mac Kinnon and Gregg in 2003 provides relatively better estimates with magnitudes close to the observations. Mixing parameterization models need to be further improved in the coastal upwelling region.
基金supported by the China Academy of Railway Sciences Corporation Limited Research Project(2019YJ165).
文摘Two flow cases for scaled high speed train models with different length are numerically analyzed in the framework of the improved delayed detachededdy simulation model.Specific attention is paid to the shear flows and related mechanisms in the near turbulent wake created by these moving models.In particular,a comparative analysis is made on the distributions of turbulent kinetic energy(TKE)and turbulence production(TP)in planes perpendicular to the streamwise direction.The numerical results suggest that,in the wake region very close to the tail,significant TKE and TP can be ascribed to the dynamic interaction between powerful eddies and strong shear,which explain why these quantities are sensitive to the shear strength.The shear flows are essentially governed by the boundary layers developing along the streamwise direction on the train surfaces,especially from the under-body region and the side walls.For other positions located in the downstream direction away from the tail,the interaction of vortices with the non-slip ground serves as a mechanism to promote transfer of energy from weak eddies to turbulence through the shear present in planes parallel to the ground.
基金Supported by the National Natural Science Foundation of China (21076139)the Opening Project of State Key Laboratory of Chemical Engineering (SKL-ChE-08B03)the Program of Introducing Talents of Discipline to Universities (B06006)
文摘The turbulence behavior of gas-liquid two-phase flow plays an important role in heat transfer and mass transfer in many chemical processes. In this work, a 2D particle image velocimetry (PIV) was used to investigate the turbulent characteristic of fluid induced by a chain of bubbles rising in Newtonian and non-Newtonian fluids. The instantaneous flow field, turbulent kinetic energy (TKE) and TKE dissipation rate were measured. The results demonstrated that the TKE profiles were almost symmetrical along the column center and showed higher values in the central region of the column. The TKE was enhanced with the increase of gas flow and decrease of liquid viscosity. The maximum TKE dissipation rate appeared on both sides of the bubble chain, and increased with the increase of gas flow rate or liquid viscosity. These results provide an understanding for gas-liquid mass transfer in non-Newtonian fluids.
基金Supported by the National Basic Research Program of China(973 Program)(No.2015CB954300)the AoShan Talents Program Supported by Qingdao National Laboratory for Marine Science and Technology(No.2015ASTP-OS02)the National Natural Science Foundation of China(No.41376011)
文摘Upper-ocean turbulent mixing plays a vital role in mediating air-sea fluxes and determining mixed-layer properties, but its energy source, especially that near the base of the mixed layer, remains unclear. Here we report a potentially significant yet rarely discussed pathway to turbulent mixing in the convective mixed layer. During convection, as surface fluid drops rapidly in the form of convective plumes, intense turbulence kinetic energy(TKE) generated via surface processes such as wave breaking is advected downward, enhancing TKE and mixing through the layer. The related power, when integrated over the global ocean except near the surface where the direct effect of breaking waves dominates, is estimated at O(1)TW, comparable to that required by maintaining the Meridional Overturning Circulation(MOC). The mechanism in question therefore deserves greater research attention, especially in view of the potential significance of its proper representation in climate models.
基金Supported by the National Natural Science Foundation of China(Nos.41206015,41106019)the National Basic Research Program of China(973 Program)(Nos.2011CB403501,2012CB417402)the Fund for Creative Research Groups by NSFC(No.41121064)
文摘A non-hydrostatic, Boussinesq, and three-dimensional large eddy simulation(LES) model was used to study the impact of the Earth's rotation on turbulence and the redistribution of energy in turbulence kinetic energy(TKE) budget. A set of numerical simulations was conducted,(1) with and without rotation,(2) at different latitudes(10°N, 30°N, 45°N, 60°N, and 80°N),(3) with wave breaking and with Langmuir circulation, and(4) under different wind speeds(5, 10, 20, and 30 m/s). The results show that eddy viscosity decreases when rotation is included, indicating that rotation weakens the turbulence strength. The TKE budget become tight with rotation and the effects of rotation grow with latitude. However, rotation become less important under Langmuir circulation since the transport term is strong in the vertical direction. Finally, simulations were conducted based on field data from the Boundary Layer and Air-Sea Transfer Low Wind(CBLAST-Low) experiment. The results, although more complex, are consistent with the results obtained from earlier simulations using ideal numerical conditions.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11261140327,11325524,11475102 and11575057the Chinese National Fusion Project for ITER under Grant Nos 2013GB112001,2013GB107001 and 2014GB108000+1 种基金the Tsinghua University Initiative Scientific Research Programthe 221 Program
文摘The characteristics of the energy transfer and nonlinear coupling among edge electromagnetic turbulence in thermal quench sub-period of the internal reconnection event (IRE) are studied at the sino-united spherical tokamak device using multiple Langmuir and magnetic probe arrays. The wavelet bispectral analysis and the modified Kim method are applied to investigate linear growth/damping and nonlinear energy transfer rates, along with multi-field turbulence interactions. The results show a multi-field nonlinear energy transfer from electrostatic to magnetic turbulence that results in two-mode coupling in magnetic turbulence, which may play a crucial role to trigger the IRE.
基金supported by the Fundamental Research Funds for the Central Universities,China(3132015027)the general science research project of the education department of Liaoning Province,China(L2013198)the Natural Science Foundation of Liaoning Province,China(2014025012)
文摘The effects of Reynolds number on both large-scale and small-scale turbulence properties are investigated in a square jet issuing from a square pipe. The detailed velocity fields were measured at five different exit Reynolds numbers of 8 × 10^3 〈 Re 〈 5 × 10^4. It is found that both large-scale properties (e.g,, rates of mean velocity decay and spread) and small-scale properties (e.g., the dimensionless dissipation rate constant A = εL/(u^2)^3/2) are dependent on Re for Re ≤ 3 ×10^4 or Reλ ≤ 190, but virtually become Re-independent with increasing Re or Reλ. In addition, for Reλ 〉 190, the value ofA = εL/(u^2)^3/2 in the present square jet converges to 0.5, which is consistent with the observation in direct numerical simulations of box turbulence, but lower than that in circular jet, plate wake flows, and grid turbulence. The discrepancies in critical Reynolds number and A = εL/(u^2)^3/2 among different turbulent flows most likely result from the flow type and initial conditions.
基金financially supported by the National Key Research and Development Program of China(2023YFC3208501)the National Natural Science Foundation of China(Grant Nos.U2340225,51979172)+2 种基金the Nanjing Hydraulic Research Institute Special Fund for Basic Scientific Research of Central Public Research Institutes(Y223002,Y220013)the CRSRI Open Research Program(Grant No.CKWV20221007/KY)the Post-Three Gorges Sediment Research Project of MWR(ProjectⅢ:Impact and Countermeasures of the Three Gorges Project on the Stability of the Shoal and Channel and Habitat of Yangtze River Estuary)。
文摘A set of laboratory experiments are carried out to investigate the effect of following/opposing currents on wave attenuation.Rigid vegetation canopies with aligned and staggered configurations were tested under the condition of various regular wave heights and current velocities,with the constant water depth being 0.60 m to create the desired submerged scenarios.Results show that the vegetation-induced wave dissipation is enhanced with the increasing incident wave height.A larger velocity magnititude leads to a greater wave height attenuation for both following and opposing current conditions.Moreover,there is a strong positive linear correlation between the damping coefficientβand the relative wave height H_(0)/h,especially for pure wave conditions.For the velocity profile,the distributions of U_(min)and U_(max)show different patterns under combined wave and current.The time-averaged turbulent kinetic energy(TKE)vary little under pure wave and U_(c)=±0.05 m/s conditions.With the increase of flow velocity amplitude,the time-averaged TKE shows a particularly pronounced increase trend at the top of the canopy.The vegetation drag coefficients are obtained by a calibration approach.The empirical relations of drag coefficient with Reynolds and Keulegane-Carpenter numbers are proposed to further understand the wave-current-vegetation interaction mechanism.
文摘Sediment accumulation on the bed of open sewers and drains reduces hydraulic efficiency and can cause localized flooding.Slotted invert traps installed underneath the bed of open sewers and drains can eliminate sediment build-up by catching sediment load.Previous three-dimensional(3D)computational studies have examined the particle trapping performance of invert traps of different shapes and depths under varied sediment and flow conditions,considering particles as spheres.For two-dimensional and 3D numerical modeling,researchers assumed the lid geometry to be a thin line and a plane,respectively.In this 3D numerical study,the particle trapping efficiency of a slotted irregular hexagonal invert trap fitted at the flume bottom was examined by incorporating the particle shape factor of non-spherical sewage solid particles and the thicknesses of upstream and downstream lids over the trap in the discrete phase model of the ANSYS Fluent 2020 R1 software.The volume of fluid(VOF)and the realizable k-turbulence models were used to predict the velocity field.The two-dimensional particle image velocimetry(PIV)was used to measure the velocity field inside the invert trap.The results showed that the thicknesses of upstream and downstream lids affected the velocity field and turbulent kinetic energy at all flow depths.The joint impact of the particle shape factor and lid thickness on the trap efficiency was significant.When both the lid thickness and particle shape factor were considered in the numerical modeling,trap efficiencies were underestimated,with relative errors of-8.66%to-0.65%in comparison to the experimental values of Mohsin and Kaushal(2017).They were also lower than the values predicted by Mohsin and Kaushal(2017),which showed an overall overestimation with errors of-2.3%to 17.4%.
基金supported by the National Natural Science Foundation of China(Grant No.52376035).
文摘To reveal the cavitation forms of tip leakage vortex(TLV)of the axial flow pump and the flow mechanism of the flow field,this research adopts the partially-averaged Navier-Stokes(PANS)model to simulate the cavitation values of an axial flow pump,followed by experimental validation.The experimental result shows that compared with the shear stress transport(SST)k-ωmodel,the PANS model significantly reduces the eddy viscosity of the flow field to make the vortex structure clearer and allow the turbulence scale to be more robustly analyzed.The cavitation area within the axial flow pump mainly comprises of TLV cavitation,clearance cavitation and tip leakage flows combined effect of triangular cloud cavitation formed.The formation and development of cavitation are accompanied by the formation and evolution of vortex,and variations in vortex structure also generate and promote the development of cavitation.In addition,an in-depth analysis of the relationship between the turbulent kinetic energy(TKE)transport equation and cavitation patterns was also conducted,finding that the regions with relatively high TKE are mainly distributed around gas/liquid boundaries with serious cavitation and evident gas-liquid change.This phenomenon is mainly attributed to the combined effect of the pressure action term,stress diffusion term and TKE production term.
基金supported by the cooperative project of the Chinese Academy of Sciencesthe China National Offshore Oil Corporation+1 种基金the National Natural Science Foundation of China under contract Nos 40376008 and 40476008Open Projects of the Key Laboratory of Physical Oceanography of Ministry of Education of China under contract No.200310.
文摘A one-dimensional mixed-layer model, including a Mellor- Yamada level 2.5 turbulence closure scheme, was implemented to investi- gate the dynamical and thermal structures of the ocean surface mixed layer in the northern South China Sea. The turbulent kinetic ener- gy released through wave breaking was incorporated into the model as a source of energy at the ocean surface, and the influence of the breaking waves on the mixed layer was studied. The numerical simulations show that the simulated SST is overestimated in summer without the breaking waves. However, the cooler SST is simulated when the effect of the breaking waves is considered, the corre- sponding discrepancy with the observed data decreases up to 20% and the MLD calculated averagely deepens 3.8 m. Owing to the wave-enhanced turbulence mixing in the summertime, the stratification at the bottom of the mixed layer was modified and the tempera- ture gradient spread throughout the whole thermocline compared with the concentrated distribution without wave breaking.
基金supported by the State Key Program of National Natural Science of China(Grant Nos.40233035 and 40633014)funded by one of National Basic Research Program of China(Grant No.2009CB421402)
文摘The kinetic energy variations of mean flow and turbulence at three levels in the surface layer were calculated by using eddy covariance data from observations at Jinta oasis in 2005 summer. It is found that when the mean horizontal flow was stronger, the turbulent kinetic energy was increased at all levels, as well as the downward mean wind at the middle level. Since the mean vertical flow on the top and bottom were both negligible at that time, there was a secondary circulation with convergence in the upper half and divergence in the lower half of the column. After consideration of energy conversion, it was found that the interaction between turbulence and the secondary circulation caused the intensification of each other. The interaction reflected positive feedback between turbulence and the vertical shear of the mean flow. Turbulent sensible and latent heat flux anomaly were also analyzed. The results show that in both daytime and at night, when the surface layer turbulence was intensified as a result of strengthened mean flow, the sensible heat flux was decreased while the latent heat flux was increased. Both anomalous fluxes contributed to the cold island effect and the moisture island effect of the oasis.
基金Supported by the National Natural Science Foundation of China(20776008 20821004 20990224) the National Basic Research Program of China(2007CB714300)
文摘The turbulence structure in the stirred tank with a deep hollow blade(semi-ellispe) disc turbine(HEDT) was investigated by using time-resolved particle image velocimetry(TRPIV) and traditional PIV.In the stirred tank,the turbulence generated by blade passage includes the periodic components and the random turbulent ones.Traditional PIV with angle-resolved measurement and TRPIV with wavelet analysis were both used to obtain the random turbulent kinetic energy as a comparison.The wavelet analysis method was successfully used in this work to separate the random turbulent kinetic energy.The distributions of the periodic kinetic energy and the random turbulent kinetic energy were obtained.In the impeller region,the averaged random turbulent kinetic energy was about 2.6 times of the averaged periodic one.The kinetic energies at different wavelet scales from a6 to d1 were also calculated and compared.TRPIV was used to record the sequence of instantaneous velocity in the impeller stream.The evolution of the impeller stream was observed clearly and the sequence of the vorticity field was also obtained for the identification of vortices.The slope of the energy spectrum was approximately-5/3 in high frequency representing the existence of inertial subrange and some isotropic properties in stirred tank.From the power spectral density(PSD) ,one peak existed evidently,which was located at f0(blade passage frequency) generated by the blade passage.