Turbulent features of streamwise and vertical components of velocity in the negative transport region of asymmetric plane channel flow have been studied experimentally in details. Experiments show that turbulent fluct...Turbulent features of streamwise and vertical components of velocity in the negative transport region of asymmetric plane channel flow have been studied experimentally in details. Experiments show that turbulent fluctuations in negative transport region are suppressed, and their probability distributions are far from Gaussian. Besides, the skewness factors attain their negative maxima at the position of the maximum mean velocity, whereas the flatness factors attain their positive maxima at the same position.展开更多
Free surface flows aeration potential causing the in macro- and intermediate flow characteristics to vary roughness conditions have a high with slopes and discharges. The underlying mechanism of two-phase flow charact...Free surface flows aeration potential causing the in macro- and intermediate flow characteristics to vary roughness conditions have a high with slopes and discharges. The underlying mechanism of two-phase flow characteristics in macro- and intermediate roughness conditions were analyzed in an experimental setup assembled at the Laboratory of Hydraulic Protection of the Territory (PITLAB) of the University of Pisa, Italy. Crushed angular rocks and hemispherical boulders were used to intensify the roughness of the bed. Flow rates per unit width ranging between 0.03 m^2/s and 0.09 m^2/s and slopes between 0.26 and 0.46 were tested over different arrangements of a rough bed. Analyses were mainly carried out in the inner flow region, which consists of both bubbly and intermediate flow regions. The findings revealed that the two-phase flow properties over the rough bed were much affected by rough bed arrangements. Turbulence features of two-phase flows over the rough bed were compared with those of the stepped chute data under similar flow conditions. Overall, the results highlight the flow features in the inner layers of the two-phase flow, showing that the maximum turbulence intensity decreases with the relative submergence, while the bubble frequency distribution is affected by the rough bed elements.展开更多
Turbulent forced convective heat transfer and flow con figurations in a square channel with wavy-ribs inserted diagonally are examined numerically. The in fluences of the 30° and 45° flow attack angles for w...Turbulent forced convective heat transfer and flow con figurations in a square channel with wavy-ribs inserted diagonally are examined numerically. The in fluences of the 30° and 45° flow attack angles for wavy-ribs, blockage ratio, R B= b/H = 0.05–0.25 with single pitch ratio, R P= P/H = 1 are investigated for the Reynolds number based on the hydraulic diameter of the square channel, Re = 3000–20000. The use of the wavy-ribs, which inserted diagonal in the square channel, is aimed to help to improve the thermal performance in heat exchange systems.The finite volume method and SIMPLE algorithm are applied to the present numerical simulation. The results are presented on the periodic flow and heat transfer pro files, flow con figurations, heat transfer characteristics and the performance evaluations. The mathematical results reveal that the use of wavy-ribs leads to a higher heat transfer rate and friction loss over the smooth channel. The heat transfer enhancements are around 1.97–5.14 and 2.04–5.27 times over the smooth channel for 30° and 45° attack angles, respectively. However, the corresponding friction loss values for 30° and 45° are around 4.26–86.55 and 5.03–97.98 times higher than the smooth square channel, respectively. The optimum thermal enhancement factor on both cases is found at R B= 0.10 and the lowest Reynolds number, Re = 3000, to be about 1.47 and 1.52, respectively, for 30° and 45° wavy-ribs.展开更多
Hydraulic machinery mainly includes turbine and pump, which is closely related to national economy and people's livelihood involving aerospace industry, marine engineering, hydropower engineering, petroleum industry,...Hydraulic machinery mainly includes turbine and pump, which is closely related to national economy and people's livelihood involving aerospace industry, marine engineering, hydropower engineering, petroleum industry, chemical industry, mining industry, biomedical engineering, environmental engineering, agricultural water-soil engineering, etc.. The internal flow of hydraulic machinery is extremely complex, and its characteristics can be summarized as high Reynolds number, multi-scales, inhomogeneous and vortex-dominant unsteady turbulence which interact with the rotating dynamic boundary(rotor blade). Based on the analysis of the internal flow characteristics of hydraulic machinery, the author and his research team successively proposed a rotation correction model, a curvature corrected filter-based model, a scalable detached eddy simulation method, and a non-linear hybrid RANS/LES turbulence model to capture unsteady flow structures and then predict hydraulic performance and dynamic characteristics more accurately. According to the analysis on the internal flow, the corresponding flow control measures were put forward. It was verified by experiments that these methods could significantly improve the hydraulic performance, anti-cavitation performance and dynamic characteristics(pressure pulsation and vibration) of hydraulic machinery in a certain range of operating conditions. In addition, the mechanism how flow control measures influence internal flow was analyzed in depth, aiming at finding a feasible and effective way to improve hydraulic performance, anti-cavitation performance and dynamic characteristics of hydraulic machinery.展开更多
文摘Turbulent features of streamwise and vertical components of velocity in the negative transport region of asymmetric plane channel flow have been studied experimentally in details. Experiments show that turbulent fluctuations in negative transport region are suppressed, and their probability distributions are far from Gaussian. Besides, the skewness factors attain their negative maxima at the position of the maximum mean velocity, whereas the flatness factors attain their positive maxima at the same position.
文摘Free surface flows aeration potential causing the in macro- and intermediate flow characteristics to vary roughness conditions have a high with slopes and discharges. The underlying mechanism of two-phase flow characteristics in macro- and intermediate roughness conditions were analyzed in an experimental setup assembled at the Laboratory of Hydraulic Protection of the Territory (PITLAB) of the University of Pisa, Italy. Crushed angular rocks and hemispherical boulders were used to intensify the roughness of the bed. Flow rates per unit width ranging between 0.03 m^2/s and 0.09 m^2/s and slopes between 0.26 and 0.46 were tested over different arrangements of a rough bed. Analyses were mainly carried out in the inner flow region, which consists of both bubbly and intermediate flow regions. The findings revealed that the two-phase flow properties over the rough bed were much affected by rough bed arrangements. Turbulence features of two-phase flows over the rough bed were compared with those of the stepped chute data under similar flow conditions. Overall, the results highlight the flow features in the inner layers of the two-phase flow, showing that the maximum turbulence intensity decreases with the relative submergence, while the bubble frequency distribution is affected by the rough bed elements.
基金Supported by College of Industrial Technology,King Mongkut's University of Technology North Bangkok,Thailand
文摘Turbulent forced convective heat transfer and flow con figurations in a square channel with wavy-ribs inserted diagonally are examined numerically. The in fluences of the 30° and 45° flow attack angles for wavy-ribs, blockage ratio, R B= b/H = 0.05–0.25 with single pitch ratio, R P= P/H = 1 are investigated for the Reynolds number based on the hydraulic diameter of the square channel, Re = 3000–20000. The use of the wavy-ribs, which inserted diagonal in the square channel, is aimed to help to improve the thermal performance in heat exchange systems.The finite volume method and SIMPLE algorithm are applied to the present numerical simulation. The results are presented on the periodic flow and heat transfer pro files, flow con figurations, heat transfer characteristics and the performance evaluations. The mathematical results reveal that the use of wavy-ribs leads to a higher heat transfer rate and friction loss over the smooth channel. The heat transfer enhancements are around 1.97–5.14 and 2.04–5.27 times over the smooth channel for 30° and 45° attack angles, respectively. However, the corresponding friction loss values for 30° and 45° are around 4.26–86.55 and 5.03–97.98 times higher than the smooth square channel, respectively. The optimum thermal enhancement factor on both cases is found at R B= 0.10 and the lowest Reynolds number, Re = 3000, to be about 1.47 and 1.52, respectively, for 30° and 45° wavy-ribs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51379120,51179100)
文摘Hydraulic machinery mainly includes turbine and pump, which is closely related to national economy and people's livelihood involving aerospace industry, marine engineering, hydropower engineering, petroleum industry, chemical industry, mining industry, biomedical engineering, environmental engineering, agricultural water-soil engineering, etc.. The internal flow of hydraulic machinery is extremely complex, and its characteristics can be summarized as high Reynolds number, multi-scales, inhomogeneous and vortex-dominant unsteady turbulence which interact with the rotating dynamic boundary(rotor blade). Based on the analysis of the internal flow characteristics of hydraulic machinery, the author and his research team successively proposed a rotation correction model, a curvature corrected filter-based model, a scalable detached eddy simulation method, and a non-linear hybrid RANS/LES turbulence model to capture unsteady flow structures and then predict hydraulic performance and dynamic characteristics more accurately. According to the analysis on the internal flow, the corresponding flow control measures were put forward. It was verified by experiments that these methods could significantly improve the hydraulic performance, anti-cavitation performance and dynamic characteristics(pressure pulsation and vibration) of hydraulic machinery in a certain range of operating conditions. In addition, the mechanism how flow control measures influence internal flow was analyzed in depth, aiming at finding a feasible and effective way to improve hydraulic performance, anti-cavitation performance and dynamic characteristics of hydraulic machinery.