Purpose-This paper aims to analyze the stress and strain distribution on the track wheel web surface and study the optimal strain gauge location for force measurement system of the track wheel.Design/methodology/appro...Purpose-This paper aims to analyze the stress and strain distribution on the track wheel web surface and study the optimal strain gauge location for force measurement system of the track wheel.Design/methodology/approach-Finite element method was employed to analyze the stress and strain distribution on the track wheel web surface under varying wheel-rail forces.Locations with minimal coupling interference between vertical and lateral forces were identified as suitable for strain gauge installation.Findings-The results show that due to the track wheel web’s unique curved shape and wheel-rail force loading mechanism,both tensile and compressive states exit on the surface of the web.When vertical force is applied,Mises stress and strain are relatively high near the inner radius of 710 mm and the outer radius of 1110mmof the web.Under lateral force,high Mises stress and strain are observed near the radius of 670mmon the inner and outer sides of the web.As the wheel-rail force application point shifts laterally toward the outer side,the Mises stress and strain near the inner radius of 710 mm of the web gradually decrease under vertical force while gradually increasing near the outer radius of 1110 mm of the web.Under lateral force,the Mises stress and strain on the surface of the web remain relatively unchanged regardless of the wheel-rail force application point.Based on the analysis of stress and strain on the surface of the web under different wheel-rail forces,the inner radius of 870 mm is recommended as the optimal mounting location of strain gauges for measuring vertical force,while the inner radius of 1143 mm is suitable for measuring lateral force.Originality/value-The research findings provide valuable insights for determining optimal strain gauge locations and designing an effective track wheel force measurement system.展开更多
非特异性固有免疫是预防病毒感染的第一道防线,Toll样受体(toll-like receptors,TLRs)和维甲酸诱导基因I样受体(RIG-I like receptors,RLRs)是感知病毒RNA的两个主要受体家族。RLRs为存在于胞浆中的RNA解旋酶家族,可识别在病毒感染或复...非特异性固有免疫是预防病毒感染的第一道防线,Toll样受体(toll-like receptors,TLRs)和维甲酸诱导基因I样受体(RIG-I like receptors,RLRs)是感知病毒RNA的两个主要受体家族。RLRs为存在于胞浆中的RNA解旋酶家族,可识别在病毒感染或复制期间进入到胞浆内的单链或双链RNA。目前研究RLRs家族比较多的成员有维甲酸诱导型基因I(retinoic acid-inducible gene I,RIG-I)、黑色素瘤分化相关基因5(melanoma differentiation associated gene-5,MDA-5)及遗传学和生理学实验室蛋白2(laboratory of genetics and physiology 2,LGP2)。本文分别就RLRs家族中RIG-I和MDA-5结构、生物学作用及其信号传导中关键分子的研究进展作一概述。展开更多
基金funded by the Fund Project of China Academy of Railway Sciences Corporation Limited[Grant No.2022YJ194,2023YJ254].
文摘Purpose-This paper aims to analyze the stress and strain distribution on the track wheel web surface and study the optimal strain gauge location for force measurement system of the track wheel.Design/methodology/approach-Finite element method was employed to analyze the stress and strain distribution on the track wheel web surface under varying wheel-rail forces.Locations with minimal coupling interference between vertical and lateral forces were identified as suitable for strain gauge installation.Findings-The results show that due to the track wheel web’s unique curved shape and wheel-rail force loading mechanism,both tensile and compressive states exit on the surface of the web.When vertical force is applied,Mises stress and strain are relatively high near the inner radius of 710 mm and the outer radius of 1110mmof the web.Under lateral force,high Mises stress and strain are observed near the radius of 670mmon the inner and outer sides of the web.As the wheel-rail force application point shifts laterally toward the outer side,the Mises stress and strain near the inner radius of 710 mm of the web gradually decrease under vertical force while gradually increasing near the outer radius of 1110 mm of the web.Under lateral force,the Mises stress and strain on the surface of the web remain relatively unchanged regardless of the wheel-rail force application point.Based on the analysis of stress and strain on the surface of the web under different wheel-rail forces,the inner radius of 870 mm is recommended as the optimal mounting location of strain gauges for measuring vertical force,while the inner radius of 1143 mm is suitable for measuring lateral force.Originality/value-The research findings provide valuable insights for determining optimal strain gauge locations and designing an effective track wheel force measurement system.
文摘非特异性固有免疫是预防病毒感染的第一道防线,Toll样受体(toll-like receptors,TLRs)和维甲酸诱导基因I样受体(RIG-I like receptors,RLRs)是感知病毒RNA的两个主要受体家族。RLRs为存在于胞浆中的RNA解旋酶家族,可识别在病毒感染或复制期间进入到胞浆内的单链或双链RNA。目前研究RLRs家族比较多的成员有维甲酸诱导型基因I(retinoic acid-inducible gene I,RIG-I)、黑色素瘤分化相关基因5(melanoma differentiation associated gene-5,MDA-5)及遗传学和生理学实验室蛋白2(laboratory of genetics and physiology 2,LGP2)。本文分别就RLRs家族中RIG-I和MDA-5结构、生物学作用及其信号传导中关键分子的研究进展作一概述。