This paper will discuss experiments using various forming systems combined with utilizing mechanical equipment,from cement mixers to excavators and skid steers with attachments,to accelerate construction of cob homes ...This paper will discuss experiments using various forming systems combined with utilizing mechanical equipment,from cement mixers to excavators and skid steers with attachments,to accelerate construction of cob homes and greatly reduce the labor involved.Cob is a colloquial term for monolithic adobe,and refers to a masonry building technique used since ancient times that uses locally-sourced clay as a binder,with various aggregates from sand to small grit or stone,woven together with straw or other fiber and built in continuous layers to form a monolithic structure.展开更多
Formwork construction has been the important and difficult of the construction process, so the design plan is very important. This paper relies on the Shun Ping Yu subordinate Fertgbo bridge rebuilding project, detail...Formwork construction has been the important and difficult of the construction process, so the design plan is very important. This paper relies on the Shun Ping Yu subordinate Fertgbo bridge rebuilding project, detailing the cast-in-place box beam formwork support system safety special construction plan, focuses on box girder formwork design scheme of foundation design, box girder bracket design and box girder formwork design, to provide a reasonable reference for similar projects.展开更多
The application of mobile formwork cast-in-situ beam technology is conducive to providing quality assurance for bridge constructions.At the same time,it can improve the overall mechanization level of the construction ...The application of mobile formwork cast-in-situ beam technology is conducive to providing quality assurance for bridge constructions.At the same time,it can improve the overall mechanization level of the construction process and further accelerate the construction progress,so as to shorten the construction period and improve the economic benefits of enterprises.In fact,this construction method has been widely applied.In order to assure a positive outcome from the use of this technology,this paper analyzes the application of mobile formwork cast-in-situ beam technology in bridge construction to provide reference.展开更多
Rapid urbanization has led to a surge in the number of towering structures,and overturning is widely used because it can better accommodate the construction of shaped structures such as variable sections.The complexit...Rapid urbanization has led to a surge in the number of towering structures,and overturning is widely used because it can better accommodate the construction of shaped structures such as variable sections.The complexity of the construction process makes the construction risk have certain randomness,so this paper proposes a cloudbased coupled matter-element model to address the ambiguity and randomness in the safety risk assessment of overturning construction of towering structures.In the pretended model,the digital eigenvalues of the cloud model are used to replace the eigenvalues in the matter–element basic element,and calculate the cloud correlation of the risk assessment metrics through the correlation algorithm of the cloud model to build the computational model.Meanwhile,the improved hierarchical analysis method based on the cloud model is used to determine the weight of the index.The comprehensive evaluation scores of the evaluation event are then obtained through the weighted average method,and the safety risk level is determined accordingly.Through empirical analysis,(1)the improved hierarchical analysis method based on the cloud model can incorporate the data of multiple decisionmakers into the calculation formula to determine theweights,which makes the assessment resultsmore credible;(2)the evaluation results of the cloud-basedmatter-element coupledmodelmethod are basically consistent with those of the other two commonly used methods,and the confidence factor is less than 0.05,indicating that the cloudbased physical element coupled model method is reasonable and practical for towering structure overturning;(3)the cloud-based coupled element model method,which confirms the reliability of risk level by performing Spearman correlation on comprehensive assessment scores,can provide more comprehensive information of instances compared with other methods,and more comprehensively reflects the fuzzy uncertainty relationship between assessment indexes,which makes the assessment results more realistic,scientific and reliable.展开更多
The formwork and falsework in the construction of twin ribbed slab decks on a multi-span ecological bridge for a dual carriageway are presented. The bridge is situated in a valley plain which is crossed by small river...The formwork and falsework in the construction of twin ribbed slab decks on a multi-span ecological bridge for a dual carriageway are presented. The bridge is situated in a valley plain which is crossed by small rivers and was designed principally with the environment in mind. The bridge length is over 356 m, and the width of the decks is 11.5 m. For the bridge works, a simple conventional falsework system was chosen with steel frames for the supports and steel rolled beams for the decks. The formwork was constructed in solid timber and plywood as multiple-use panels. The falsework was designed in order to build the two 10-span bridge decks in stages. The decks are continuous cast-in-situ prestressed concrete twin rib with spans of 30 m, 34 m and 45 m. An individual falsework system was designed, which was easy to move transversally following completion of each stage for one deck. After finishing each stage, for the second deck, the falsework was dismantled and used again in the next construction fronts. An individual arrangement for the falsework along with timber pilings was used to cross the biggest river. The formwork timber panels were used several times in the multistage bridge construction. The adopted falsework system is very simple, but it allowed the speedy construction of the two decks where there were severe time constraints.展开更多
文摘This paper will discuss experiments using various forming systems combined with utilizing mechanical equipment,from cement mixers to excavators and skid steers with attachments,to accelerate construction of cob homes and greatly reduce the labor involved.Cob is a colloquial term for monolithic adobe,and refers to a masonry building technique used since ancient times that uses locally-sourced clay as a binder,with various aggregates from sand to small grit or stone,woven together with straw or other fiber and built in continuous layers to form a monolithic structure.
文摘Formwork construction has been the important and difficult of the construction process, so the design plan is very important. This paper relies on the Shun Ping Yu subordinate Fertgbo bridge rebuilding project, detailing the cast-in-place box beam formwork support system safety special construction plan, focuses on box girder formwork design scheme of foundation design, box girder bracket design and box girder formwork design, to provide a reasonable reference for similar projects.
文摘The application of mobile formwork cast-in-situ beam technology is conducive to providing quality assurance for bridge constructions.At the same time,it can improve the overall mechanization level of the construction process and further accelerate the construction progress,so as to shorten the construction period and improve the economic benefits of enterprises.In fact,this construction method has been widely applied.In order to assure a positive outcome from the use of this technology,this paper analyzes the application of mobile formwork cast-in-situ beam technology in bridge construction to provide reference.
基金funded by China Railway No.21 Bureau Group No.1 Engineering Co.,Ltd.,Grant No.202209140002.
文摘Rapid urbanization has led to a surge in the number of towering structures,and overturning is widely used because it can better accommodate the construction of shaped structures such as variable sections.The complexity of the construction process makes the construction risk have certain randomness,so this paper proposes a cloudbased coupled matter-element model to address the ambiguity and randomness in the safety risk assessment of overturning construction of towering structures.In the pretended model,the digital eigenvalues of the cloud model are used to replace the eigenvalues in the matter–element basic element,and calculate the cloud correlation of the risk assessment metrics through the correlation algorithm of the cloud model to build the computational model.Meanwhile,the improved hierarchical analysis method based on the cloud model is used to determine the weight of the index.The comprehensive evaluation scores of the evaluation event are then obtained through the weighted average method,and the safety risk level is determined accordingly.Through empirical analysis,(1)the improved hierarchical analysis method based on the cloud model can incorporate the data of multiple decisionmakers into the calculation formula to determine theweights,which makes the assessment resultsmore credible;(2)the evaluation results of the cloud-basedmatter-element coupledmodelmethod are basically consistent with those of the other two commonly used methods,and the confidence factor is less than 0.05,indicating that the cloudbased physical element coupled model method is reasonable and practical for towering structure overturning;(3)the cloud-based coupled element model method,which confirms the reliability of risk level by performing Spearman correlation on comprehensive assessment scores,can provide more comprehensive information of instances compared with other methods,and more comprehensively reflects the fuzzy uncertainty relationship between assessment indexes,which makes the assessment results more realistic,scientific and reliable.
文摘The formwork and falsework in the construction of twin ribbed slab decks on a multi-span ecological bridge for a dual carriageway are presented. The bridge is situated in a valley plain which is crossed by small rivers and was designed principally with the environment in mind. The bridge length is over 356 m, and the width of the decks is 11.5 m. For the bridge works, a simple conventional falsework system was chosen with steel frames for the supports and steel rolled beams for the decks. The formwork was constructed in solid timber and plywood as multiple-use panels. The falsework was designed in order to build the two 10-span bridge decks in stages. The decks are continuous cast-in-situ prestressed concrete twin rib with spans of 30 m, 34 m and 45 m. An individual falsework system was designed, which was easy to move transversally following completion of each stage for one deck. After finishing each stage, for the second deck, the falsework was dismantled and used again in the next construction fronts. An individual arrangement for the falsework along with timber pilings was used to cross the biggest river. The formwork timber panels were used several times in the multistage bridge construction. The adopted falsework system is very simple, but it allowed the speedy construction of the two decks where there were severe time constraints.
文摘为探究爬模施工进程中索塔空间温度场和应力场分布,掌握塔柱线形特性,提出一种索塔爬模施工仿真分析方法.利用Fortran编程语言开发相应子程序,对结构施加复杂温度边界,实现不同节段混凝土水化放热、收缩徐变.利用Abaqus软件对索塔爬模施工过程进行分析.结果表明:施工过程中索塔空间温度分布不均匀,塔柱表里最大温差达25.9℃,向阳面与背阴面温差最大为9℃;考虑温度效应后,塔柱所受拉应力更大,且空间应力分布具有很强的时变性,索塔线形特征与变化规律也发生改变;施工塔顶累积竖向位移先增大后减小,在爬模第16节段达到最大值20.5 mm;施工过程塔顶累计顺桥向和横桥向位移更大,最大值分别为6.5和22.3 mm.