Mathematical model for hyperboloid grinding of twist drill and relationships between drill design and grinding parameters are introduced.Point angles at outer corner and chisel edge corner are proposed to be used as t...Mathematical model for hyperboloid grinding of twist drill and relationships between drill design and grinding parameters are introduced.Point angles at outer corner and chisel edge corner are proposed to be used as the drill design parameters to determine the type uniquely and the relicf andgle is used as a supplement parameter.Function relations between the twist drill design and the grinding parameters are derived.Hence a theeoretical basis is estab-lised for design and grinding of the hyperboloid twist drill.展开更多
Based on the principles of differential geometry and kinematics, a mathematical model is developed to describe the grinding wheel axial cross-section with the radial cross-section of the flute in a given drill under t...Based on the principles of differential geometry and kinematics, a mathematical model is developed to describe the grinding wheel axial cross-section with the radial cross-section of the flute in a given drill under the basic engagement condition between the generating flute and the generated grinding wheel (or disk milling tool). The mathematical model is good for the flute in the radial cross-section consisting of three arcs. Furthermore, a CAD system is also developed to represent the axial cross-section of the grinding wheel (or disk milling tool). With the system, the grinding wheel (or disk milling tool) axial cross-section that corresponds to the three-arc flute cross section can be conveniently simulated. Through the grinding experiment of drill flutes, the method and the CAD system are proved to be feasible and reasonable.展开更多
Twist drill flute profile design is necessary in order to determine the required grinding wheel profile for a flute production. An accurate drill flute profile design is generated for two-flute conical twist drills us...Twist drill flute profile design is necessary in order to determine the required grinding wheel profile for a flute production. An accurate drill flute profile design is generated for two-flute conical twist drills using analytical equations to generate a drill flute profile design needed for the production of twist drills with straight lips. The required grinding wheel profile for a flute production was expressed in digitized form as well as in terms of two curve-fitted circular arcs. The drill flute profile geometry can never be precisely generated when required grinding wheel profile is represented by two circular arcs and the generated flute profile is just a very good approximation of the design flute profile. A CAD (computer aided design) software has been developed using MATLAB to determine the required grinding wheel profile for generating a given drill flute profile design.展开更多
文摘Mathematical model for hyperboloid grinding of twist drill and relationships between drill design and grinding parameters are introduced.Point angles at outer corner and chisel edge corner are proposed to be used as the drill design parameters to determine the type uniquely and the relicf andgle is used as a supplement parameter.Function relations between the twist drill design and the grinding parameters are derived.Hence a theeoretical basis is estab-lised for design and grinding of the hyperboloid twist drill.
基金This project is supported by National Natural Science Foundation of China (No.50675065).
文摘Based on the principles of differential geometry and kinematics, a mathematical model is developed to describe the grinding wheel axial cross-section with the radial cross-section of the flute in a given drill under the basic engagement condition between the generating flute and the generated grinding wheel (or disk milling tool). The mathematical model is good for the flute in the radial cross-section consisting of three arcs. Furthermore, a CAD system is also developed to represent the axial cross-section of the grinding wheel (or disk milling tool). With the system, the grinding wheel (or disk milling tool) axial cross-section that corresponds to the three-arc flute cross section can be conveniently simulated. Through the grinding experiment of drill flutes, the method and the CAD system are proved to be feasible and reasonable.
文摘Twist drill flute profile design is necessary in order to determine the required grinding wheel profile for a flute production. An accurate drill flute profile design is generated for two-flute conical twist drills using analytical equations to generate a drill flute profile design needed for the production of twist drills with straight lips. The required grinding wheel profile for a flute production was expressed in digitized form as well as in terms of two curve-fitted circular arcs. The drill flute profile geometry can never be precisely generated when required grinding wheel profile is represented by two circular arcs and the generated flute profile is just a very good approximation of the design flute profile. A CAD (computer aided design) software has been developed using MATLAB to determine the required grinding wheel profile for generating a given drill flute profile design.