期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Occasional Forces and Displacements of Longitudinally Coupled Ballastless Jointless Turnout on Bridges
1
作者 任娟娟 刘学毅 《Journal of Southwest Jiaotong University(English Edition)》 2010年第1期1-7,共7页
For the longitudinally coupled baUastless turnout on Leida bridge on Wuhan-Guangzhou passenger dedicated line (PDL) in China, a turnout (cross over)-track slab-bridge deck-pier integrated finite element model was ... For the longitudinally coupled baUastless turnout on Leida bridge on Wuhan-Guangzhou passenger dedicated line (PDL) in China, a turnout (cross over)-track slab-bridge deck-pier integrated finite element model was established, in which two No. 18 jointless turnouts with movable frogs in form of crossover, longitudinally coupled ballastless track, bridges and piers were regarded as one system. Based on this model, the additional forces and displacement regularities of turnouts, track slab, bridges and piers under occasional loading were analyzed, and the effect of occasional loading position was researched. The results show that slab breaking is more influential on the longitudinal force and deformation of the whole system than rail breaking, that slab breaking on one line could deteriorate both the slab force on another line and the forces exerted on the piers and fastener components, and that a great slab force at the left end of the continuous bridge expansion joint should be particularly avoided in design. 展开更多
关键词 Jointless turnout on bridge Longitudinally coupled ballastless track Occasional force Longitudinal displacement
下载PDF
Influence of span-to-depth ratio on dynamic response of vehicle-turnoutbridge system in high-speed railway
2
作者 Chuanqing Dai Tao Xin +3 位作者 Shenlu Qiao Yanan Zhang Pengsong Wang Mahantesh M.Nadakatti 《High-Speed Railway》 2024年第1期30-41,共12页
For high-speed railways,the smoothness of the railway line significantly affects the operational speed of trains.When the train passes through the turnout on a long-span bridge,the wheel-rail impacts caused by the tur... For high-speed railways,the smoothness of the railway line significantly affects the operational speed of trains.When the train passes through the turnout on a long-span bridge,the wheel-rail impacts caused by the turnout structure irregularities,and the instability arising from the bridge's flexural deformation lead to a strong coupling effect in the vehicle-turnout-bridge system.This significantly affects both ride comfort and operational safety.For addressing this issue,the present study considered a long-span continuous rigid-frame bridge as an example and established a train-turnout-bridge coupled dynamic model of high-speed railway.Utilizing a selfdeveloped dynamic simulation program,the study analysed the dynamic response characteristics when the train passes through the turnouts on the bridge.It also investigated the influence of different span-to-depth ratios of the bridge on the vehicle dynamic response when the train passes through the main line and branch line of turnouts and then proposed a span-to-depth ratio limit value for a long-span continuous rigid-frame bridge.The research findings suggest that the changes in the span-to-depth ratio have a relatively minor impact on the train’s operational performance but significantly affect the dynamic characteristics of the bridge structure.Based on the findings and a comprehensive assessment of safety indicators,it is advisable to establish a span-to-depth ratio limit of 1/4500 for a long-span continuous rigid-frame bridge. 展开更多
关键词 turnout on bridge Span-to-depth ratio Dynamic response Vehicle-turnout-bridge system High-speed railway
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部