期刊文献+
共找到4,558篇文章
< 1 2 228 >
每页显示 20 50 100
A Review on Clustering Methods for Climatology Analysis and Its Application over South America
1
作者 Luana Albertani Pampuch Rogério Galante Negri +1 位作者 Paul C. Loikith Cassiano Antonio Bortolozo 《International Journal of Geosciences》 2023年第9期877-894,共18页
South America’s climatic diversity is a product of its vast geographical expanse, encompassing tropical to subtropical latitudes. The variations in precipitation and temperature across the region stem from the influe... South America’s climatic diversity is a product of its vast geographical expanse, encompassing tropical to subtropical latitudes. The variations in precipitation and temperature across the region stem from the influence of distinct atmospheric systems. While some studies have characterized the prevailing systems over South America, they often lacked the utilization of statistical techniques for homogenization. On the other hand, other research has employed multivariate statistical methods to identify homogeneous regions regarding temperature and precipitation, but their focus has been limited to specific areas, such as the south, southeast, and northeast. Surprisingly, there is a lack of work that compares various multivariate statistical techniques to determine homogeneous regions across the entirety of South America concerning temperature and precipitation. This paper aims to address this gap by comparing three such techniques: Cluster Analysis (K-means and Ward) and Self Organizing Maps, using data from different sources for temperature (ERA5, ERA5-Land, and CRU) and precipitation (ERA5, ERA5-Land, and CPC). Spatial patterns and time series were generated for each region over the period 1981-2010. The results from this analysis of spatially homogeneous regions concerning temperature and precipitation have the potential to significantly benefit climate analysis and forecasts. Moreover, they can offer valuable insights for various climatological studies, guiding decision-making processes in diverse fields that rely on climate information, such as agriculture, disaster management, and water resources planning. 展开更多
关键词 CLIMATOLOGY clustering methods clustering Regionalization Reanalysis Data South America
下载PDF
Global Optimization Method Using SLE and Adaptive RBF Based on Fuzzy Clustering 被引量:8
2
作者 ZHU Huaguang LIU Li LONG Teng ZHAO Junfeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第4期768-775,共8页
High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis mode... High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis models are so computationally expensive that the time required in design optimization is usually unacceptable.In order to improve the efficiency of optimization involving high fidelity analysis models,the optimization efficiency can be upgraded through applying surrogates to approximate the computationally expensive models,which can greately reduce the computation time.An efficient heuristic global optimization method using adaptive radial basis function(RBF) based on fuzzy clustering(ARFC) is proposed.In this method,a novel algorithm of maximin Latin hypercube design using successive local enumeration(SLE) is employed to obtain sample points with good performance in both space-filling and projective uniformity properties,which does a great deal of good to metamodels accuracy.RBF method is adopted for constructing the metamodels,and with the increasing the number of sample points the approximation accuracy of RBF is gradually enhanced.The fuzzy c-means clustering method is applied to identify the reduced attractive regions in the original design space.The numerical benchmark examples are used for validating the performance of ARFC.The results demonstrates that for most application examples the global optima are effectively obtained and comparison with adaptive response surface method(ARSM) proves that the proposed method can intuitively capture promising design regions and can efficiently identify the global or near-global design optimum.This method improves the efficiency and global convergence of the optimization problems,and gives a new optimization strategy for engineering design optimization problems involving computationally expensive models. 展开更多
关键词 global optimization Latin hypercube design radial basis function fuzzy clustering adaptive response surface method
下载PDF
Geochemical and Geostatistical Studies for Estimating Gold Grade in Tarq Prospect Area by K-Means Clustering Method 被引量:7
3
作者 Adel Shirazy Aref Shirazi +1 位作者 Mohammad Hossein Ferdossi Mansour Ziaii 《Open Journal of Geology》 2019年第6期306-326,共21页
Tarq geochemical 1:100,000 Sheet is located in Isfahan province which is investigated by Iran’s Geological and Explorations Organization using stream sediment analyzes. This area has stratigraphy of Precambrian to Qu... Tarq geochemical 1:100,000 Sheet is located in Isfahan province which is investigated by Iran’s Geological and Explorations Organization using stream sediment analyzes. This area has stratigraphy of Precambrian to Quaternary rocks and is located in the Central Iran zone. According to the presence of signs of gold mineralization in this area, it is necessary to identify important mineral areas in this area. Therefore, finding information is necessary about the relationship and monitoring the elements of gold, arsenic, and antimony relative to each other in this area to determine the extent of geochemical halos and to estimate the grade. Therefore, a well-known and useful K-means method is used for monitoring the elements in the present study, this is a clustering method based on minimizing the total Euclidean distances of each sample from the center of the classes which are assigned to them. In this research, the clustering quality function and the utility rate of the sample have been used in the desired cluster (S(i)) to determine the optimum number of clusters. Finally, with regard to the cluster centers and the results, the equations were used to predict the amount of the gold element based on four parameters of arsenic and antimony grade, length and width of sampling points. 展开更多
关键词 GOLD Tarq K-MEANS clustering method Estimation of the ELEMENTS GRADE K-MEANS
下载PDF
Kernel method-based fuzzy clustering algorithm 被引量:2
4
作者 WuZhongdong GaoXinbo +1 位作者 XieWeixin YuJianping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期160-166,共7页
The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, d... The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis. 展开更多
关键词 fuzzy clustering analysis kernel method fuzzy C-means clustering.
下载PDF
Refracturing candidate selection for MFHWs in tight oil and gas reservoirs using hybrid method with data analysis techniques and fuzzy clustering 被引量:4
5
作者 TAO Liang GUO Jian-chun +1 位作者 ZHAO Zhi-hong YIN Qi-wu 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第1期277-287,共11页
The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of ... The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of refracturing candidate is often very difficult. In this paper, a novel approach combining data analysis techniques and fuzzy clustering was proposed to select refracturing candidate. First, the analysis techniques were used to quantitatively calculate the weight coefficient and determine the key factors. Then, the idealized refracturing well was established by considering the main factors. Fuzzy clustering was applied to evaluate refracturing potential. Finally, reservoirs numerical simulation was used to further evaluate reservoirs energy and material basis of the optimum refracturing candidates. The hybrid method has been successfully applied to a tight oil reservoir in China. The average steady production was 15.8 t/d after refracturing treatment, increasing significantly compared with previous status. The research results can guide the development of tight oil and gas reservoirs effectively. 展开更多
关键词 tight oil and gas reservoirs idealized refracturing well fuzzy clustering refracturing potential hybrid method
下载PDF
3D Model Retrieval Method Based on Affinity Propagation Clustering 被引量:2
6
作者 Lin Lin Xiao-Long Xie Fang-Yu Chen 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第3期12-21,共10页
In order to improve the accuracy and efficiency of 3D model retrieval,the method based on affinity propagation clustering algorithm is proposed. Firstly,projection ray-based method is proposed to improve the feature e... In order to improve the accuracy and efficiency of 3D model retrieval,the method based on affinity propagation clustering algorithm is proposed. Firstly,projection ray-based method is proposed to improve the feature extraction efficiency of 3D models. Based on the relationship between model and its projection,the intersection in 3D space is transformed into intersection in 2D space,which reduces the number of intersection and improves the efficiency of the extraction algorithm. In feature extraction,multi-layer spheres method is analyzed. The two-layer spheres method makes the feature vector more accurate and improves retrieval precision. Secondly,Semi-supervised Affinity Propagation ( S-AP) clustering is utilized because it can be applied to different cluster structures. The S-AP algorithm is adopted to find the center models and then the center model collection is built. During retrieval process,the collection is utilized to classify the query model into corresponding model base and then the most similar model is retrieved in the model base. Finally,75 sample models from Princeton library are selected to do the experiment and then 36 models are used for retrieval test. The results validate that the proposed method outperforms the original method and the retrieval precision and recall ratios are improved effectively. 展开更多
关键词 feature extraction project ray-based method affinity propagation clustering 3D model retrieval
下载PDF
Index-adaptive Triangle-Based Graph Local Clustering
7
作者 Yuan Zhe Wei Zhewei Wen Ji-rong 《Computers, Materials & Continua》 SCIE EI 2023年第6期5009-5026,共18页
Motif-based graph local clustering(MGLC)algorithms are gen-erally designed with the two-phase framework,which gets the motif weight for each edge beforehand and then conducts the local clustering algorithm on the weig... Motif-based graph local clustering(MGLC)algorithms are gen-erally designed with the two-phase framework,which gets the motif weight for each edge beforehand and then conducts the local clustering algorithm on the weighted graph to output the result.Despite correctness,this frame-work brings limitations on both practical and theoretical aspects and is less applicable in real interactive situations.This research develops a purely local and index-adaptive method,Index-adaptive Triangle-based Graph Local Clustering(TGLC+),to solve the MGLC problem w.r.t.triangle.TGLC+combines the approximated Monte-Carlo method Triangle-based Random Walk(TRW)and deterministic Brute-Force method Triangle-based Forward Push(TFP)adaptively to estimate the Personalized PageRank(PPR)vector without calculating the exact triangle-weighted transition probability and then outputs the clustering result by conducting the standard sweep procedure.This paper presents the efficiency of TGLC+through theoretical analysis and demonstrates its effectiveness through extensive experiments.To our knowl-edge,TGLC+is the first to solve the MGLC problem without computing the motif weight beforehand,thus achieving better efficiency with comparable effectiveness.TGLC+is suitable for large-scale and interactive graph analysis tasks,including visualization,system optimization,and decision-making. 展开更多
关键词 Graph local clustering triangle motif sampling method
下载PDF
Reconstructing bubble profiles from gas-liquid two-phase flow data using agglomerative hierarchical clustering method 被引量:2
8
作者 WU Dong-ling SONG Yan-po +1 位作者 PENG Xiao-qi GAO Dong-bo 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第8期2056-2067,共12页
The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved ... The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved computational fluid dynamics (CFD) simulations. To obtain this information, an efficient bubble profile reconstruction method based on an improved agglomerative hierarchical clustering (AHC) algorithm is proposed in this paper. The reconstruction method is featured by the implementations of a binary space division preprocessing, which aims to reduce the computational complexity, an adaptive linkage criterion, which guarantees the applicability of the AHC algorithm when dealing with datasets involving either non-uniform or distorted grids, and a stepwise execution strategy, which enables the separation of attached bubbles. To illustrate and verify this method, it was applied to dealing with 3 datasets, 2 of them with pre-specified spherical bubbles and the other obtained by a surface-resolved CFD simulation. Application results indicate that the proposed method is effective even when the data include some non-uniform and distortion. 展开更多
关键词 bubble profile reconstruction gas-liquid two-phase flow clustering method surface-resolved computational fluid dynamics (CFD) distorted bubble shape
下载PDF
An unsupervised clustering method for nuclear magnetic resonance transverse relaxation spectrums based on the Gaussian mixture model and its application 被引量:2
9
作者 GE Xinmin XUE Zong’an +6 位作者 ZHOU Jun HU Falong LI Jiangtao ZHANG Hengrong WANG Shuolong NIU Shenyuan ZHAO Ji’er 《Petroleum Exploration and Development》 CSCD 2022年第2期339-348,共10页
To make the quantitative results of nuclear magnetic resonance(NMR) transverse relaxation(T;) spectrums reflect the type and pore structure of reservoir more directly, an unsupervised clustering method was developed t... To make the quantitative results of nuclear magnetic resonance(NMR) transverse relaxation(T;) spectrums reflect the type and pore structure of reservoir more directly, an unsupervised clustering method was developed to obtain the quantitative pore structure information from the NMR T;spectrums based on the Gaussian mixture model(GMM). Firstly, We conducted the principal component analysis on T;spectrums in order to reduce the dimension data and the dependence of the original variables. Secondly, the dimension-reduced data was fitted using the GMM probability density function, and the model parameters and optimal clustering numbers were obtained according to the expectation-maximization algorithm and the change of the Akaike information criterion. Finally, the T;spectrum features and pore structure types of different clustering groups were analyzed and compared with T;geometric mean and T;arithmetic mean. The effectiveness of the algorithm has been verified by numerical simulation and field NMR logging data. The research shows that the clustering results based on GMM method have good correlations with the shape and distribution of the T;spectrum, pore structure, and petroleum productivity, providing a new means for quantitative identification of pore structure, reservoir grading, and oil and gas productivity evaluation. 展开更多
关键词 NMR T2 spectrum Gaussian mixture model expectation-maximization algorithm Akaike information criterion unsupervised clustering method quantitative pore structure evaluation
下载PDF
Sparse antenna array design methodologies:A review
10
作者 Pan Wu Yan-Hui Liu +1 位作者 Zhi-Qin Zhao Qing-Huo Liu 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第3期1-15,共15页
Designing a sparse array with reduced transmit/receive modules(TRMs)is vital for some applications where the antenna system’s size,weight,allowed operating space,and cost are limited.Sparse arrays exhibit distinct ar... Designing a sparse array with reduced transmit/receive modules(TRMs)is vital for some applications where the antenna system’s size,weight,allowed operating space,and cost are limited.Sparse arrays exhibit distinct architectures,roughly classified into three categories:Thinned arrays,nonuniformly spaced arrays,and clustered arrays.While numerous advanced synthesis methods have been presented for the three types of sparse arrays in recent years,a comprehensive review of the latest development in sparse array synthesis is lacking.This work aims to fill this gap by thoroughly summarizing these techniques.The study includes synthesis examples to facilitate a comparative analysis of different techniques in terms of both accuracy and efficiency.Thus,this review is intended to assist researchers and engineers in related fields,offering a clear understanding of the development and distinctions among sparse array synthesis techniques. 展开更多
关键词 clustered array Nonuniformly spaced array Sparse antenna array Synthesis method Thinned array
下载PDF
Optimized air-ground data fusion method for mine slope modeling
11
作者 LIU Dan HUANG Man +4 位作者 TAO Zhigang HONG Chenjie WU Yuewei FAN En YANG Fei 《Journal of Mountain Science》 SCIE CSCD 2024年第6期2130-2139,共10页
Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized charact... Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized characteristics of mining slopes,this study introduces a new method that fuses model data from Unmanned aerial vehicles(UAV)tilt photogrammetry and 3D laser scanning through a data alignment algorithm based on control points.First,the mini batch K-Medoids algorithm is utilized to cluster the point cloud data from ground 3D laser scanning.Then,the elbow rule is applied to determine the optimal cluster number(K0),and the feature points are extracted.Next,the nearest neighbor point algorithm is employed to match the feature points obtained from UAV tilt photogrammetry,and the internal point coordinates are adjusted through the distanceweighted average to construct a 3D model.Finally,by integrating an engineering case study,the K0 value is determined to be 8,with a matching accuracy between the two model datasets ranging from 0.0669 to 1.0373 mm.Therefore,compared with the modeling method utilizing K-medoids clustering algorithm,the new modeling method significantly enhances the computational efficiency,the accuracy of selecting the optimal number of feature points in 3D laser scanning,and the precision of the 3D model derived from UAV tilt photogrammetry.This method provides a research foundation for constructing mine slope model. 展开更多
关键词 Air-ground data fusion method Mini batch K-Medoids algorithm Ebow rule Optimal cluster number 3D laser scanning UAV tilt photogrammetry
下载PDF
APPLICATION OF THE CLUSTERING METHOD IN ANALYSING SHALLOW WATER MASSES AND MODIFIED WATER MASSES IN THE HUANGHAI SEA AND EAST CHINA SEA
12
作者 Su Yusong, Yu Zuxiang and Li Fengqi(Shandong College of Oceanology,Qingdao) 《中国海洋大学学报(自然科学版)》 CAS CSCD 1989年第S1期385-402,共18页
The idea of modified water masses is introduced and a cluster analysis is used for determining the boundary of modified water masses and its variety in the shallow water area of the Huanghai Sea (Yellow Sea) and the E... The idea of modified water masses is introduced and a cluster analysis is used for determining the boundary of modified water masses and its variety in the shallow water area of the Huanghai Sea (Yellow Sea) and the East China Sea. According to the specified standards to make the cluster, we have determined the number and boundary of the water masses and the mixed zones.The results obtained by the cluster method show that there are eight modified water masses in this area. According to the relative index of temperature and salinity,the modified water masses are divided into nine different characteristic parts. The water, masses may also be divided into three salinity types. On the TS-Diagram, the points concerning temperature and safinity of different modified mater masses are distributed around a curve, from which the characteristics of gradual modification may be embodied. The variation ranges of different modified water masses are all large, explaining the intensive modification of water masses in 展开更多
关键词 WATER MASS MODIFIED WATER MASS the HUANGHAI SEA the East China SEA clustering method the MODIFIED regression curve
下载PDF
Optimal operation of Internet Data Center with PV and energy storage type of UPS clusters
13
作者 Man Chen Yuxin Zhao +2 位作者 Yuxuan Li Peng Peng Xisheng Tang 《Global Energy Interconnection》 EI CSCD 2024年第1期61-70,共10页
With the development of green data centers,a large number of Uninterruptible Power Supply(UPS)resources in Internet Data Center(IDC)are becoming idle assets owing to their low utilization rate.The revitalization of th... With the development of green data centers,a large number of Uninterruptible Power Supply(UPS)resources in Internet Data Center(IDC)are becoming idle assets owing to their low utilization rate.The revitalization of these idle UPS resources is an urgent problem that must be addressed.Based on the energy storage type of the UPS(EUPS)and using renewable sources,a solution for IDCs is proposed in this study.Subsequently,an EUPS cluster classification method based on the concept of shared mechanism niche(CSMN)was proposed to effectively solve the EUPS control problem.Accordingly,the classified EUPS aggregation unit was used to determine the optimal operation of the IDC.An IDC cost minimization optimization model was established,and the Quantum Particle Swarm Optimization(QPSO)algorithm was adopted.Finally,the economy and effectiveness of the three-tier optimization framework and model were verified through three case studies. 展开更多
关键词 Three-tier optimization framework Energy storage type of the UPS EUPS cluster classification method Quantum Particle Swarm Optimization
下载PDF
Screening of Long Cowpea[Vigna unguiculata(L.)Walp.ssp.sesquipedialis]Varieties in Autumn in Hunan and Comparison of Various Comprehensive Evaluation Methods
14
作者 Lin HUANG Zhibing CHEN +6 位作者 Wan JIANG Xincheng SUN Zhongwu ZHANG Jie KANG Lianyong YANG Weiping CHEN Yuanqun PENG 《Plant Diseases and Pests》 2024年第5期33-39,共7页
[Objectives]The paper was to screen new varieties of long cowpea that are suitable for autumn cultivation in Hunan,as well as to develop a comprehensive evaluation method to assess their adaptability and performance.[... [Objectives]The paper was to screen new varieties of long cowpea that are suitable for autumn cultivation in Hunan,as well as to develop a comprehensive evaluation method to assess their adaptability and performance.[Methods]A total of 48 long cowpea varieties were introduced,and a range of comprehensive evaluation methods was employed to assess these varieties through the collection and analysis of field data.[Results]The square Euclidean distance of 14 allowed for the classification of all varieties into eight distinct groups.Groups II,III,and V belong to the autumn dominant group within this region,while groups I and VIII belong to the intermediate group.Additionally,groups IV,VI,and VII belong to the autumn inferior group in this area.Through a comparative analysis of various comprehensive evaluation methods,it was determined that the common factor comprehensive evaluation,grey correlation method,and fuzzy evaluation method were appropriate for application in the selection of long cowpea varieties.Furthermore,the evaluation outcomes were largely consistent with the cluster pedigree diagram.[Conclusions]Through comprehensive index method,ten varieties demonstrating superior performance in autumn cultivation have been identified,including C20,C42,C29,C40,C3,C14,C18,C25,C15,and C47.The selected varieties exhibit several advantageous traits,such as a reduced growth duration,a lower position of initial flower nodes,a decreased number of branches,predominantly green young pods,elongated pod strips,thicker pod structures,an increased number of pods per plant,and higher overall yields.These characteristics render them particularly valuable for extensive cultivation. 展开更多
关键词 Long cowpea Variety SCREENING cluster analysis Comprehensive evaluation method
下载PDF
Modified possibilistic clustering model based on kernel methods
15
作者 武小红 周建江 《Journal of Shanghai University(English Edition)》 CAS 2008年第2期136-140,共5页
A novel model of fuzzy clustering using kernel methods is proposed. This model is called kernel modified possibilistic c-means (KMPCM) model. The proposed model is an extension of the modified possibilistic c-means ... A novel model of fuzzy clustering using kernel methods is proposed. This model is called kernel modified possibilistic c-means (KMPCM) model. The proposed model is an extension of the modified possibilistic c-means (MPCM) algorithm by using kernel methods. Different from MPCM and fuzzy c-means (FCM) model which are based on Euclidean distance, the proposed model is based on kernel-induced distance. Furthermore, with kernel methods the input data can be mapped implicitly into a high-dimensional feature space where the nonlinear pattern now appears linear. It is unnecessary to do calculation in the high-dimensional feature space because the kernel function can do it. Numerical experiments show that KMPCM outperforms FCM and MPCM. 展开更多
关键词 fuzzy clustering kernel methods possibilistic c-means (PCM) kernel modified possibilistic c-means (KMPCM).
下载PDF
A bottom-up method for module-based product platform development through mapping,clustering and matching analysis
16
作者 张萌 李国喜 +2 位作者 曹建平 龚京忠 吴宝中 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第3期623-635,共13页
Designing product platform could be an effective and efficient solution for manufacturing firms. Product platforms enable firms to provide increased product variety for the marketplace with as little variety between p... Designing product platform could be an effective and efficient solution for manufacturing firms. Product platforms enable firms to provide increased product variety for the marketplace with as little variety between products as possible. Developed consumer products and modules within a firm can further be investigated to find out the possibility of product platform creation. A bottom-up method is proposed for module-based product platform through mapping, clustering and matching analysis. The framework and the parametric model of the method are presented, which consist of three steps:(1) mapping parameters from existing product families to functional modules,(2) clustering the modules within existing module families based on their parameters so as to generate module clusters, and selecting the satisfactory module clusters based on commonality, and(3) matching the parameters of the module clusters to the functional modules in order to capture platform elements. In addition, the parameter matching criterion and mismatching treatment are put forward to ensure the effectiveness of the platform process, while standardization and serialization of the platform element are presented. A design case of the belt conveyor is studied to demonstrate the feasibility of the proposed method. 展开更多
关键词 product platform development bottom-up method MAPPING clustering MATCHING
下载PDF
A Research on Competitiveness of Guangxi City——Based on System Clustering Method and Principal Component Analysis Method
17
作者 FAN Chang-ke WU Yu 《Asian Agricultural Research》 2010年第2期13-16,共4页
A total of 10 indices of regional economic development in Guangxi are selected.According to the relevant economic data,regional economic development in Guangxi is analyzed by using System Clustering Method and Princip... A total of 10 indices of regional economic development in Guangxi are selected.According to the relevant economic data,regional economic development in Guangxi is analyzed by using System Clustering Method and Principal Component Analysis Method.Result shows that System Clustering Method and Principal Component Analysis Method have revealed similar results analysis of economic development level.Overall economic strength of Guangxi is weak and Nanning has relatively high scores of factors due to its advantage of the political,economic and cultural center.Comprehensive scores of other regions are all lower than 1,which has big gap with the development of Nanning.Overall development strategy points out that Guangxi should accelerate the construction of the Ring Northern Bay Economic Zone,create a strong logistics system having strategic significance to national development,use the unique location advantage and rely on the modern transportation system to establish a logistics center and business center connecting the hinterland and the Asean Market.Based on the problems of unbalanced regional economic development in Guangxi,we should speed up the development of service industry in Nanning,construct the circular economy system of industrial city,and accelerate the industrialization process of tourism city in order to realize balanced development of regional economy in Guangxi,China. 展开更多
关键词 clustering Analysis method Factor Analysis method Economic development level Economic strength China
下载PDF
Coarse-Graining Method Based on Hierarchical Clustering on Complex Networks
18
作者 Lin Liao Zhen Jia Yang Deng 《Communications and Network》 2019年第1期21-34,共14页
With the rapid development of big data, the scale of realistic networks is increasing continually. In order to reduce the network scale, some coarse-graining methods are proposed to transform large-scale networks into... With the rapid development of big data, the scale of realistic networks is increasing continually. In order to reduce the network scale, some coarse-graining methods are proposed to transform large-scale networks into mesoscale networks. In this paper, a new coarse-graining method based on hierarchical clustering (HCCG) on complex networks is proposed. The network nodes are grouped by using the hierarchical clustering method, then updating the weights of edges between clusters extract the coarse-grained networks. A large number of simulation experiments on several typical complex networks show that the HCCG method can effectively reduce the network scale, meanwhile maintaining the synchronizability of the original network well. Furthermore, this method is more suitable for these networks with obvious clustering structure, and we can choose freely the size of the coarse-grained networks in the proposed method. 展开更多
关键词 Complex Network SYNCHRONIZABILITY COARSE-GRAINING method HIERARCHICAL clustering
下载PDF
A multi-view K-multiple-means clustering method
19
作者 ZHANG Nini GE Hongwei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第4期405-411,共7页
The K-multiple-means(KMM)retains the simple and efficient advantages of the K-means algorithm by setting multiple subclasses,and improves its effect on non-convex data sets.And aiming at the problem that it cannot be ... The K-multiple-means(KMM)retains the simple and efficient advantages of the K-means algorithm by setting multiple subclasses,and improves its effect on non-convex data sets.And aiming at the problem that it cannot be applied to the Internet on a multi-view data set,a multi-view K-multiple-means(MKMM)clustering method is proposed in this paper.The new algorithm introduces view weight parameter,reserves the design of setting multiple subclasses,makes the number of clusters as constraint and obtains clusters by solving optimization problem.The new algorithm is compared with some popular multi-view clustering algorithms.The effectiveness of the new algorithm is proved through the analysis of the experimental results. 展开更多
关键词 K-multiple-means(KMM)clustering weight parameters multi-view K-multiple-means(MKMM)method
下载PDF
Application of Systematic Clustering Method in the Classification and Changes of Atmospheric Ozone in Hunan Province
20
作者 Wenhui YAO Liushu FU +3 位作者 Qian GUO Chunling XU Zhe YANG Wei ZHOU 《Meteorological and Environmental Research》 CAS 2022年第4期1-6,共6页
The cluster analysis method needs continuous improvement and perfection in the research and application of the spatial differentiation and change of pollutants.In this paper,the date of monthly highest concentration o... The cluster analysis method needs continuous improvement and perfection in the research and application of the spatial differentiation and change of pollutants.In this paper,the date of monthly highest concentration of ozone(O_(3))and the concentration value of that day were selected as the similarity coefficient between classes.Single-factor cluster analysis was performed on O_(3)during 2016-2019 and the COVID-19 outbreak of 2020 in Hunan Province using the Ward method.The clustering results showed that the spatial distribution of atmospheric O_(3)in the 14 regions of Hunan Province was most suitable to be classified according to class III clustering areas.That is,the Changsha-Zhuzhou-Xiangtan urban agglomeration was the center,and the high-value area was in northern Hunan.The transition area was in central and southern Hunan,while the low-value area was centered in western Hunan.The partition results were in good agreement with the homogeneous subset of one-way ANOVA and the distribution of monitoring values during the same period.The comparison showed that the inter-class plates in the two periods corresponded well,and the intra-class area showed a continuous geographical distribution,and there were dynamic changes in the spatial differentiation of the O_(3)plates in different periods.In 2020,the center of the O_(3)high-value area plate in Hunan Province moved eastward and extended southward,focusing on the middle and lower reaches of the Xiangjiang River basin,and extending to the upstream area;the regional plate in the transition area expanded significantly;the low-value area plate shrank to the two cities in western Hunan.The abnormal emissions and abnormal climate during the COVID-19 epidemic had an impact on the spatial differentiation of O_(3)in Hunan Province. 展开更多
关键词 OZONE Regional differentiation Systematic clustering method
下载PDF
上一页 1 2 228 下一页 到第
使用帮助 返回顶部