The present paper shows the mathematical approach of formalization of textile fabrics, based on concepts and elements of graph theory and the structural analysis of woven structures and possibility of numerical evalua...The present paper shows the mathematical approach of formalization of textile fabrics, based on concepts and elements of graph theory and the structural analysis of woven structures and possibility of numerical evaluation of interlacing factor of warp and weft threads in woven structures through the weight of a structural graph vertex. Research observes quantitative aspect of structural evaluation of threads topology in fabric focusing in graph theory, in order to present an application productivity of this theory to solve the technological tasks.展开更多
In order to get a deep understanding of composite failure mechanisms, the new advanced signal processing methodologies are established for the analysis of the large number of acoustic emission (AE) data obtained from ...In order to get a deep understanding of composite failure mechanisms, the new advanced signal processing methodologies are established for the analysis of the large number of acoustic emission (AE) data obtained from the quasi-static tension test of carbon fiber twill weave composite. For this purpose, AE signals have been collected and post-processed for tension test, and are analyzed with three signal processing methods: Empirical Mode Decomposition (EMD), Hilbert-Huang Transform (HHT) and modified energy entropy algorithm. AE signals can be decomposed into a set of Intrinsic Mode Functions (IMF) components, results from this study reveal that the peak frequency of IMF components based on Fast Fourier Transform (FFT) corresponds to different damage mechanisms of composite. HHT of AE signals can clearly express the frequency distribution of IMF component in time-scale in different damage stages, and can calculate accurate instantaneous frequency for damage modes recognition. The energy entropy based on EMD is introduced to act as a new relevant descriptor of composite damage modes in order to improve the characterization and the discrimination of the damage mechanisms.展开更多
文摘The present paper shows the mathematical approach of formalization of textile fabrics, based on concepts and elements of graph theory and the structural analysis of woven structures and possibility of numerical evaluation of interlacing factor of warp and weft threads in woven structures through the weight of a structural graph vertex. Research observes quantitative aspect of structural evaluation of threads topology in fabric focusing in graph theory, in order to present an application productivity of this theory to solve the technological tasks.
基金supported by the National Natural Science Foundation of China (Grand No.51275221)the Natural Science Foundation of Jiangsu Province, China (Grand No. BK2011261)
文摘In order to get a deep understanding of composite failure mechanisms, the new advanced signal processing methodologies are established for the analysis of the large number of acoustic emission (AE) data obtained from the quasi-static tension test of carbon fiber twill weave composite. For this purpose, AE signals have been collected and post-processed for tension test, and are analyzed with three signal processing methods: Empirical Mode Decomposition (EMD), Hilbert-Huang Transform (HHT) and modified energy entropy algorithm. AE signals can be decomposed into a set of Intrinsic Mode Functions (IMF) components, results from this study reveal that the peak frequency of IMF components based on Fast Fourier Transform (FFT) corresponds to different damage mechanisms of composite. HHT of AE signals can clearly express the frequency distribution of IMF component in time-scale in different damage stages, and can calculate accurate instantaneous frequency for damage modes recognition. The energy entropy based on EMD is introduced to act as a new relevant descriptor of composite damage modes in order to improve the characterization and the discrimination of the damage mechanisms.