To ensure the safe operation of industrial digital twins network and avoid the harm to the system caused by hacker invasion,a series of discussions on network security issues are carried out based on game theory.From ...To ensure the safe operation of industrial digital twins network and avoid the harm to the system caused by hacker invasion,a series of discussions on network security issues are carried out based on game theory.From the perspective of the life cycle of network vulnerabilities,mining and repairing vulnerabilities are analyzed by applying evolutionary game theory.The evolution process of knowledge sharing among white hats under various conditions is simulated,and a game model of the vulnerability patch cooperative development strategy among manufacturers is constructed.On this basis,the differential evolution is introduced into the update mechanism of the Wolf Colony Algorithm(WCA)to produce better replacement individuals with greater probability from the perspective of both attack and defense.Through the simulation experiment,it is found that the convergence speed of the probability(X)of white Hat 1 choosing the knowledge sharing policy is related to the probability(x0)of white Hat 2 choosing the knowledge sharing policy initially,and the probability(y0)of white hat 2 choosing the knowledge sharing policy initially.When y0?0.9,X converges rapidly in a relatively short time.When y0 is constant and x0 is small,the probability curve of the“cooperative development”strategy converges to 0.It is concluded that the higher the trust among the white hat members in the temporary team,the stronger their willingness to share knowledge,which is conducive to the mining of loopholes in the system.The greater the probability of a hacker attacking the vulnerability before it is fully disclosed,the lower the willingness of manufacturers to choose the"cooperative development"of vulnerability patches.Applying the improved wolf colonyco-evolution algorithm can obtain the equilibrium solution of the"attack and defense game model",and allocate the security protection resources according to the importance of nodes.This study can provide an effective solution to protect the network security for digital twins in the industry.展开更多
Effective engineering asset management(EAM)is critical to economic development and improving livability in society,but its complexity often impedes optimal asset functionalities.Digital twins(DTs)could revolutionize t...Effective engineering asset management(EAM)is critical to economic development and improving livability in society,but its complexity often impedes optimal asset functionalities.Digital twins(DTs)could revolutionize the EAM paradigm by bidirectionally linking the physical and digital worlds in real time.There is great industrial and academic interest in DTs for EAM.However,previous review studies have predominately focused on technical aspects using limited life-cycle perspectives,failing to holistically synthesize DTs for EAM from the managerial point of view.Based on a systematic literature review,we introduce an analytical framework for describing DTs for EAM,which encompasses three levels:DT 1.0 for technical EAM,DT 2.0 for technical-human EAM,and DT 3.0 for technical-environmental EAM.Using this framework,we identify what is known,what is unknown,and future directions at each level.DT 1.0 addresses issues of asset quality,progress,and cost management,generating technical value.It lacks multi-objective self-adaptive EAM,however,and suffers from high application cost.It is imperative to enable closed-loop EAM in order to provide various functional services with affordable DT 1.0.DT 2.0 accommodates issues of human-machine symbiosis,safety,and flexibility management,generating managerial value beyond the technical performance improvement of engineering assets.However,DT 2.0 currently lacks the automation and security of human-machine interactions and the managerial value related to humans is not prominent enough.Future research needs to align technical and managerial value with highly automated and secure DT 2.0.DT 3.0 covers issues of participatory governance,organization management,sustainable development,and resilience enhancement,generating macro social value.Yet it suffers from organizational fragmentation and can only address limited social governance issues.Numerous research opportunities exist to coordinate different stakeholders.Similarly,future research opportunities exist to develop DT 3.0 in a more open and complex system.展开更多
A method of analyzing the stability of twin shallow tunnels was presented using both limit analysis with nonlinear failure criterion and reliability theory.In the condition of nonlinear failure criterion,the critical ...A method of analyzing the stability of twin shallow tunnels was presented using both limit analysis with nonlinear failure criterion and reliability theory.In the condition of nonlinear failure criterion,the critical clear distancesof twin shallow tunnels were obtained by analyzing the change of surrounding pressure.A reliability model was established based on limit state equation,and the failure probability was solved by virtue of Monte Carlo method.Safety factor and corresponding clear distance of different safety levels were obtained by introducing a target reliability index.The scope of clear distance for different safety levels is described,which can be used as a supplement and improvement to the design codes of tunnels.展开更多
<div style="text-align:justify;"> Currently, coupled mode theory (CMT) is widely used for calculating the coupling coefficient of twin-core fibers (TCFs) that are used in a broad range of important app...<div style="text-align:justify;"> Currently, coupled mode theory (CMT) is widely used for calculating the coupling coefficient of twin-core fibers (TCFs) that are used in a broad range of important applications. This approach is highly accurate for scenarios with weak coupling between the cores but shows significant errors in the strong coupling scenarios, necessitating the use of a more accurate method for coupling coefficient calculations. Therefore, in this work, we calculate the coupling coefficients of TCFs using the supermode theory with finite element method (FEM) that has higher accuracy than CMT, particularly for the strong coupling TCF. To investigate the origin of the differences between the results obtained by these two methods, the modal field distributions of the supermodes of TCF are simulated and analyzed in detail. </div>展开更多
Are all prime numbers linked by four simple functions? Can we predict when a prime will appear in a sequence of primes? If we classify primes into two groups, Group 1 for all primes that appear before ζ (such that , ...Are all prime numbers linked by four simple functions? Can we predict when a prime will appear in a sequence of primes? If we classify primes into two groups, Group 1 for all primes that appear before ζ (such that , for instance 5, ), an even number divisible by 3 and 2, and Group 2 for all primes that are after ζ (such that , for instance 7), then we find a simple function: for each prime in each group, , where n is any natural number. If we start a sequence of primes with 5 for Group 1 and 7 for Group 2, we can attribute a μ value for each prime. The μ value can be attributed to every prime greater than 7. Thus for Group 1, and . Using this formula, all the primes appear for , where μ is any natural number.展开更多
In the following pages I will try to give a solution to this very known unsolved problem of theory of numbers. The solution is given here with an important analysis of the proof of formula (4.18), with the introductio...In the following pages I will try to give a solution to this very known unsolved problem of theory of numbers. The solution is given here with an important analysis of the proof of formula (4.18), with the introduction of special intervals between square of prime numbers that I call silver intervals . And I make introduction of another also new mathematic phenomenon of logical proposition “In mathematics nothing happens without reason” for which I use the ancient Greek term “catholic information”. From the theorem of prime numbers we know that the expected multitude of prime numbers in an interval is given by formula ?considering that interval as a continuous distribution of real numbers that represents an elementary natural numbers interval. From that we find that in the elementary interval around of a natural number ν we easily get by dx=1 the probability that has the ν to be a prime number. From the last formula one can see that the second part of formula (4.18) is absolutely in agreement with the above theorem of prime numbers. But the benefit of the (4.18) is that this formula enables correct calculations in set N on finding the multitude of twin prime numbers, in contrary of the above logarithmic relation which is an approximation and must tend to be correct as ν tends to infinity. Using the relationship (4.18) we calculate here the multitude of twins in N, concluding that this multitude tends to infinite. But for the validity of the computation, the distribution of the primes in a random silver interval is examined, proving on the basis of catholic information that the density of primes in the same random silver interval is statistically constant. Below, in introduction, we will define this concept of “catholic information” stems of “information theory” [1] and it is defined to use only general forms in set N, because these represent the set N and not finite parts of it. This concept must be correlated to Riemann Hypothesis.展开更多
This article B is almost autonomous because it can be read independently from the first published article A [1] using only a few parts of the article A. Be-low are given instructions so to need the reader study only o...This article B is almost autonomous because it can be read independently from the first published article A [1] using only a few parts of the article A. Be-low are given instructions so to need the reader study only on few places of the article A. Also, in the part A of Introduction, here, you will find simple and useful definitions and the strategy we are going to follow as well useful new theorems (also and in Section 5, which have been produced in this solution). So the published solution of twin’s problem can now be easily understood. The inequalities (4.17), (4.18) of Article A are proved here in Section 4 by a new clear method, without the possible ambiguity of the text between the relations (4.14), (4.16) of the Article A. Also we complete the proof for the twin’s distri-bution which we use. At the end here are presented the Conclusions, the No-menclatures and the numerical control of the proof, which is probably useful as well in coding methods. For a general and convincing picture is sufficient, a study from the beginning of this article B until the end of the part A of the In-troduction here as well a general glance on the Section 5 and on the Conclu-sions below.展开更多
The electronic properties of twinned ZnS nanowires (NWs) with different diameters were investigated based on first-principles calculations. The energy band structures, projected density of states and the spatial dis...The electronic properties of twinned ZnS nanowires (NWs) with different diameters were investigated based on first-principles calculations. The energy band structures, projected density of states and the spatial distributions of the bottom of conduction band and the top of the valence band were presented. The results show that the twinned nanowires exhibit a semiconducting character and the band gap decreases with increasing nanowire diameter due to quantum confinement effects. The valence band maximum and conduction band minimum originate mainly from the S-p and Zn-s orbitals at the core of the nanowires, respectively, which was confirmed by their spatial charge density distribution. We also found that no heterostructure is formed in the twinned ZnS NWs since the valence band maximum and conduction band minimum states are distributed along the NW axis uniformly. We suggest that the hexagonal (2H) stacking inside the cubic (3C) stacking has no effect on the electronic properties of thin ZnS NWs.展开更多
Twin boundaries among different variants in Nitinal R-phase were determined using group decomposition theory.It was found that there are four variants in the R-phase.The four variants may form three types of self-acco...Twin boundaries among different variants in Nitinal R-phase were determined using group decomposition theory.It was found that there are four variants in the R-phase.The four variants may form three types of self-accommodation group.The four variants are twin related with {100}_(p) and {100}_(p)as twin planes.These results are in good agreement with the experiment data.展开更多
Based on density functional theory,first-principles calculation is applied to study the electronic properties of undoped and Ag-doped Zn O-Σ7(123^-0)twin grain boundaries(GBs).The calculated result indicates that the...Based on density functional theory,first-principles calculation is applied to study the electronic properties of undoped and Ag-doped Zn O-Σ7(123^-0)twin grain boundaries(GBs).The calculated result indicates that the twin GBs can facilitate the formation and aggregation of Ag substitution at Zn sites(AgZn)due to the strain release.Meanwhile,some twin GBs can also lower the ionization energy of AgZn.The density of state shows that the O–O bonds in GBs play a key role in the formation of a shallow acceptor energy level.When AgZnbonds with one O atom in the O–O bond,the antibonding state of the O–O bond becomes partially occupied.As a result,a weak spin splitting occurs in the antibonding state,which causes a shallow empty energy level above the valence band maximum.Further,the model can be applied to explain the origin of p-type conductivity in Ag-doped Zn O.展开更多
文摘To ensure the safe operation of industrial digital twins network and avoid the harm to the system caused by hacker invasion,a series of discussions on network security issues are carried out based on game theory.From the perspective of the life cycle of network vulnerabilities,mining and repairing vulnerabilities are analyzed by applying evolutionary game theory.The evolution process of knowledge sharing among white hats under various conditions is simulated,and a game model of the vulnerability patch cooperative development strategy among manufacturers is constructed.On this basis,the differential evolution is introduced into the update mechanism of the Wolf Colony Algorithm(WCA)to produce better replacement individuals with greater probability from the perspective of both attack and defense.Through the simulation experiment,it is found that the convergence speed of the probability(X)of white Hat 1 choosing the knowledge sharing policy is related to the probability(x0)of white Hat 2 choosing the knowledge sharing policy initially,and the probability(y0)of white hat 2 choosing the knowledge sharing policy initially.When y0?0.9,X converges rapidly in a relatively short time.When y0 is constant and x0 is small,the probability curve of the“cooperative development”strategy converges to 0.It is concluded that the higher the trust among the white hat members in the temporary team,the stronger their willingness to share knowledge,which is conducive to the mining of loopholes in the system.The greater the probability of a hacker attacking the vulnerability before it is fully disclosed,the lower the willingness of manufacturers to choose the"cooperative development"of vulnerability patches.Applying the improved wolf colonyco-evolution algorithm can obtain the equilibrium solution of the"attack and defense game model",and allocate the security protection resources according to the importance of nodes.This study can provide an effective solution to protect the network security for digital twins in the industry.
基金supported by the National Natural Science Foundation of China(72001160)the National Social Science Fund of China(19VDL001 and 18ZDA043)+2 种基金the National Key Research and Development(R&D)Program of China(2022YFC3801700)the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement(101034337)the Support Program for Young and Middle-Tech Leading Talents of Tongji University.
文摘Effective engineering asset management(EAM)is critical to economic development and improving livability in society,but its complexity often impedes optimal asset functionalities.Digital twins(DTs)could revolutionize the EAM paradigm by bidirectionally linking the physical and digital worlds in real time.There is great industrial and academic interest in DTs for EAM.However,previous review studies have predominately focused on technical aspects using limited life-cycle perspectives,failing to holistically synthesize DTs for EAM from the managerial point of view.Based on a systematic literature review,we introduce an analytical framework for describing DTs for EAM,which encompasses three levels:DT 1.0 for technical EAM,DT 2.0 for technical-human EAM,and DT 3.0 for technical-environmental EAM.Using this framework,we identify what is known,what is unknown,and future directions at each level.DT 1.0 addresses issues of asset quality,progress,and cost management,generating technical value.It lacks multi-objective self-adaptive EAM,however,and suffers from high application cost.It is imperative to enable closed-loop EAM in order to provide various functional services with affordable DT 1.0.DT 2.0 accommodates issues of human-machine symbiosis,safety,and flexibility management,generating managerial value beyond the technical performance improvement of engineering assets.However,DT 2.0 currently lacks the automation and security of human-machine interactions and the managerial value related to humans is not prominent enough.Future research needs to align technical and managerial value with highly automated and secure DT 2.0.DT 3.0 covers issues of participatory governance,organization management,sustainable development,and resilience enhancement,generating macro social value.Yet it suffers from organizational fragmentation and can only address limited social governance issues.Numerous research opportunities exist to coordinate different stakeholders.Similarly,future research opportunities exist to develop DT 3.0 in a more open and complex system.
基金Project(51378514)supported by the National Natural Science Foundation of China
文摘A method of analyzing the stability of twin shallow tunnels was presented using both limit analysis with nonlinear failure criterion and reliability theory.In the condition of nonlinear failure criterion,the critical clear distancesof twin shallow tunnels were obtained by analyzing the change of surrounding pressure.A reliability model was established based on limit state equation,and the failure probability was solved by virtue of Monte Carlo method.Safety factor and corresponding clear distance of different safety levels were obtained by introducing a target reliability index.The scope of clear distance for different safety levels is described,which can be used as a supplement and improvement to the design codes of tunnels.
文摘<div style="text-align:justify;"> Currently, coupled mode theory (CMT) is widely used for calculating the coupling coefficient of twin-core fibers (TCFs) that are used in a broad range of important applications. This approach is highly accurate for scenarios with weak coupling between the cores but shows significant errors in the strong coupling scenarios, necessitating the use of a more accurate method for coupling coefficient calculations. Therefore, in this work, we calculate the coupling coefficients of TCFs using the supermode theory with finite element method (FEM) that has higher accuracy than CMT, particularly for the strong coupling TCF. To investigate the origin of the differences between the results obtained by these two methods, the modal field distributions of the supermodes of TCF are simulated and analyzed in detail. </div>
文摘Are all prime numbers linked by four simple functions? Can we predict when a prime will appear in a sequence of primes? If we classify primes into two groups, Group 1 for all primes that appear before ζ (such that , for instance 5, ), an even number divisible by 3 and 2, and Group 2 for all primes that are after ζ (such that , for instance 7), then we find a simple function: for each prime in each group, , where n is any natural number. If we start a sequence of primes with 5 for Group 1 and 7 for Group 2, we can attribute a μ value for each prime. The μ value can be attributed to every prime greater than 7. Thus for Group 1, and . Using this formula, all the primes appear for , where μ is any natural number.
文摘In the following pages I will try to give a solution to this very known unsolved problem of theory of numbers. The solution is given here with an important analysis of the proof of formula (4.18), with the introduction of special intervals between square of prime numbers that I call silver intervals . And I make introduction of another also new mathematic phenomenon of logical proposition “In mathematics nothing happens without reason” for which I use the ancient Greek term “catholic information”. From the theorem of prime numbers we know that the expected multitude of prime numbers in an interval is given by formula ?considering that interval as a continuous distribution of real numbers that represents an elementary natural numbers interval. From that we find that in the elementary interval around of a natural number ν we easily get by dx=1 the probability that has the ν to be a prime number. From the last formula one can see that the second part of formula (4.18) is absolutely in agreement with the above theorem of prime numbers. But the benefit of the (4.18) is that this formula enables correct calculations in set N on finding the multitude of twin prime numbers, in contrary of the above logarithmic relation which is an approximation and must tend to be correct as ν tends to infinity. Using the relationship (4.18) we calculate here the multitude of twins in N, concluding that this multitude tends to infinite. But for the validity of the computation, the distribution of the primes in a random silver interval is examined, proving on the basis of catholic information that the density of primes in the same random silver interval is statistically constant. Below, in introduction, we will define this concept of “catholic information” stems of “information theory” [1] and it is defined to use only general forms in set N, because these represent the set N and not finite parts of it. This concept must be correlated to Riemann Hypothesis.
文摘This article B is almost autonomous because it can be read independently from the first published article A [1] using only a few parts of the article A. Be-low are given instructions so to need the reader study only on few places of the article A. Also, in the part A of Introduction, here, you will find simple and useful definitions and the strategy we are going to follow as well useful new theorems (also and in Section 5, which have been produced in this solution). So the published solution of twin’s problem can now be easily understood. The inequalities (4.17), (4.18) of Article A are proved here in Section 4 by a new clear method, without the possible ambiguity of the text between the relations (4.14), (4.16) of the Article A. Also we complete the proof for the twin’s distri-bution which we use. At the end here are presented the Conclusions, the No-menclatures and the numerical control of the proof, which is probably useful as well in coding methods. For a general and convincing picture is sufficient, a study from the beginning of this article B until the end of the part A of the In-troduction here as well a general glance on the Section 5 and on the Conclu-sions below.
基金Project supported by the Special Funds of the National Natural Science Foundation of China (Grant No. 10947102)the Foundation of the Education Committee of Chongqing (Grant No. KJ090503)
文摘The electronic properties of twinned ZnS nanowires (NWs) with different diameters were investigated based on first-principles calculations. The energy band structures, projected density of states and the spatial distributions of the bottom of conduction band and the top of the valence band were presented. The results show that the twinned nanowires exhibit a semiconducting character and the band gap decreases with increasing nanowire diameter due to quantum confinement effects. The valence band maximum and conduction band minimum originate mainly from the S-p and Zn-s orbitals at the core of the nanowires, respectively, which was confirmed by their spatial charge density distribution. We also found that no heterostructure is formed in the twinned ZnS NWs since the valence band maximum and conduction band minimum states are distributed along the NW axis uniformly. We suggest that the hexagonal (2H) stacking inside the cubic (3C) stacking has no effect on the electronic properties of thin ZnS NWs.
文摘Twin boundaries among different variants in Nitinal R-phase were determined using group decomposition theory.It was found that there are four variants in the R-phase.The four variants may form three types of self-accommodation group.The four variants are twin related with {100}_(p) and {100}_(p)as twin planes.These results are in good agreement with the experiment data.
基金Project supported by the National Natural Science Foundation of China(Grant No.11364009)Natural Science Foundation of Guangxi Province,China(Grant No.2014GXNSFFA118004)
文摘Based on density functional theory,first-principles calculation is applied to study the electronic properties of undoped and Ag-doped Zn O-Σ7(123^-0)twin grain boundaries(GBs).The calculated result indicates that the twin GBs can facilitate the formation and aggregation of Ag substitution at Zn sites(AgZn)due to the strain release.Meanwhile,some twin GBs can also lower the ionization energy of AgZn.The density of state shows that the O–O bonds in GBs play a key role in the formation of a shallow acceptor energy level.When AgZnbonds with one O atom in the O–O bond,the antibonding state of the O–O bond becomes partially occupied.As a result,a weak spin splitting occurs in the antibonding state,which causes a shallow empty energy level above the valence band maximum.Further,the model can be applied to explain the origin of p-type conductivity in Ag-doped Zn O.