Controlled growth of hexagonal boron nitride (h-BN) with desired properties is essential for its wide range of applications. Here, we systematically carried out the chemical vapor deposition of monolayer h-BN on Cu ...Controlled growth of hexagonal boron nitride (h-BN) with desired properties is essential for its wide range of applications. Here, we systematically carried out the chemical vapor deposition of monolayer h-BN on Cu twin crystals. It was found that h-BN nucleated and grew preferentially and simultaneously on the narrow twin crystal strips present in the Cu substrates. The density functional theory calculations revealed that the introduction of oxygen could effidently ~ne the selectivity. This is because of the reduction in the dehydrogenation barrier of the precursor molecules by the introduction of oxygen. Our findings throw light on the direct growth of functional h-BN nanoribbons on nano-twinned crystal strips and switching of the growth behavior of h-BN films by oxygen.展开更多
Twin gold crystal nanowires, whose loading direction is parallel to the twin boundary orientation, are simulated.We calculate the nanowires under tensile or compressive loads, different length nanowires, and different...Twin gold crystal nanowires, whose loading direction is parallel to the twin boundary orientation, are simulated.We calculate the nanowires under tensile or compressive loads, different length nanowires, and different twin boundary nanowires respectively. The Young modulus of nanowires under compressive load is about twice that under tensile load.The compressive properties of twin gold nanowires are superior to their tensile properties. For different length nanowires,there is a critical value of length with respect to the mechanical properties. When the length of nanowire is greater than the critical value, its mechanical properties are sensitive to length. The twin boundary spacing hardly affects the mechanical properties.展开更多
Reaction of dimers of (R) thionophosphine sulfide (R = P - C6H4OMe,SMe ) with Co, (CO), yields the novel hexacobalt cluster [Co'(μ3, -S)2, (CO) 14 (μ4 -μ4- and the trinuclear clusterPSCH,)J 2' In 1, tw0 Co3...Reaction of dimers of (R) thionophosphine sulfide (R = P - C6H4OMe,SMe ) with Co, (CO), yields the novel hexacobalt cluster [Co'(μ3, -S)2, (CO) 14 (μ4 -μ4- and the trinuclear clusterPSCH,)J 2' In 1, tw0 Co3S(C0)7 units linked by a novel phosphido-thio1ato bifunc-tiona1 bridging p'-SPR ligand as backbone.展开更多
The double directional solidification(DS) technique was developed to control the lamellar microstructures in primary β TiAl-Nb alloys.Polysynthetically twinned(PST) crystals with lamellar boundaries parallel to o...The double directional solidification(DS) technique was developed to control the lamellar microstructures in primary β TiAl-Nb alloys.Polysynthetically twinned(PST) crystals with lamellar boundaries parallel to or inclined 45o to the growth direction were achieved due to the complete peritectic transformation during directional solidification of the alloys with the dendritic solid/liquid interface.The PST crystals with aligned lamellar boundaries only parallel to the growth direction were produced when lamellar grains with lamellar boundaries in the same orientation were seeded by themselves under appropriate growth conditions.Low boron addition is harmful to align the lamellar orientation because of the growth of non-peritectic α phase.Due to the larger yttria particles and boride ribbons in the directionally solidified TiAl-Nb alloys,the tensile plastic elongations of the alloys are only close to 2%.展开更多
Large size polysynthetically twinned crystals of Ti-46 Al-8 Nb alloy with a parallel lamellar microstructure were successfully prepared using a Ti-43 Al-3 Si seed by our new operation.A large amount of columnar B2 pha...Large size polysynthetically twinned crystals of Ti-46 Al-8 Nb alloy with a parallel lamellar microstructure were successfully prepared using a Ti-43 Al-3 Si seed by our new operation.A large amount of columnar B2 phase paralleling to the growth direction was found in the final lamellar microstructure.Higher growth rate(>30 mm/h)led to the failure of seeding process.Based on these results,a new mechanism is proposed to describe the seeding process of the hypo-peritectic Ti Al alloys.The peritecticαphase is suggested to directly nucleate from the melt,and then act as nucleus for transformedαphase in the subsequentβtoαtransformation.At the higher growth rate,the appearance ofβphase secondary dendrites and homogeneous nucleation lead to the failure of seeding process.High Nb addition leads to a large amount of residualβphase,and theseβdendrites finally evolve into B2 phase.The room temperature tensile elongation was measured to be 11.9-18.5%for Ti-46 Al-8 Nb PST crystals,which is the highest ever reported value for Ti Al based alloys.展开更多
The energy density of Li-ion batteries is closely related to the capacity and average voltage of cathode materials.Unfortunately,current cathode materials either have low capacity or voltage,which limits the developme...The energy density of Li-ion batteries is closely related to the capacity and average voltage of cathode materials.Unfortunately,current cathode materials either have low capacity or voltage,which limits the development of high-energy-density Li-ion batteries.This has given challenge to many attempts to develop new cathode materials with high capacity and voltage.In this study,we find that Li easily inserts into the(111)plane of SiC in the presence of Si,and a well-organized Li-rich SiC twin crystal is formed.Ultraviolet-visible diffuse reflectance spectra and electrochemical test results suggest that this Li-rich SiC twin crystal possesses the band gap energy of 3.5 eV and charging capacity of 1979 mAh/g at the current density of 200 mA/g,making it a promising candidate for the cathode material in high-capacity Li-ion batteries.X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy results reveal that Si-induced Li insertion contributes to the changes in the surface species and structure of pristine SiC.These findings suggest that the Li-rich SiC twin crystal raises new possibilities for the development of high-capacity cathode materials and merits further investigation to expand its application scope.展开更多
基金This work was supported by the National Basic Research Program of China (Nos. 2013CB932604 and 2012CB933403), National Natural Science Foundation of China (Nos. 51535005, 51472117, 11472131, and 11622218), the Jiangsu Natural Science Foundation (Nos. BK20130781 and BIG20160037), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Nos. MCMS-0416K01, MCMS-0416G01, and 0414K01), the Nanjing University of Aeronautics and Astronautics (NUAA) Fundamental Research Funds (Nos. NP2015203 and NS2014012), the Funding of Jiangsu Innovation Program for Graduate Education (No. CXZZ13_0150) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Controlled growth of hexagonal boron nitride (h-BN) with desired properties is essential for its wide range of applications. Here, we systematically carried out the chemical vapor deposition of monolayer h-BN on Cu twin crystals. It was found that h-BN nucleated and grew preferentially and simultaneously on the narrow twin crystal strips present in the Cu substrates. The density functional theory calculations revealed that the introduction of oxygen could effidently ~ne the selectivity. This is because of the reduction in the dehydrogenation barrier of the precursor molecules by the introduction of oxygen. Our findings throw light on the direct growth of functional h-BN nanoribbons on nano-twinned crystal strips and switching of the growth behavior of h-BN films by oxygen.
基金supported by the National Science and Technology Pillar Program,China(Grant No.2015BAK17B06)the Earthquake Industry Special Science Research Foundation Project,China(Grant No.201508026-02)+1 种基金the Natural Science Foundation of Heilongjiang Province,China(Grant No.A201310)the Scientific Research Starting Foundation for Post Doctorate of Heilongjiang Province,China(Grant No.LBHQ13040)
文摘Twin gold crystal nanowires, whose loading direction is parallel to the twin boundary orientation, are simulated.We calculate the nanowires under tensile or compressive loads, different length nanowires, and different twin boundary nanowires respectively. The Young modulus of nanowires under compressive load is about twice that under tensile load.The compressive properties of twin gold nanowires are superior to their tensile properties. For different length nanowires,there is a critical value of length with respect to the mechanical properties. When the length of nanowire is greater than the critical value, its mechanical properties are sensitive to length. The twin boundary spacing hardly affects the mechanical properties.
文摘Reaction of dimers of (R) thionophosphine sulfide (R = P - C6H4OMe,SMe ) with Co, (CO), yields the novel hexacobalt cluster [Co'(μ3, -S)2, (CO) 14 (μ4 -μ4- and the trinuclear clusterPSCH,)J 2' In 1, tw0 Co3S(C0)7 units linked by a novel phosphido-thio1ato bifunc-tiona1 bridging p'-SPR ligand as backbone.
基金Project (2011CB605500) supported by the National Basic Research Program of ChinaProject (FRF-MP-10-005B) supported by the Fundamental Research Funds for the Central Universities,China
文摘The double directional solidification(DS) technique was developed to control the lamellar microstructures in primary β TiAl-Nb alloys.Polysynthetically twinned(PST) crystals with lamellar boundaries parallel to or inclined 45o to the growth direction were achieved due to the complete peritectic transformation during directional solidification of the alloys with the dendritic solid/liquid interface.The PST crystals with aligned lamellar boundaries only parallel to the growth direction were produced when lamellar grains with lamellar boundaries in the same orientation were seeded by themselves under appropriate growth conditions.Low boron addition is harmful to align the lamellar orientation because of the growth of non-peritectic α phase.Due to the larger yttria particles and boride ribbons in the directionally solidified TiAl-Nb alloys,the tensile plastic elongations of the alloys are only close to 2%.
基金National Natural Science Foundation of China(No.51701209)National Key Research and Development Program of China(Nos.2016YFB0701304)。
文摘Large size polysynthetically twinned crystals of Ti-46 Al-8 Nb alloy with a parallel lamellar microstructure were successfully prepared using a Ti-43 Al-3 Si seed by our new operation.A large amount of columnar B2 phase paralleling to the growth direction was found in the final lamellar microstructure.Higher growth rate(>30 mm/h)led to the failure of seeding process.Based on these results,a new mechanism is proposed to describe the seeding process of the hypo-peritectic Ti Al alloys.The peritecticαphase is suggested to directly nucleate from the melt,and then act as nucleus for transformedαphase in the subsequentβtoαtransformation.At the higher growth rate,the appearance ofβphase secondary dendrites and homogeneous nucleation lead to the failure of seeding process.High Nb addition leads to a large amount of residualβphase,and theseβdendrites finally evolve into B2 phase.The room temperature tensile elongation was measured to be 11.9-18.5%for Ti-46 Al-8 Nb PST crystals,which is the highest ever reported value for Ti Al based alloys.
基金supported by the National Natural Science Foundation of China (grant No.21908125)CNPC Innovation Found.
文摘The energy density of Li-ion batteries is closely related to the capacity and average voltage of cathode materials.Unfortunately,current cathode materials either have low capacity or voltage,which limits the development of high-energy-density Li-ion batteries.This has given challenge to many attempts to develop new cathode materials with high capacity and voltage.In this study,we find that Li easily inserts into the(111)plane of SiC in the presence of Si,and a well-organized Li-rich SiC twin crystal is formed.Ultraviolet-visible diffuse reflectance spectra and electrochemical test results suggest that this Li-rich SiC twin crystal possesses the band gap energy of 3.5 eV and charging capacity of 1979 mAh/g at the current density of 200 mA/g,making it a promising candidate for the cathode material in high-capacity Li-ion batteries.X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy results reveal that Si-induced Li insertion contributes to the changes in the surface species and structure of pristine SiC.These findings suggest that the Li-rich SiC twin crystal raises new possibilities for the development of high-capacity cathode materials and merits further investigation to expand its application scope.