The double flapper-nozzle servo valve is widely used to launch and guide the equipment. Due to the large instantaneous flow rate of servo valve working under specific operating conditions, the temperature of servo val...The double flapper-nozzle servo valve is widely used to launch and guide the equipment. Due to the large instantaneous flow rate of servo valve working under specific operating conditions, the temperature of servo valve would reach 120℃ and the valve core and valve sleeve deform in a short amount of time. So the control precision of servo valve significantly decreases and the clamping stagnation phenomenon of valve core appears. In order to solve the problem of degraded control accuracy and clamping stagnation of servo valve under large temperature difference circumstance, the numerical simulation of heat-fluid-solid coupling by using finite element method is done. The simulation result shows that zero position leakage of servo valve is basically impacted by oil temperature and change of fit clearance. The clamping stagnation is caused by warpage-deformation and fit clearance reduction of the valve core and valve sleeve. The distribution roles of the temperature and thermal-deformation of shell, valve core and valve sleeve and the pressure, velocity and temperature field of flow channel are also analyzed. Zero position leakage and electromagnet's current when valve core moves in full-stroke are tested using Electro-hydraulic Servo-valve Characteristic Test-bed of an aerospace sciences and technology corporation. The experimental results show that the change law of experimental current at different oil temperatures is roughly identical to simulation current. The current curve of the electromagnet is smooth when oil temperature is below 80℃, but the amplitude of current significantly increases and the hairy appears when oil temperature is above 80℃. The current becomes smooth again after the warped valve core and valve sleeve are reground. It indicates that clamping stagnation is caused by warpage-deformation and fit clearance reduction of valve core and valve sleeve. This paper simulates and tests the heat-fluid-solid coupling of double flapper-nozzle servo valve, and the obtained results provide the reference value for the design of double flapper-nozzle force feedback servo valve.展开更多
Due to great changing of instantaneous temperature of hydraulic oil of double flapper-nozzle servo valve, thermal deformation between valve core and valve sleeve may result in catching phenomenon of valve core, and th...Due to great changing of instantaneous temperature of hydraulic oil of double flapper-nozzle servo valve, thermal deformation between valve core and valve sleeve may result in catching phenomenon of valve core, and then the reliability of servo valve could be affected seriously. The work focuses on a particular model of double flapper-nozzle servo valve and establishes three dimension couple models of liquid-solid-thermal under extreme operating condition. The transmission route and dissipative mechanism of heat is revealed and thermal deformation behavior of valve core and valve sleeve is researched. A change law of the key fit clearance under the effect of thermal expansion and warp deformation is explored, the source of catching phenomenon of valve core is identified, and then preventive measure and improvement can be proposed. In order to verify the correctness of theoretical analysis, the moving smoothness of deformed valve core and reground valve core under the circumstance of high-temperature hydraulic oil on electrohydraulic servo valve static characteristics test table is compared and tested. The results show that as oil temperature rises, relative deformations between valve core and valve sleeve in different direction at a same cross-section are not equal, and then the key fit clearance is less than the initial value. Relative deformations in the same direction at different axial position are not equal, the deformations of middle and two ends are maximum and minimum values respectively, and then warp deformation of valve core occurs. When oil temperature is higher, the relative deformations between valve core and valve sleeve is larger, the moving smoothness of valve core gets worse, and the catching phenomenon of valve core occurs. Axial deformation of valve sleeve and valve core at different axial position is different, and the opening coefficient and stability of servo valve could be affected, especially the operation circumstance of small opening. The study can provide some guidance for designing double nozzle flapper servo valves.展开更多
基金Supposed by National Natural Science Foundation of China(Grant No.51075348)Hebei Provincial Natural Science Foundation of China(Grant No.E2011203151)Research Fund for Doctoral Program of Higher Education of China(Grant No.20101333110002)
文摘The double flapper-nozzle servo valve is widely used to launch and guide the equipment. Due to the large instantaneous flow rate of servo valve working under specific operating conditions, the temperature of servo valve would reach 120℃ and the valve core and valve sleeve deform in a short amount of time. So the control precision of servo valve significantly decreases and the clamping stagnation phenomenon of valve core appears. In order to solve the problem of degraded control accuracy and clamping stagnation of servo valve under large temperature difference circumstance, the numerical simulation of heat-fluid-solid coupling by using finite element method is done. The simulation result shows that zero position leakage of servo valve is basically impacted by oil temperature and change of fit clearance. The clamping stagnation is caused by warpage-deformation and fit clearance reduction of the valve core and valve sleeve. The distribution roles of the temperature and thermal-deformation of shell, valve core and valve sleeve and the pressure, velocity and temperature field of flow channel are also analyzed. Zero position leakage and electromagnet's current when valve core moves in full-stroke are tested using Electro-hydraulic Servo-valve Characteristic Test-bed of an aerospace sciences and technology corporation. The experimental results show that the change law of experimental current at different oil temperatures is roughly identical to simulation current. The current curve of the electromagnet is smooth when oil temperature is below 80℃, but the amplitude of current significantly increases and the hairy appears when oil temperature is above 80℃. The current becomes smooth again after the warped valve core and valve sleeve are reground. It indicates that clamping stagnation is caused by warpage-deformation and fit clearance reduction of valve core and valve sleeve. This paper simulates and tests the heat-fluid-solid coupling of double flapper-nozzle servo valve, and the obtained results provide the reference value for the design of double flapper-nozzle force feedback servo valve.
基金Supported by the National Natural Science Foundation of China(No.51705445)Natural Science Foundation of Hebei Province of China(No.E2016203324)Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems
文摘Due to great changing of instantaneous temperature of hydraulic oil of double flapper-nozzle servo valve, thermal deformation between valve core and valve sleeve may result in catching phenomenon of valve core, and then the reliability of servo valve could be affected seriously. The work focuses on a particular model of double flapper-nozzle servo valve and establishes three dimension couple models of liquid-solid-thermal under extreme operating condition. The transmission route and dissipative mechanism of heat is revealed and thermal deformation behavior of valve core and valve sleeve is researched. A change law of the key fit clearance under the effect of thermal expansion and warp deformation is explored, the source of catching phenomenon of valve core is identified, and then preventive measure and improvement can be proposed. In order to verify the correctness of theoretical analysis, the moving smoothness of deformed valve core and reground valve core under the circumstance of high-temperature hydraulic oil on electrohydraulic servo valve static characteristics test table is compared and tested. The results show that as oil temperature rises, relative deformations between valve core and valve sleeve in different direction at a same cross-section are not equal, and then the key fit clearance is less than the initial value. Relative deformations in the same direction at different axial position are not equal, the deformations of middle and two ends are maximum and minimum values respectively, and then warp deformation of valve core occurs. When oil temperature is higher, the relative deformations between valve core and valve sleeve is larger, the moving smoothness of valve core gets worse, and the catching phenomenon of valve core occurs. Axial deformation of valve sleeve and valve core at different axial position is different, and the opening coefficient and stability of servo valve could be affected, especially the operation circumstance of small opening. The study can provide some guidance for designing double nozzle flapper servo valves.