期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Abrasive Wear Behaviors of Light-weight Austenitic Fe-24Mn-7Al-1C Steel and Mn13Cr2 Steel 被引量:1
1
作者 Shi-guang PENG Ren-bo SONG +3 位作者 Zhi-dong TAN Chang-hong CAI Ke GUO Zhong-hong WANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第8期857-866,共10页
The impact abrasive wear behaviors of light-weight austenitic Fe-24Mn-7Al-1Csteel with increasing impact wear conditions were studied by comparing with the modified Hadfield(Mn13Cr2)steel.Wear tests were performed w... The impact abrasive wear behaviors of light-weight austenitic Fe-24Mn-7Al-1Csteel with increasing impact wear conditions were studied by comparing with the modified Hadfield(Mn13Cr2)steel.Wear tests were performed with the MLD-10 abrasive wear testing machine.Main parameters such as impact energy,impacting frequency and wear time were evaluated.To explore the abrasive wear behaviors under different impact energies,the parameters including mass loss,wear resistance and hardness were evaluated in detail.The microstructures of the steels were further analyzed using optical microscopy(OM),scanning electron microscopy(SEM),transmission electron microscopy(TEM)and X-ray diffraction(XRD).Results showed that the light-weight austenitic Fe-24Mn-7Al-1Csteel had a better wear resistance than Mn13Cr2 steel under the impact energy tested.The wear resistance of light-weight austenitic Fe-24Mn-7Al-1Csteel was about 1.09-1.17 times as high as that of Mn13Cr2 steel under low and medium impact energy(0.5-2.0J)conditions,and 1.41 times under high impact energy(4.0J)condition.In Mn13Cr2 steel,the evolution of dislocation substructure with increasing impact energy showed typical stacking fault,interaction of twins and dislocations,as well as mechanical twins.The high work-hardening rate in Fe-24Mn-7Al-1Csteel was caused by Taylor lattice and high density of dislocation tangles. 展开更多
关键词 twins dislocation hardness abrasive steels hardening stacking refinement austenite stainless
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部