As a near-net-shape technology,the twin-roll strip casting(TRC)process can be considered to apply to the fabrication of TiAl alloy sheets.However,the control of the grain distribution is very important in strip castin...As a near-net-shape technology,the twin-roll strip casting(TRC)process can be considered to apply to the fabrication of TiAl alloy sheets.However,the control of the grain distribution is very important in strip casting because the mechanical properties of strips are directly determined by the solidification microstructure.A three-dimensional(3D)cellular automation finite-element(CAFE)model based on ProCAST software was established to simulate the solidification microstructure of Ti-43Al alloy.Then,the influence of casting temperature and the maximum nucleation density(nmax)on the solidification microstructure was investigated in detail.The simulation results provide a good explanation and prediction for the solidification microstructure in the molten pool before leaving the kissing point.Experimental and simulated microstructure show the common texture<001>orientation in the columnar grains zone.Finally,the microstructure evolution of the Ti-43Al alloy was analyzed and the solidification phase transformation path during the TSC process was determined,i.e.,L→L+β→β→β+α→α+γ+β/B2 phase under a faster cooling rate and L→L+β→β→β+α→γ+lamellar(α_(2)+γ)+β/B2 phase under a slower cooling rate.展开更多
The temperature field of stainless steel during twin-roll strip casting was simulated by experiment and a finite element (FE) model. By comparing the measured result with the simulated values, it is found that they ...The temperature field of stainless steel during twin-roll strip casting was simulated by experiment and a finite element (FE) model. By comparing the measured result with the simulated values, it is found that they fit close to each other, which indicates this FE model is effective. Based on this model, the effects of roll gap (t) and roll radius (R) on solidification were simulated. The simulated results give the relationship between t or R and the position of the freezing point. The larger the t is and the smaller the R is, the closer the position of the freezing point is to the exit.展开更多
Twin-roll strip casting is regarded as a prospective technology of near net shape continuous casting. The fluid flow field and level fluctuation in the pool have a strong influence not only on composition and temperat...Twin-roll strip casting is regarded as a prospective technology of near net shape continuous casting. The fluid flow field and level fluctuation in the pool have a strong influence not only on composition and temperature homogeneity of pool, but also on the strip quality. A 1 : 1 water model of a twin-roll strip caster was set up based on the criteria of Froude number and Reynold number similarity. The level fluctuation was measured. The influence of pool depth, casting speed and feeding system configuration on level fluctuation in the pool was studied. The experimental results provided a basis for the optimization of feeding system and process parameters.展开更多
In twin-roll strip casting process, metal flow and temperature distribution in the molten pool directly affect the stability of the process and the quality of products. In this paper, a 3D coupled thermal-flow fenite ...In twin-roll strip casting process, metal flow and temperature distribution in the molten pool directly affect the stability of the process and the quality of products. In this paper, a 3D coupled thermal-flow fenite element modeling (FEM) simulation for twin-roll strip casting of stainless steel was performed. Influences of the pouring temperature and casting speed on the temperature fields were obtained from the numerical simulation. The micro-segregation of the solutes during the strip casting process of stainless steel was also simulated. A developed micro-segregation model was used to calculate the micro-segregation of solutes in twin-roll casting of stainless steel. The relationship between the solidus fraction in solidification and temperature was given, which was used to determine the LIT (liquid impermeable temperature), ZST (zero strength temperature) and ZDT (zero ductility temperature) in the period of non-equilibrium solidification. The effect of temperature on the micro-segregation was discussed. According to the computational results, the solidification completion temperature in the twin-roll strip casting of stainless steel was then determined, which can provide a basis for controlling the location of solidification completion temperature and analysing the crack of the casting strip.展开更多
Coupled turbulent flow, temperature fields of the twin-roll casting strip process were simulated by three-dimensional finite element method. Based on the heat balance calculation and using inverse methods between the ...Coupled turbulent flow, temperature fields of the twin-roll casting strip process were simulated by three-dimensional finite element method. Based on the heat balance calculation and using inverse methods between the simulations and real experiments, the relational models among casting speed, location, and coefficient of heat transfer between molten metal and rolls in different regions are given. In the simulation, the calculated surface temperatures are in good agreement with the measured values. An on-line model of kiss point is derived by simulations and the geometry of molten pool, corresponding control strategy is also proposed.展开更多
An intelligent fuzzy-PID controller consisting of fuzzy logic controller and PID controller was developed to control the molten steel level of twin-roll strip caster.Additionally,a feedforward differential PID control...An intelligent fuzzy-PID controller consisting of fuzzy logic controller and PID controller was developed to control the molten steel level of twin-roll strip caster.Additionally,a feedforward differential PID controller was used for stopper position control in order to avoid differential kick.It is proved by simulation that the proposed intelligent controller is able to obtain zero steady state error asymptotically and the control system is robust due to its fuggy behavior of the controller.展开更多
Body-fitted coordinate transformation equation was deduced and used to generate the body-fitted grids of molten pool for twin-roll strip casting.The orthogonality of the grids on the boundary was modified by adjusting...Body-fitted coordinate transformation equation was deduced and used to generate the body-fitted grids of molten pool for twin-roll strip casting.The orthogonality of the grids on the boundary was modified by adjusting source item.The energy equation and the boundary conditions were transformed from physical space to computational space.The velocity field model proposed by Hirohiko Takuda was used to calculate the temperature field of molten steel,and the influence of technical factors was also discussed.展开更多
Mathematical model of solute [C] distribution in twin-roll strip casting process has been setup successfully with Calcosoft for the first time. Simulation result shows that in the center of the molten steel pool betwe...Mathematical model of solute [C] distribution in twin-roll strip casting process has been setup successfully with Calcosoft for the first time. Simulation result shows that in the center of the molten steel pool between the two rolls there is a vortex flow, which is a solute enriched area. But the highest solute concentration position is at the solidification front of the columnar grain zone near the cooling roll surface. Another solute enriched position is in the back flow above the nip point. Combined with the formation mechanism of microstruoture in final as cast strip, analysis shows that solute enriched area is in the transitional area between columnar and equiaxed grain zone.展开更多
In twin-roll strip casting process,transport phenomena of fluid in the molten pool directly affect the process stability and the quality of products.In order to elucidate the fundamental transport phenomena in twin-ro...In twin-roll strip casting process,transport phenomena of fluid in the molten pool directly affect the process stability and the quality of products.In order to elucidate the fundamental transport phenomena in twin-roll casting,a commercial software called ProCAST was employed to simulate the transient fluid flow and level profile behaviors during the early stage of the process in this study.The coupled set of governing differential equations for mass,momentum and energy balance were solved with the finite element method and the transient free surface problem was treated with a volume of fluids(VOF) approach.The effect of different delivery systems configuration on flow pattern,level profile in the pool was studied and analyzed in this paper. The new wedge metal delivery systems have been optimized for the twin-roll strip caster.It was shown that new type metal delivery systems had a preferable effect on the uniform distribution of fluid and level fluctuation in the pool.The simulation results also provide a valuable basis for the optimization of delivery system and process parameters during the initial pouring stage.展开更多
The shape, type, content, and dimension of nonmetallic inclusions in SUS304 strip produced by twin-roll strip casting were studied using scanning electron microscopy (SEM). The results show that the inclusions are m...The shape, type, content, and dimension of nonmetallic inclusions in SUS304 strip produced by twin-roll strip casting were studied using scanning electron microscopy (SEM). The results show that the inclusions are mainly spherical Al2O3 and complex oxides composed of MnO, Al2O3 , and SiO2. The percentage of fine oxides smaller than 3 μm reaches up to 51.8%. The theoretical calculations show that fine oxides have precipitated during solidification. Therefore, it is concluded that during twin-roll strip casting, because of high cooling rate, the size of inclusions precipitated during solidification decreases, and the amount increases.展开更多
In the twin-roll strip casting process, hot cast strips can be broken or tom if the casting speed does not match the rolling speed. Usually, a certain length of hot steel strip is hung freely between the caster and ro...In the twin-roll strip casting process, hot cast strips can be broken or tom if the casting speed does not match the rolling speed. Usually, a certain length of hot steel strip is hung freely between the caster and rolling mill to deal with the effect of this speed difference. In this paper,the freely hanging hot steel strip is referred to as the free loop of hot steel strip. Accurately measuring and controlling the height of this free loop is the key factor in maintaining a stable casting operation. Several methods for measuring the loop height of a steel strip are discussed and a method for accurately measuring and controlling the free loop height of hot steel strip is presented. Based on the results of the casting loop quantity change curve, this control method is confirmed to be effective and able to meet the requirements of continuous casting strip production.展开更多
The first micro-segregation under conditions of twin roll strip casting was simulated.The relationship between the temperature and solid fraction in the mushy zone was given.The temperatures such as ZDT,LIT were got f...The first micro-segregation under conditions of twin roll strip casting was simulated.The relationship between the temperature and solid fraction in the mushy zone was given.The temperatures such as ZDT,LIT were got from this simulation.Then using the turbulent model,the flow field and thermal field in the pool of twin-roll strip caster was simulated.The speed and temperature at different casting speed was given,and the results were also explained.By these two simulations,the appropriate casting speed can be found.These simulations can provide effective data for controlling the twin-roll strip casting process.展开更多
To shorten the fabrication process of difficult-to-form TiAl sheets, twin-roll strip casting and microstructural control were investigated in Ti-43Al alloy. A crack-free sheet with dimensions of 1000 mm × 110 mm ...To shorten the fabrication process of difficult-to-form TiAl sheets, twin-roll strip casting and microstructural control were investigated in Ti-43Al alloy. A crack-free sheet with dimensions of 1000 mm × 110 mm × 2 mm was obtained. The microstructure of stip casting sheets and heat treatments was systematically studied. The macrostructure consisted of columnar crystals extending inward and centrally located equiaxed crystals with severe Al segregation were observed along the thickness direction, due to the symmetrical solidification process and decreasing cooling rates. The strip casting alloy was characterized by fine duplex microstructure with a grain spacing of 20-30 μm and a lamellar spacing of 10-20 nm. Furthermore, multiple microstructures of near gamma, nearly lamellar and fully lamellar were obtained through heat treatment process with significantly improved homogeneity of the microstructure.展开更多
During the oscillating twin?roll strip casting process, the quality of final products is directly influenced by the flow field distribution of molten metal in the pool. The variation in the flow field is caused by osc...During the oscillating twin?roll strip casting process, the quality of final products is directly influenced by the flow field distribution of molten metal in the pool. The variation in the flow field is caused by oscillating roller benefits, for homogeneous distribution of strip impurity, and decreasing the grain size. Thus, the quality of the strip could be improved. A numerical model was developed using the multiphase flow technology, coupled with heat transfer, fluid flow, solidification, and oscillation. Furthermore, a transient algorithm was adopted for simulating the oscillating twin?roll strip casting process of AlSi9Cu3 and 3104 aluminum alloy. This paper focuses on the flow distribution in the pool, in comparison with the traditional vertical twin?roll strip casting process, while the amplitude or frequency is chang?ing with the definite value of casting velocity, roller diameter, nozzle angle, and the strip thickness. Consequently, the conclusions were experimentally validated by oscillating twin?roll 3104 aluminum alloy strip casting. Vibrating casting technology can change the flow field in the pool by vibration, which can improve the quality of the strip core.展开更多
Twin-roll strip casting and rolling is a typical near-net-shape steel manufacturing process.The twin-roll strip casting and rolling of low-carbon steel strips has made a number of breakthroughs and achieved significan...Twin-roll strip casting and rolling is a typical near-net-shape steel manufacturing process.The twin-roll strip casting and rolling of low-carbon steel strips has made a number of breakthroughs and achieved significant results during the past 20 years.Baosteel has been paying close attention to the development of this technology and set up a research and development project focused on its industrialization in 2001.The Ningbosteel-Baosteel strip casting industrialization demo project(NBS),which was launched in 2016,marks the strip-casting technology(registered as Baostrip) developed by Baosteel as having reached an advanced international level after 15 years of effort.This paper summarizes the results obtained in the industrialized demonstration plant and considers the future development of strip casting and rolling.展开更多
Reducing wear on a side dam can prolong the casting operation life of a twin-roll strip casting process,thus reducing production cost and improving casting stability.To lengthen the service life of the side dam,it is ...Reducing wear on a side dam can prolong the casting operation life of a twin-roll strip casting process,thus reducing production cost and improving casting stability.To lengthen the service life of the side dam,it is necessary to understand the wear performance of the side dam material.To investigate the wear behavior mechanism of the side dam,in this study,the UMT-2 friction and wear tester was used to determine the relationship between the wear rate of the side-dam material and various parameters.Based on the roughness of the contact area between the side dam and the end of the casting rolls as well as on the amount of deformation of the side dam,which was derived using a thermal-deformation simulation model,the reasons for the uneven wear of the side dam were obtained.展开更多
In this study,morphological and microstructural analyses were conducted on net-shaped microcracks appearing on the surface of low-carbon steel manufactured via twin-roll strip casting. The fractograph and microscale d...In this study,morphological and microstructural analyses were conducted on net-shaped microcracks appearing on the surface of low-carbon steel manufactured via twin-roll strip casting. The fractograph and microscale distribution of elements in the cracked region were also analyzed. Results revealed that the cracked surfaces were characterized by slight pits,along with inclusions composed of manganese and silicon oxide distributed along both the sides of the cracks. Fractograph analysis revealed that the crack and smooth dendrite surfaces were oxidized. These phenomena indicate that microcracks on the cast strip surface form at the hightemperature stage of the solidification process during twin-roll casting and rolling. Microcracks were present in each region with pits in the cast strip and extended along the dendrite interface because of the combined effects of phasechange stress,thermal stress,mechanical stress,and fractional crystallization during the solidification process.展开更多
In order to improve the surface quality and properties of AISI 304 stainless steel strip produced with the twinroll strip casting process,the strip was directly cold-rolled. The results show that cold rolling clearly ...In order to improve the surface quality and properties of AISI 304 stainless steel strip produced with the twinroll strip casting process,the strip was directly cold-rolled. The results show that cold rolling clearly improves the surface roughness,microstructure and properties. Residual δ ferrite is greatly decreased, anisotropy becomes less obvious and corrosion resistance is greatly improved. These results demonstrate the feasibility of directly cold-rolled AISI 304 stainless steel strip.展开更多
The tensile equipment of the advanced confocal scanning laser microscope (CSLM) was used to research the high temperature mechanical properties of low carbon silicon-bearing steel by twin-roll strip casting. The res...The tensile equipment of the advanced confocal scanning laser microscope (CSLM) was used to research the high temperature mechanical properties of low carbon silicon-bearing steel by twin-roll strip casting. The results show that, at the strain rate of 0. 000 5 s ^-1, the strip clearly shows signs of brittleness at around 600 ℃ and its plasticity falls considerably between 750 ℃ and 600 ℃. This is because during the transformation from austenite to ferrite, the low strength ferrite at the austenite grain boundaries greatly reduces the steel' s high temperature plasticity. The subsequent strip coiling process should be controlled at less than the brittle temperature of approximately 600 ℃, so cracks at the coiling stage can be prevented.展开更多
In the twin-roll strip casting process,molten steel solidifies by losing heat through its interface with the casting rollers.The heat extraction along this interface has an effect on the quality of the strips and shou...In the twin-roll strip casting process,molten steel solidifies by losing heat through its interface with the casting rollers.The heat extraction along this interface has an effect on the quality of the strips and should be affected by coating,rolls’material,and cooling water flow rate.It is necessary to understand the effect of these casting parameters on the solidification structure of twin-roll strip casting.A three-dimensional computational domain is set up to simulate the solidification process of molten steel and heat exchange between steel strip/air,coating,rolls,and cooling water in the channel of roll sleeves.The effect of the cooling water intensity and flow intensity of molten steel in the pool on the solidification structures is studied during the thermal cycle of rolls in the twin-roll strip casting.These predicted results are helpful to optimize casting parameters and improve the strip quality in the twin-roll strip casting process.展开更多
基金supported by the National Natural Science Foundation of China(52071065)National Key Research and Development Program of China(2016YFB0301201)the Fundamental Research Funds for the Central Universities(N160713001).
文摘As a near-net-shape technology,the twin-roll strip casting(TRC)process can be considered to apply to the fabrication of TiAl alloy sheets.However,the control of the grain distribution is very important in strip casting because the mechanical properties of strips are directly determined by the solidification microstructure.A three-dimensional(3D)cellular automation finite-element(CAFE)model based on ProCAST software was established to simulate the solidification microstructure of Ti-43Al alloy.Then,the influence of casting temperature and the maximum nucleation density(nmax)on the solidification microstructure was investigated in detail.The simulation results provide a good explanation and prediction for the solidification microstructure in the molten pool before leaving the kissing point.Experimental and simulated microstructure show the common texture<001>orientation in the columnar grains zone.Finally,the microstructure evolution of the Ti-43Al alloy was analyzed and the solidification phase transformation path during the TSC process was determined,i.e.,L→L+β→β→β+α→α+γ+β/B2 phase under a faster cooling rate and L→L+β→β→β+α→γ+lamellar(α_(2)+γ)+β/B2 phase under a slower cooling rate.
文摘The temperature field of stainless steel during twin-roll strip casting was simulated by experiment and a finite element (FE) model. By comparing the measured result with the simulated values, it is found that they fit close to each other, which indicates this FE model is effective. Based on this model, the effects of roll gap (t) and roll radius (R) on solidification were simulated. The simulated results give the relationship between t or R and the position of the freezing point. The larger the t is and the smaller the R is, the closer the position of the freezing point is to the exit.
基金ItemSponsored by Provincial Natural Science Foundation of Inner Mongolia of China (200408020715)
文摘Twin-roll strip casting is regarded as a prospective technology of near net shape continuous casting. The fluid flow field and level fluctuation in the pool have a strong influence not only on composition and temperature homogeneity of pool, but also on the strip quality. A 1 : 1 water model of a twin-roll strip caster was set up based on the criteria of Froude number and Reynold number similarity. The level fluctuation was measured. The influence of pool depth, casting speed and feeding system configuration on level fluctuation in the pool was studied. The experimental results provided a basis for the optimization of feeding system and process parameters.
基金The authors thank the financial support by the National Natural Science Foundation of China (No. 50474016).
文摘In twin-roll strip casting process, metal flow and temperature distribution in the molten pool directly affect the stability of the process and the quality of products. In this paper, a 3D coupled thermal-flow fenite element modeling (FEM) simulation for twin-roll strip casting of stainless steel was performed. Influences of the pouring temperature and casting speed on the temperature fields were obtained from the numerical simulation. The micro-segregation of the solutes during the strip casting process of stainless steel was also simulated. A developed micro-segregation model was used to calculate the micro-segregation of solutes in twin-roll casting of stainless steel. The relationship between the solidus fraction in solidification and temperature was given, which was used to determine the LIT (liquid impermeable temperature), ZST (zero strength temperature) and ZDT (zero ductility temperature) in the period of non-equilibrium solidification. The effect of temperature on the micro-segregation was discussed. According to the computational results, the solidification completion temperature in the twin-roll strip casting of stainless steel was then determined, which can provide a basis for controlling the location of solidification completion temperature and analysing the crack of the casting strip.
基金supported by National Key Research Development Planning Project of China (2004CB619108).
文摘Coupled turbulent flow, temperature fields of the twin-roll casting strip process were simulated by three-dimensional finite element method. Based on the heat balance calculation and using inverse methods between the simulations and real experiments, the relational models among casting speed, location, and coefficient of heat transfer between molten metal and rolls in different regions are given. In the simulation, the calculated surface temperatures are in good agreement with the measured values. An on-line model of kiss point is derived by simulations and the geometry of molten pool, corresponding control strategy is also proposed.
基金Item Sponsored by National Natural Science Foundation of China(59995440)State Key Fundamental Research Project of China(G2000067208-4)
文摘An intelligent fuzzy-PID controller consisting of fuzzy logic controller and PID controller was developed to control the molten steel level of twin-roll strip caster.Additionally,a feedforward differential PID controller was used for stopper position control in order to avoid differential kick.It is proved by simulation that the proposed intelligent controller is able to obtain zero steady state error asymptotically and the control system is robust due to its fuggy behavior of the controller.
文摘Body-fitted coordinate transformation equation was deduced and used to generate the body-fitted grids of molten pool for twin-roll strip casting.The orthogonality of the grids on the boundary was modified by adjusting source item.The energy equation and the boundary conditions were transformed from physical space to computational space.The velocity field model proposed by Hirohiko Takuda was used to calculate the temperature field of molten steel,and the influence of technical factors was also discussed.
基金supported by the National Natural Science Foundation of China(No.50434040)
文摘Mathematical model of solute [C] distribution in twin-roll strip casting process has been setup successfully with Calcosoft for the first time. Simulation result shows that in the center of the molten steel pool between the two rolls there is a vortex flow, which is a solute enriched area. But the highest solute concentration position is at the solidification front of the columnar grain zone near the cooling roll surface. Another solute enriched position is in the back flow above the nip point. Combined with the formation mechanism of microstruoture in final as cast strip, analysis shows that solute enriched area is in the transitional area between columnar and equiaxed grain zone.
文摘In twin-roll strip casting process,transport phenomena of fluid in the molten pool directly affect the process stability and the quality of products.In order to elucidate the fundamental transport phenomena in twin-roll casting,a commercial software called ProCAST was employed to simulate the transient fluid flow and level profile behaviors during the early stage of the process in this study.The coupled set of governing differential equations for mass,momentum and energy balance were solved with the finite element method and the transient free surface problem was treated with a volume of fluids(VOF) approach.The effect of different delivery systems configuration on flow pattern,level profile in the pool was studied and analyzed in this paper. The new wedge metal delivery systems have been optimized for the twin-roll strip caster.It was shown that new type metal delivery systems had a preferable effect on the uniform distribution of fluid and level fluctuation in the pool.The simulation results also provide a valuable basis for the optimization of delivery system and process parameters during the initial pouring stage.
基金This work was financially supported by the National Natural Science Foundation of China (No.50434040).
文摘The shape, type, content, and dimension of nonmetallic inclusions in SUS304 strip produced by twin-roll strip casting were studied using scanning electron microscopy (SEM). The results show that the inclusions are mainly spherical Al2O3 and complex oxides composed of MnO, Al2O3 , and SiO2. The percentage of fine oxides smaller than 3 μm reaches up to 51.8%. The theoretical calculations show that fine oxides have precipitated during solidification. Therefore, it is concluded that during twin-roll strip casting, because of high cooling rate, the size of inclusions precipitated during solidification decreases, and the amount increases.
文摘In the twin-roll strip casting process, hot cast strips can be broken or tom if the casting speed does not match the rolling speed. Usually, a certain length of hot steel strip is hung freely between the caster and rolling mill to deal with the effect of this speed difference. In this paper,the freely hanging hot steel strip is referred to as the free loop of hot steel strip. Accurately measuring and controlling the height of this free loop is the key factor in maintaining a stable casting operation. Several methods for measuring the loop height of a steel strip are discussed and a method for accurately measuring and controlling the free loop height of hot steel strip is presented. Based on the results of the casting loop quantity change curve, this control method is confirmed to be effective and able to meet the requirements of continuous casting strip production.
基金Item Sponsored by National Natural Science Foundation(59995440)
文摘The first micro-segregation under conditions of twin roll strip casting was simulated.The relationship between the temperature and solid fraction in the mushy zone was given.The temperatures such as ZDT,LIT were got from this simulation.Then using the turbulent model,the flow field and thermal field in the pool of twin-roll strip caster was simulated.The speed and temperature at different casting speed was given,and the results were also explained.By these two simulations,the appropriate casting speed can be found.These simulations can provide effective data for controlling the twin-roll strip casting process.
基金Project(51504060) supported by the National Natural Science Foundation of ChinaProjects(2016YFB0301201,2016YFB0300603) supported by the National Key Research and Development Program of ChinaProject(N160713001) supported by the Fundamental Research Funds for the Central Universities,China
文摘To shorten the fabrication process of difficult-to-form TiAl sheets, twin-roll strip casting and microstructural control were investigated in Ti-43Al alloy. A crack-free sheet with dimensions of 1000 mm × 110 mm × 2 mm was obtained. The microstructure of stip casting sheets and heat treatments was systematically studied. The macrostructure consisted of columnar crystals extending inward and centrally located equiaxed crystals with severe Al segregation were observed along the thickness direction, due to the symmetrical solidification process and decreasing cooling rates. The strip casting alloy was characterized by fine duplex microstructure with a grain spacing of 20-30 μm and a lamellar spacing of 10-20 nm. Furthermore, multiple microstructures of near gamma, nearly lamellar and fully lamellar were obtained through heat treatment process with significantly improved homogeneity of the microstructure.
基金National Natural Science Foundation of China(Grant No.51374184)Hebei Provincial National Natural Science Foundation of China(Grant No.E2013203342)
文摘During the oscillating twin?roll strip casting process, the quality of final products is directly influenced by the flow field distribution of molten metal in the pool. The variation in the flow field is caused by oscillating roller benefits, for homogeneous distribution of strip impurity, and decreasing the grain size. Thus, the quality of the strip could be improved. A numerical model was developed using the multiphase flow technology, coupled with heat transfer, fluid flow, solidification, and oscillation. Furthermore, a transient algorithm was adopted for simulating the oscillating twin?roll strip casting process of AlSi9Cu3 and 3104 aluminum alloy. This paper focuses on the flow distribution in the pool, in comparison with the traditional vertical twin?roll strip casting process, while the amplitude or frequency is chang?ing with the definite value of casting velocity, roller diameter, nozzle angle, and the strip thickness. Consequently, the conclusions were experimentally validated by oscillating twin?roll 3104 aluminum alloy strip casting. Vibrating casting technology can change the flow field in the pool by vibration, which can improve the quality of the strip core.
文摘Twin-roll strip casting and rolling is a typical near-net-shape steel manufacturing process.The twin-roll strip casting and rolling of low-carbon steel strips has made a number of breakthroughs and achieved significant results during the past 20 years.Baosteel has been paying close attention to the development of this technology and set up a research and development project focused on its industrialization in 2001.The Ningbosteel-Baosteel strip casting industrialization demo project(NBS),which was launched in 2016,marks the strip-casting technology(registered as Baostrip) developed by Baosteel as having reached an advanced international level after 15 years of effort.This paper summarizes the results obtained in the industrialized demonstration plant and considers the future development of strip casting and rolling.
文摘Reducing wear on a side dam can prolong the casting operation life of a twin-roll strip casting process,thus reducing production cost and improving casting stability.To lengthen the service life of the side dam,it is necessary to understand the wear performance of the side dam material.To investigate the wear behavior mechanism of the side dam,in this study,the UMT-2 friction and wear tester was used to determine the relationship between the wear rate of the side-dam material and various parameters.Based on the roughness of the contact area between the side dam and the end of the casting rolls as well as on the amount of deformation of the side dam,which was derived using a thermal-deformation simulation model,the reasons for the uneven wear of the side dam were obtained.
基金funded by Shanghai Engineering Research Center of Strip Casting and Rolling(No.11DZ2282300)
文摘In this study,morphological and microstructural analyses were conducted on net-shaped microcracks appearing on the surface of low-carbon steel manufactured via twin-roll strip casting. The fractograph and microscale distribution of elements in the cracked region were also analyzed. Results revealed that the cracked surfaces were characterized by slight pits,along with inclusions composed of manganese and silicon oxide distributed along both the sides of the cracks. Fractograph analysis revealed that the crack and smooth dendrite surfaces were oxidized. These phenomena indicate that microcracks on the cast strip surface form at the hightemperature stage of the solidification process during twin-roll casting and rolling. Microcracks were present in each region with pits in the cast strip and extended along the dendrite interface because of the combined effects of phasechange stress,thermal stress,mechanical stress,and fractional crystallization during the solidification process.
文摘In order to improve the surface quality and properties of AISI 304 stainless steel strip produced with the twinroll strip casting process,the strip was directly cold-rolled. The results show that cold rolling clearly improves the surface roughness,microstructure and properties. Residual δ ferrite is greatly decreased, anisotropy becomes less obvious and corrosion resistance is greatly improved. These results demonstrate the feasibility of directly cold-rolled AISI 304 stainless steel strip.
文摘The tensile equipment of the advanced confocal scanning laser microscope (CSLM) was used to research the high temperature mechanical properties of low carbon silicon-bearing steel by twin-roll strip casting. The results show that, at the strain rate of 0. 000 5 s ^-1, the strip clearly shows signs of brittleness at around 600 ℃ and its plasticity falls considerably between 750 ℃ and 600 ℃. This is because during the transformation from austenite to ferrite, the low strength ferrite at the austenite grain boundaries greatly reduces the steel' s high temperature plasticity. The subsequent strip coiling process should be controlled at less than the brittle temperature of approximately 600 ℃, so cracks at the coiling stage can be prevented.
基金supportedby Innovation Program of Shanghai Municipal Education Commission (No.2019-01-07-00-09-E00024).
文摘In the twin-roll strip casting process,molten steel solidifies by losing heat through its interface with the casting rollers.The heat extraction along this interface has an effect on the quality of the strips and should be affected by coating,rolls’material,and cooling water flow rate.It is necessary to understand the effect of these casting parameters on the solidification structure of twin-roll strip casting.A three-dimensional computational domain is set up to simulate the solidification process of molten steel and heat exchange between steel strip/air,coating,rolls,and cooling water in the channel of roll sleeves.The effect of the cooling water intensity and flow intensity of molten steel in the pool on the solidification structures is studied during the thermal cycle of rolls in the twin-roll strip casting.These predicted results are helpful to optimize casting parameters and improve the strip quality in the twin-roll strip casting process.