Strength theory is the basic theory for calculating and designing the strength of engineering materials in civil,hydraulic,mechanical,aerospace,military,and other engineering disciplines.Therefore,the comprehensive st...Strength theory is the basic theory for calculating and designing the strength of engineering materials in civil,hydraulic,mechanical,aerospace,military,and other engineering disciplines.Therefore,the comprehensive study of the generalized nonlinear strength theory(GNST)of geomaterials has significance for the construction of engineering rock strength.This paper reviews the GNST of geomaterials to demonstrate the research status of nonlinear strength characteristics of geomaterials under complex stress paths.First,it systematically summarizes the research progress of GNST(classical and empirical criteria).Then,the latest research the authors conducted over the past five years on the GNST is introduced,and a generalized three-dimensional(3D)nonlinear Hoek‒Brown(HB)criterion(NGHB criterion)is proposed for practical applications.This criterion can be degenerated into the existing three modified HB criteria and has a better prediction performance.The strength prediction errors for six rocks and two in-situ rock masses are 2.0724%-3.5091%and 1.0144%-3.2321%,respectively.Finally,the development and outlook of the GNST are expounded,and a new topic about the building strength index of rock mass and determining the strength of in-situ engineering rock mass is proposed.The summarization of the GNST provides theoretical traceability and optimization for constructing in-situ engineering rock mass strength.展开更多
Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-in...Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed.展开更多
Based on strength reduction theory,the stability numbers of shallow tunnels were investigated within the framework of upper and lower bound theorems of limit analysis. Stability solutions taking into account of water ...Based on strength reduction theory,the stability numbers of shallow tunnels were investigated within the framework of upper and lower bound theorems of limit analysis. Stability solutions taking into account of water seepage were presented and compared with those without considering seepage. The comparisons indicate that the maximum difference does not exceed 3.7%,which proves the present method credible. The results show that stability numbers of shallow tunnels considering seepage are much less than those without considering seepage,and that the difference of stability numbers between considering seepage and without considering seepage increase with increasing the depth ratio. The stability numbers decrease with increasing permeability coefficient and groundwater depth. Seepage has significant effects on the stability numbers of shallow tunnels.展开更多
The concepts of rock strength intervals are presented in this work, furthermore, central values of intervals and their corresponding credibility are provided using two-case study based on blind data theory and fuzzy i...The concepts of rock strength intervals are presented in this work, furthermore, central values of intervals and their corresponding credibility are provided using two-case study based on blind data theory and fuzzy interval estimation. 60 granite specimens are first tested, the compressive strength interval and tensile strength interval are [ 103.68, 219.6 l ] and [7.53, 11,86] MPa, while the tested mean values of compressive strength and tensile strength are 152.86 and 10.14 MPa, the credibilities are less than 58.4% and around 70.4%, respectively, the credibility of shear strength is between 40% and 60%. Then 70 other rock specimens are designed and tested, the similar conclusions can be reached. The results show that the conventional definite values are the particular values within the intervals, and the credibility of them often fails to reach the high-precision engineering requirement. The results demonstrate the feasibility and application potential of this proposed algorithm for the engineering practice. The references for engineering value selection of rock strength under different credibility or according to frequency distribution of central values are provided to increase the reliability and precision of calculation.展开更多
This study aims to introduce an appropriate analytical method for asphalt pavement based upon unified strength theory (UST). The traditional maximum shear stress strength theory (MSST) cannot describe the marked d...This study aims to introduce an appropriate analytical method for asphalt pavement based upon unified strength theory (UST). The traditional maximum shear stress strength theory (MSST) cannot describe the marked difference between tension strength and compressive strength or variable intermediate principal stress, which significantly affects the geotechnical materials. Our studies try to find a new asphalt pavement failure criterion that considers the influence of both tension-compression strength ratio and intermediate principal stress of asphalt mixture. In order to select a suitable theory on pavement material, the UST is introduced and compared with the traditional theory. Results show that the tension-compression strength ratio of asphalt mixture, which is used as a material parameter, dramatically affects the stress and stress distribution law in pavement; the pavement stress level increases dramatically after considering the intermediate principal stresses. Therefore, the UST which considers both tension-compression strength ratio and intermediate principal stress is more in line with the material characteristics of asvhalt pavement.展开更多
With applied dislocation theory,the effects of shear and normal stresses on the slide and climb motions at the same section of a crystal were analyzed.And,based on the synergetic effect of both normal and shear strain...With applied dislocation theory,the effects of shear and normal stresses on the slide and climb motions at the same section of a crystal were analyzed.And,based on the synergetic effect of both normal and shear strain specific energies,the concept of the total equivalent strain specific energy(TESSE)at an oblique section and a new strength theory named as limiting strain energy strength theory(LSEST)were proposed.As for isotropic materials,the plastic yielding or brittle fracture of under uniaxial stress state would occur when the maximum TESSE reached the strain specific energy,also the expressions on the equivalent stresses and a function of failure of the LSEST under different principal stress states were obtained.Relationship formulas among the tensile, compressive and shear yield strengths for plastic metals were derived.These theoretical predictions,according to the LSEST,were consistent very well with experiment results of tensile,compressive and torsion tests of three plastic metals and other experiment results from open literatures.This novel LSEST might also help for strength calculation of other materials.展开更多
This paper mainly studies on the biaxial tensile strength and its calculative formula of a special made concrete. According to the Hill theory and the uniaxial tensile experiment results, the expression of the concret...This paper mainly studies on the biaxial tensile strength and its calculative formula of a special made concrete. According to the Hill theory and the uniaxial tensile experiment results, the expression of the concrete biaxial tensile strength is deduced, which is then combined with experiment data and checked. The result shows: the biaxial tensile strength of this kind of concrete is about 15%-30% lower than its uniaxial tensile strength, and the calculative value is basically consistent with the experiment value, with less than 11% difference. This kind of biaxial tension weakening effect is very important to the structure designs of concrete road. The author suggests further research.展开更多
A new kind offl biomedical titanium alloy, Ti-35Nb-4Sn-6Mo-9Zr, composed of non-toxic elements Nb, Mo, Zr and Sn with lower elastic modulus and higher strength was designed based on d-electron alloy design theory and ...A new kind offl biomedical titanium alloy, Ti-35Nb-4Sn-6Mo-9Zr, composed of non-toxic elements Nb, Mo, Zr and Sn with lower elastic modulus and higher strength was designed based on d-electron alloy design theory and JMatPro software using orthogonal experiment. The microstructure and basic mechanical properties of designed alloy were investigated. The results show that the alloy is composed of single fl equiaxed grains after solution treatment at 800 ~C. Compared with Ti-6A1-4V, the mechanical properties of the designed alloy are more excellent: E=65 GPa, σb=834 MPa, σ0.2=802 MPa, and σ=11%, which is expected to become a promising new type implanted material. The research approach adopted can reduce the experimental time and cost effectively, and get the ideal experimental results.展开更多
A new elasto-plastic constitutive model is presented in the framework of plasticity theory. The strength characteristics of a diatomaceous soft rock is investigated. The friction angle and cohesion of soft rock are mo...A new elasto-plastic constitutive model is presented in the framework of plasticity theory. The strength characteristics of a diatomaceous soft rock is investigated. The friction angle and cohesion of soft rock are mobilized as a function of plastic strain. A hyperbolic hardening function for the mobilized friction and a mixed parabolic and exponential equation for the mobilized cohesion are proposed. In view of the unified strength theory and the mobilizations of strength components, a yield function is given. A plastic potential function is determined by using the non-associated plastic flow rule. An elasto-plastic constitutive model is developed and verified. The results indicate that the proposed model can predict the behavior of soft rock accurately. The advantages of the proposed constitutive model are analyzed. The evidences support that the proposed constitutive model is a mixed hardening/softening model. A hump hardening/softening function for mobilized friction is extended to a more generalized condition.展开更多
Based on the dynamic loading(1-100 s^(-1)) experiments under different temperatures(223-298 K) and stress states, uniaxial and biaxial strength criterion of a Hydroxyl-terminated polybutadiene(HTPB)based composite sol...Based on the dynamic loading(1-100 s^(-1)) experiments under different temperatures(223-298 K) and stress states, uniaxial and biaxial strength criterion of a Hydroxyl-terminated polybutadiene(HTPB)based composite solid propellant were further investigated. These experiments were conducted through the use of a new uniaxial INSTRON testing machine, different new designed gripping apparatus and samples with different configurations. According to the test results, dynamic uniaxial tensile strength criterion of the propellant was directly constructed with the master curve of the uniaxial maximum tensile stress. Whereas, a new method was proposed to determine the dynamic uniaxial compressive strength of the propellant in this study. Then uniaxial compressive strength criterion of the propellant was constructed based on the related master curve. Moreover, it found that the uniaxial tensilecompressive strength ratio of the propellant is more sensitive to loading temperature under the test conditions. The value of this parameter is about 0.4 at room temperature, and it reduces to 0.2-0.3 at low temperatures. Finally, the theoretical biaxial strength criterion of HTPB propellant under dynamic loading was constructed with the unified strength theory, the uniaxial strength and the typical biaxial tensile strength. In addition, the theoretical limit lines of the principal stress plane for the propellant under dynamic loading at different temperatures were further plotted, and the scope of the limit line increases with decreasing temperature.展开更多
The Weakest Bound Electron Potential Model theory is used to calculate transition probability-values and oscillator strength-values for individual lines of Sc(Ⅲ) and Y(Ⅲ). In this method, by solving the SchrSdin...The Weakest Bound Electron Potential Model theory is used to calculate transition probability-values and oscillator strength-values for individual lines of Sc(Ⅲ) and Y(Ⅲ). In this method, by solving the SchrSdinger equation of the weakest bound electron, the expressions of energy eigenvalue and the radial function can be obtained. And a coupled equation is used to determine the parameters which are needed in the calculations. The ob- tained results of Sc(III) from this work agree very well with the accepted values taken from the National Institute of Standards and Technoligy (NIST) data base, most deviations are within the accepted level. For Y(Ⅲ) there are no accepted values reported by the NIST data base. So we compared our results of Y(Ⅲ) with other theoretical results, good agreement is also obtained.展开更多
In order to study the mechanism of water inrush from a concealed, confined karst cave, we established a fluid–solid coupling model of water inrush from a concealed karst cave ahead of a roadway and a strength reducti...In order to study the mechanism of water inrush from a concealed, confined karst cave, we established a fluid–solid coupling model of water inrush from a concealed karst cave ahead of a roadway and a strength reduction method in a rock pillar for preventing water inrush based on catastrophic theory. Fluid–solid coupling effects and safety margins in a rock pillar were studied. Analysis shows that rock pillar instability, exerted by disturbance stress and seepage stress, is the process of rock pillar catastrophic destabilization induced by nonlinear extension of plastic zones in the rock pillar. Seepage flow emerges in the rock pillar for preventing water inrush, accompanied by mechanical instability of the rock pillar. Taking the accident of a confined karst cave water-inrush of Qiyi Mine as an example, by studying the safety factor of the rock pillar and the relationship between karst cave water pressure and thickness of the rock pillar,it is proposed that rock pillar thickness with a safety factor equal to 1.5 is regarded as the calculated safety thickness of the rock pillar, which should be equal to the sum of the blasthole depth, blasting disturbance depth and the calculated safety thickness of the rock pillar. The cause of the karst water inrush at Qiyi Mine is that the rock pillar was so small that it did not possess a safety margin. Combining fluid–solid coupling theory, catastrophic theory and strength reduction method to study the nonlinear mechanical response of complicated rock engineering, new avenues for quantitative analysis of rock engineering stability evaluation should be forthcoming.展开更多
The paper describes assessment of the performance of cement-poor concretes on the basis of packing theory. The concretes are intended for sealing segments of deep boreholes and have a small amount of cement for minimi...The paper describes assessment of the performance of cement-poor concretes on the basis of packing theory. The concretes are intended for sealing segments of deep boreholes and have a small amount of cement for minimizing the mutual chemical impact on the contacting clay seals. The composition is examined by application of packing theory with respect to the cement/aggregate ratio and the gradation of the aggregate material which is crushed quartzite for providing high internal friction after maturation, as well as to talc added for fluidity and to the small amount of cement. Low porosity and micro-structural stability must be guaranteed for very long periods of time. The study exemplifies how packing theory assist designers in selecting optimal proportions of the various components. Optimum particle packing implies minimizing the porosity and thereby reducing the amount of cement paste needed to fill the voids between the aggregate particles. The use of talc as inorganic super-plasticizer since ordinary organic additives for reaching high fluidity at casting are undesirable, and since talc reacts with cement and provides high strength in along-term perspective.展开更多
In the past 20 years,recycled aggregate concrete(RAC),as a type of low-carbon concrete,has become a worldwide focus of research.However,the design methodology for RAC structural components remains a challenge.Conseque...In the past 20 years,recycled aggregate concrete(RAC),as a type of low-carbon concrete,has become a worldwide focus of research.However,the design methodology for RAC structural components remains a challenge.Consequently,demands for a unified design of natural aggregate concrete(NAC)and RAC components have been presented.Accordingly,this study analyses the necessity of a unified design theory and provides an in-depth demonstration of the strength determination,compressive constitutive relationship,and design method of concrete components.The coefficient of variation of RAC strength is found to be generally higher than that of NAC strength.The compressive and tensile strengths of RAC can be defined and determined using the same method as that used for NAC.The uniaxial compressive constitutive relationship between NAC and RAC has a unified mathematical expression.However,the elastic modulus of RAC decreases,and its brittleness exhibits an increasing trend compared with that of NAC.Finally,to unify the design formulae of RAC and NAC components for bearing capacity,modification factors for RAC components are proposed considering safety and reliability.Additionally,the feasibility of the proposed unified time-dependent design theory is demonstrated in terms of conceptual design and structural measures considering the effects of strength degradation and reinforcement corrosion.It is believed that this study enriches and develops the basic theory of concrete structures.展开更多
Gold powder is compressed non-hydrostatically up to 127 GPa in a diamond anvil cell (DAC), and its angle dispersive X-ray diffraction patterns are recorded. The compressive strength of gold is investigated in a fram...Gold powder is compressed non-hydrostatically up to 127 GPa in a diamond anvil cell (DAC), and its angle dispersive X-ray diffraction patterns are recorded. The compressive strength of gold is investigated in a framework of the lattice strain theory by the line shift analysis. The result shows that the compressive strength of gold increases continuously with the pressure up to 106 GPa and reaches 2.8 GPa at the highest experimental pressure (127 GPa) achieved in our study. This result is in good agreement with our previous experimental result in a relevant pressure range. The compressive strength of gold may be the major source of the error in the equation-of-state measurement in various pressure environments.展开更多
A virtual character is a design of a fictitious creature with distinctive characteristics created by people,and Disney virtual characters are those Intellectual Property(IP)images that appeared in Disneyland and Disne...A virtual character is a design of a fictitious creature with distinctive characteristics created by people,and Disney virtual characters are those Intellectual Property(IP)images that appeared in Disneyland and Disney movies.This investigation aimed to explore why many younger females are keen to spend money on Disney virtual characters.This paper adopted the Marketing Mix Theory strategy(product,price,placement,and promotion(4P)),and the SWOT analysis method has been utilized.This paper investigated the relationship between the 4Ps and consumers’purchasing intentions,and it turned out that unique design and effective promotion in this Disney case would promote consumers’purchase intention,while the higher price and less accessible placements affected their purchase intentions.Thus,the high price and limited places somewhat inhibit customers’desire to buy;due to the attractiveness of the product itself and the promotion on the internet,the target consumers are still willing to consume.展开更多
Cementitious concrete is a composite mixture of coarse and fine aggregates,and other additives cemented into a C-S-H matrix.Practically,its strength may be determined by performing compression and tensile tests to spe...Cementitious concrete is a composite mixture of coarse and fine aggregates,and other additives cemented into a C-S-H matrix.Practically,its strength may be determined by performing compression and tensile tests to specimens with certain sizes and shapes.In order to understand and enhance its strength,it becomes natural to seek the quantitative connections between fractured concrete surfaces and the strength of concrete across the scales of coarse,fine aggregates,and the CSH matrix with nano-scale structures.A multiscale theory across from the size of a test specimen down to the nano-scale of the known C-S-H matrix is proposed here to explain the concrete strength in terms of several physical scales associated with the concrete constituents based on energy conservation principle and fractal characterization of fractured concrete surfaces.When examined against experimental observations and test results,the proposed theory yields satisfactory estimation on nano-level molecular bonding,showing its effectiveness and importance for advancing our understanding of concrete strength.Additionally,the size effect of the testing concrete strength is derived from the proposed theory without making extra physical assumptions.展开更多
基金This research was financially supported by the National Natural Science Foundation of China(Nos.51934003,52334004)Yunnan Innovation Team(No.202105AE 160023)+2 种基金Major Science and Technology Special Project of Yunnan Province,China(No.202102AF080001)Yunnan Major Scientific and Technological Projects,China(No.202202AG050014)Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area,MNR,and Yunnan Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area.
文摘Strength theory is the basic theory for calculating and designing the strength of engineering materials in civil,hydraulic,mechanical,aerospace,military,and other engineering disciplines.Therefore,the comprehensive study of the generalized nonlinear strength theory(GNST)of geomaterials has significance for the construction of engineering rock strength.This paper reviews the GNST of geomaterials to demonstrate the research status of nonlinear strength characteristics of geomaterials under complex stress paths.First,it systematically summarizes the research progress of GNST(classical and empirical criteria).Then,the latest research the authors conducted over the past five years on the GNST is introduced,and a generalized three-dimensional(3D)nonlinear Hoek‒Brown(HB)criterion(NGHB criterion)is proposed for practical applications.This criterion can be degenerated into the existing three modified HB criteria and has a better prediction performance.The strength prediction errors for six rocks and two in-situ rock masses are 2.0724%-3.5091%and 1.0144%-3.2321%,respectively.Finally,the development and outlook of the GNST are expounded,and a new topic about the building strength index of rock mass and determining the strength of in-situ engineering rock mass is proposed.The summarization of the GNST provides theoretical traceability and optimization for constructing in-situ engineering rock mass strength.
基金Project(2021JJ10063)supported by the Natural Science Foundation of Hunan Province,ChinaProject(202115)supported by the Science and Technology Progress and Innovation Project of Hunan Provincial Department of Transportation,ChinaProject(2021K094-Z)supported by the Science and Technology Research and Development Program of China Railway Guangzhou Group Co.,Ltd。
文摘Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed.
基金Project(200550) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of ChinaProject(09JJ1008) supported by Hunan Provincial Natural Science Foundation of ChinaProject(200631878557) supported by West Traffic of Science and Technology of China
文摘Based on strength reduction theory,the stability numbers of shallow tunnels were investigated within the framework of upper and lower bound theorems of limit analysis. Stability solutions taking into account of water seepage were presented and compared with those without considering seepage. The comparisons indicate that the maximum difference does not exceed 3.7%,which proves the present method credible. The results show that stability numbers of shallow tunnels considering seepage are much less than those without considering seepage,and that the difference of stability numbers between considering seepage and without considering seepage increase with increasing the depth ratio. The stability numbers decrease with increasing permeability coefficient and groundwater depth. Seepage has significant effects on the stability numbers of shallow tunnels.
基金Project(2011DA105287-MS201605)supported by the State Key Laboratory of Coal Mine Disaster Dynamics and Control,ChinaProject(51374242)supported by the National Natural Science Foundation of ChinaProject(106112016CDJXY240004)supported by the Fundamental Research Funds for the Central Universities,China
文摘The concepts of rock strength intervals are presented in this work, furthermore, central values of intervals and their corresponding credibility are provided using two-case study based on blind data theory and fuzzy interval estimation. 60 granite specimens are first tested, the compressive strength interval and tensile strength interval are [ 103.68, 219.6 l ] and [7.53, 11,86] MPa, while the tested mean values of compressive strength and tensile strength are 152.86 and 10.14 MPa, the credibilities are less than 58.4% and around 70.4%, respectively, the credibility of shear strength is between 40% and 60%. Then 70 other rock specimens are designed and tested, the similar conclusions can be reached. The results show that the conventional definite values are the particular values within the intervals, and the credibility of them often fails to reach the high-precision engineering requirement. The results demonstrate the feasibility and application potential of this proposed algorithm for the engineering practice. The references for engineering value selection of rock strength under different credibility or according to frequency distribution of central values are provided to increase the reliability and precision of calculation.
基金Funded by the National Natural Science Foundation of China(No.51178348)
文摘This study aims to introduce an appropriate analytical method for asphalt pavement based upon unified strength theory (UST). The traditional maximum shear stress strength theory (MSST) cannot describe the marked difference between tension strength and compressive strength or variable intermediate principal stress, which significantly affects the geotechnical materials. Our studies try to find a new asphalt pavement failure criterion that considers the influence of both tension-compression strength ratio and intermediate principal stress of asphalt mixture. In order to select a suitable theory on pavement material, the UST is introduced and compared with the traditional theory. Results show that the tension-compression strength ratio of asphalt mixture, which is used as a material parameter, dramatically affects the stress and stress distribution law in pavement; the pavement stress level increases dramatically after considering the intermediate principal stresses. Therefore, the UST which considers both tension-compression strength ratio and intermediate principal stress is more in line with the material characteristics of asvhalt pavement.
文摘With applied dislocation theory,the effects of shear and normal stresses on the slide and climb motions at the same section of a crystal were analyzed.And,based on the synergetic effect of both normal and shear strain specific energies,the concept of the total equivalent strain specific energy(TESSE)at an oblique section and a new strength theory named as limiting strain energy strength theory(LSEST)were proposed.As for isotropic materials,the plastic yielding or brittle fracture of under uniaxial stress state would occur when the maximum TESSE reached the strain specific energy,also the expressions on the equivalent stresses and a function of failure of the LSEST under different principal stress states were obtained.Relationship formulas among the tensile, compressive and shear yield strengths for plastic metals were derived.These theoretical predictions,according to the LSEST,were consistent very well with experiment results of tensile,compressive and torsion tests of three plastic metals and other experiment results from open literatures.This novel LSEST might also help for strength calculation of other materials.
文摘This paper mainly studies on the biaxial tensile strength and its calculative formula of a special made concrete. According to the Hill theory and the uniaxial tensile experiment results, the expression of the concrete biaxial tensile strength is deduced, which is then combined with experiment data and checked. The result shows: the biaxial tensile strength of this kind of concrete is about 15%-30% lower than its uniaxial tensile strength, and the calculative value is basically consistent with the experiment value, with less than 11% difference. This kind of biaxial tension weakening effect is very important to the structure designs of concrete road. The author suggests further research.
基金Project(BE2011778)supported by Science and Technology Support Program of Jiangsu Province,ChinaProject(20133069014)supported by Aeronautical Science Foundation of China
文摘A new kind offl biomedical titanium alloy, Ti-35Nb-4Sn-6Mo-9Zr, composed of non-toxic elements Nb, Mo, Zr and Sn with lower elastic modulus and higher strength was designed based on d-electron alloy design theory and JMatPro software using orthogonal experiment. The microstructure and basic mechanical properties of designed alloy were investigated. The results show that the alloy is composed of single fl equiaxed grains after solution treatment at 800 ~C. Compared with Ti-6A1-4V, the mechanical properties of the designed alloy are more excellent: E=65 GPa, σb=834 MPa, σ0.2=802 MPa, and σ=11%, which is expected to become a promising new type implanted material. The research approach adopted can reduce the experimental time and cost effectively, and get the ideal experimental results.
基金Projects(5127915551009114)supported by the National Natural Science Foundation of ChinaProject(xjj2014127)supported by the Fundamental Research Funds for the Central Universities,China
文摘A new elasto-plastic constitutive model is presented in the framework of plasticity theory. The strength characteristics of a diatomaceous soft rock is investigated. The friction angle and cohesion of soft rock are mobilized as a function of plastic strain. A hyperbolic hardening function for the mobilized friction and a mixed parabolic and exponential equation for the mobilized cohesion are proposed. In view of the unified strength theory and the mobilizations of strength components, a yield function is given. A plastic potential function is determined by using the non-associated plastic flow rule. An elasto-plastic constitutive model is developed and verified. The results indicate that the proposed model can predict the behavior of soft rock accurately. The advantages of the proposed constitutive model are analyzed. The evidences support that the proposed constitutive model is a mixed hardening/softening model. A hump hardening/softening function for mobilized friction is extended to a more generalized condition.
基金financial support of the National 973 Program in China (No. 61338)the National Funds in China (Nos.11772352, 61407200203 and 51328050101)
文摘Based on the dynamic loading(1-100 s^(-1)) experiments under different temperatures(223-298 K) and stress states, uniaxial and biaxial strength criterion of a Hydroxyl-terminated polybutadiene(HTPB)based composite solid propellant were further investigated. These experiments were conducted through the use of a new uniaxial INSTRON testing machine, different new designed gripping apparatus and samples with different configurations. According to the test results, dynamic uniaxial tensile strength criterion of the propellant was directly constructed with the master curve of the uniaxial maximum tensile stress. Whereas, a new method was proposed to determine the dynamic uniaxial compressive strength of the propellant in this study. Then uniaxial compressive strength criterion of the propellant was constructed based on the related master curve. Moreover, it found that the uniaxial tensilecompressive strength ratio of the propellant is more sensitive to loading temperature under the test conditions. The value of this parameter is about 0.4 at room temperature, and it reduces to 0.2-0.3 at low temperatures. Finally, the theoretical biaxial strength criterion of HTPB propellant under dynamic loading was constructed with the unified strength theory, the uniaxial strength and the typical biaxial tensile strength. In addition, the theoretical limit lines of the principal stress plane for the propellant under dynamic loading at different temperatures were further plotted, and the scope of the limit line increases with decreasing temperature.
文摘The Weakest Bound Electron Potential Model theory is used to calculate transition probability-values and oscillator strength-values for individual lines of Sc(Ⅲ) and Y(Ⅲ). In this method, by solving the SchrSdinger equation of the weakest bound electron, the expressions of energy eigenvalue and the radial function can be obtained. And a coupled equation is used to determine the parameters which are needed in the calculations. The ob- tained results of Sc(III) from this work agree very well with the accepted values taken from the National Institute of Standards and Technoligy (NIST) data base, most deviations are within the accepted level. For Y(Ⅲ) there are no accepted values reported by the NIST data base. So we compared our results of Y(Ⅲ) with other theoretical results, good agreement is also obtained.
基金Financial supports for this work, provided by the National Natural Science Foundation of China (No. 51274097)the Scientific Research Fund of Hunan Provincial Education Department of China (No. 13A020)the Open Projects of State Key Laboratory of Coal Resources and Safe Mining, CUMT (No. 13KF03)
文摘In order to study the mechanism of water inrush from a concealed, confined karst cave, we established a fluid–solid coupling model of water inrush from a concealed karst cave ahead of a roadway and a strength reduction method in a rock pillar for preventing water inrush based on catastrophic theory. Fluid–solid coupling effects and safety margins in a rock pillar were studied. Analysis shows that rock pillar instability, exerted by disturbance stress and seepage stress, is the process of rock pillar catastrophic destabilization induced by nonlinear extension of plastic zones in the rock pillar. Seepage flow emerges in the rock pillar for preventing water inrush, accompanied by mechanical instability of the rock pillar. Taking the accident of a confined karst cave water-inrush of Qiyi Mine as an example, by studying the safety factor of the rock pillar and the relationship between karst cave water pressure and thickness of the rock pillar,it is proposed that rock pillar thickness with a safety factor equal to 1.5 is regarded as the calculated safety thickness of the rock pillar, which should be equal to the sum of the blasthole depth, blasting disturbance depth and the calculated safety thickness of the rock pillar. The cause of the karst water inrush at Qiyi Mine is that the rock pillar was so small that it did not possess a safety margin. Combining fluid–solid coupling theory, catastrophic theory and strength reduction method to study the nonlinear mechanical response of complicated rock engineering, new avenues for quantitative analysis of rock engineering stability evaluation should be forthcoming.
文摘The paper describes assessment of the performance of cement-poor concretes on the basis of packing theory. The concretes are intended for sealing segments of deep boreholes and have a small amount of cement for minimizing the mutual chemical impact on the contacting clay seals. The composition is examined by application of packing theory with respect to the cement/aggregate ratio and the gradation of the aggregate material which is crushed quartzite for providing high internal friction after maturation, as well as to talc added for fluidity and to the small amount of cement. Low porosity and micro-structural stability must be guaranteed for very long periods of time. The study exemplifies how packing theory assist designers in selecting optimal proportions of the various components. Optimum particle packing implies minimizing the porosity and thereby reducing the amount of cement paste needed to fill the voids between the aggregate particles. The use of talc as inorganic super-plasticizer since ordinary organic additives for reaching high fluidity at casting are undesirable, and since talc reacts with cement and provides high strength in along-term perspective.
基金the financial support from the Distinguished Young Scholars of China by the National Natural Science Foundation of China(51325802)the National Natural Science Foundation of China(51178340,52078358,and 52008304)。
文摘In the past 20 years,recycled aggregate concrete(RAC),as a type of low-carbon concrete,has become a worldwide focus of research.However,the design methodology for RAC structural components remains a challenge.Consequently,demands for a unified design of natural aggregate concrete(NAC)and RAC components have been presented.Accordingly,this study analyses the necessity of a unified design theory and provides an in-depth demonstration of the strength determination,compressive constitutive relationship,and design method of concrete components.The coefficient of variation of RAC strength is found to be generally higher than that of NAC strength.The compressive and tensile strengths of RAC can be defined and determined using the same method as that used for NAC.The uniaxial compressive constitutive relationship between NAC and RAC has a unified mathematical expression.However,the elastic modulus of RAC decreases,and its brittleness exhibits an increasing trend compared with that of NAC.Finally,to unify the design formulae of RAC and NAC components for bearing capacity,modification factors for RAC components are proposed considering safety and reliability.Additionally,the feasibility of the proposed unified time-dependent design theory is demonstrated in terms of conceptual design and structural measures considering the effects of strength degradation and reinforcement corrosion.It is believed that this study enriches and develops the basic theory of concrete structures.
基金Project supported by the Defense Industrial Technology Development Program (Grant No. B1520110001)the Fund of Key Laboratory of Shock Wave and Detonation Physics of China (Grant No. 9140C6703031002)supported by Chinese Academy of Sciences (Grant Nos. KJCX2-SW-N03 and KJCX2SW-N20)
文摘Gold powder is compressed non-hydrostatically up to 127 GPa in a diamond anvil cell (DAC), and its angle dispersive X-ray diffraction patterns are recorded. The compressive strength of gold is investigated in a framework of the lattice strain theory by the line shift analysis. The result shows that the compressive strength of gold increases continuously with the pressure up to 106 GPa and reaches 2.8 GPa at the highest experimental pressure (127 GPa) achieved in our study. This result is in good agreement with our previous experimental result in a relevant pressure range. The compressive strength of gold may be the major source of the error in the equation-of-state measurement in various pressure environments.
文摘A virtual character is a design of a fictitious creature with distinctive characteristics created by people,and Disney virtual characters are those Intellectual Property(IP)images that appeared in Disneyland and Disney movies.This investigation aimed to explore why many younger females are keen to spend money on Disney virtual characters.This paper adopted the Marketing Mix Theory strategy(product,price,placement,and promotion(4P)),and the SWOT analysis method has been utilized.This paper investigated the relationship between the 4Ps and consumers’purchasing intentions,and it turned out that unique design and effective promotion in this Disney case would promote consumers’purchase intention,while the higher price and less accessible placements affected their purchase intentions.Thus,the high price and limited places somewhat inhibit customers’desire to buy;due to the attractiveness of the product itself and the promotion on the internet,the target consumers are still willing to consume.
文摘Cementitious concrete is a composite mixture of coarse and fine aggregates,and other additives cemented into a C-S-H matrix.Practically,its strength may be determined by performing compression and tensile tests to specimens with certain sizes and shapes.In order to understand and enhance its strength,it becomes natural to seek the quantitative connections between fractured concrete surfaces and the strength of concrete across the scales of coarse,fine aggregates,and the CSH matrix with nano-scale structures.A multiscale theory across from the size of a test specimen down to the nano-scale of the known C-S-H matrix is proposed here to explain the concrete strength in terms of several physical scales associated with the concrete constituents based on energy conservation principle and fractal characterization of fractured concrete surfaces.When examined against experimental observations and test results,the proposed theory yields satisfactory estimation on nano-level molecular bonding,showing its effectiveness and importance for advancing our understanding of concrete strength.Additionally,the size effect of the testing concrete strength is derived from the proposed theory without making extra physical assumptions.