Phylogenetic relations of twining chirality of Dioscorea sp.in China were analyzed based on the genes matK,rbcL and trnL;phylogenetic character of higher-level phylogeny of twining plants was analyzed at a high taxon ...Phylogenetic relations of twining chirality of Dioscorea sp.in China were analyzed based on the genes matK,rbcL and trnL;phylogenetic character of higher-level phylogeny of twining plants was analyzed at a high taxon level based on matK gene.A significant phylogenetic framework of chirality was found:(i)based on matK analysis,right-handed Dioscorea species in China congregate completely to form a monophyly;(ii)rbcL and trnL data sets also supported Chinese right-handed Dioscorea a monophyly,although with ex...展开更多
To improve the grasping power of soft robots,inspired by the scene of intertwined and interdependent vine branches safely clinging to habitats in a violent storm and the phenomenon of large grasping force after being ...To improve the grasping power of soft robots,inspired by the scene of intertwined and interdependent vine branches safely clinging to habitats in a violent storm and the phenomenon of large grasping force after being entangled by aquatic plants,this paper proposes a soft robotic gripper with multi-stem twining.The proposed robotic gripper can realize a larger contact area of surrounding or containing object and more layers of a twining object than the current twining gripping methods.It not only retains the adaptive advantages of twining grasping but also improves the grasping force.First,based on the mechanical characteristics of the multi-stem twining of the gripper,the twining grasping model is developed.Then,the force on the fiber is deduced by using the twining theory,and the axial force of the gripper is analyzed based on the equivalent model of the rubber ring.Finally,the torsion experiments of fibers and the grasping experiments of the gripper are designed and conducted.The torsion experiment of fibers verifies the influence of a different number of fiber ropes and fiber torque on the grasping force,and the grasping experiment reflects the large load of the gripper and the high adaptability and practicability under different tasks.展开更多
To improve the homogeneity and rolling formability of as-cast AZ91 magnesium,the effects of pre-homogenizing treatment on microstructure evolution,deformation mechanism,mechanical properties and tensile fracture morph...To improve the homogeneity and rolling formability of as-cast AZ91 magnesium,the effects of pre-homogenizing treatment on microstructure evolution,deformation mechanism,mechanical properties and tensile fracture morphology of hot-rolled AZ91 magnesium alloy were studied.The results showed that the amount of coarseβ-Mg17Al12 phase decreases dramatically,being distributed along the grain boundaries as small strips after homogenizing.Twining plays a dominant role in the deformation mechanism of AZ91 alloys in the experimental condition,while dynamic recrystallization(DRX)considerably occurred in homogenized-rolled alloys,contributed to microstructure uniformity andβ-Mg17Al12 phase precipitated refinement.The tensile strength of homogenized-rolled AZ91 alloys increases dramatically with elongation declining slightly in contrast to homogenized alloys.The fracture surface of homogenized-rolled specimen exhibits more ductile fracture with the manifestation of a large amount of dimples distributing higher density in matrix,while the micro cracks are prone to initiate around the Mg/Mg17Al12 phase interface and grain boundaries owing to the fragile interface bonding of two phases.展开更多
Compared to cold drawing,dieless drawing has shown great potential for manufacturing biodegradable Mg alloy microtubes due to the large reduction in area acquired in a single pass.However,owing to the local heating an...Compared to cold drawing,dieless drawing has shown great potential for manufacturing biodegradable Mg alloy microtubes due to the large reduction in area acquired in a single pass.However,owing to the local heating and local deformation,the deformation mechanism during dieless drawing is not clear,and thus causing difficulties in controlling the microstructure of dieless drawn tubes.For the purpose of acquiring a desired microstructure.in this study the deformation mechanism of ZM21 Mg alloy tube was clarified by conducting continuous observation of the microstructural evolution during dieless drawing.The results show that both SRX and DRX occurred during dieless drawing.SRX occurred before the plastic deformation to soften dieless drawn tubes.With increase of feeding speed,the deformation mechanism changed accordingly:(1) At the low-speed of 0.02 mm/s,the deformation mechanism was dominated by twin-slip sliding,during which {10-12} tension twins were generated inside grains to accommodate the plastic deformation by changing the crystal orientation.(2) At the intermediate-speed of 2 mm/s,a twin-DRX process related to {10-12} tension twin was observed,which was characterized by the generation of abundant {10-12} tension twins and the evolution of misorientation angle of {10-12} tension twins.Moreover,the transformation from twin-DRX to CDRX can be observed at the late stage of plastic deformation,which was attributed to the inhomogeneous conditions of dieless drawing.(3) At the high-speed of 5 mm/s,a CDRX process was observed,during which grain boundary sliding and grain tilting were observed,in addition to the gradual rotation of subgrains.These results show that during dieless drawing,DRX is not only a temperature-dependent phenomenon,but also influenced by the variation of feeding speed.展开更多
It was found that copper powder after 20h of milling shows the formation of a number of mechanical twins. The observed twins belong to two types: multiple twins and high-order ones.It is suggested that Venables model ...It was found that copper powder after 20h of milling shows the formation of a number of mechanical twins. The observed twins belong to two types: multiple twins and high-order ones.It is suggested that Venables model on mechanical twins in face-center-cubic metals is reasonable in this case. The generation of mechanical twins could be explained as follows:the shear stress (P_(max)) induced by ball milling exceeds the critical shear stress for twinning(τ):the grain size decreases to a critical value below which twinning rather than slip is the preferred mode of deformation as well as the strain rate induced by ball milling is high.展开更多
In order to determine the effect of twine thickness on the size-selectivity of the driftnet used for the yellow croaker, size-selectivity tests were conducted with three different twine thicknesses(monofi lament diame...In order to determine the effect of twine thickness on the size-selectivity of the driftnet used for the yellow croaker, size-selectivity tests were conducted with three different twine thicknesses(monofi lament diameters of 0.279 mm(number's method; No. 3), 0.321 mm(No. 4), and 0.360 mm(No. 5)) of driftnets for the yellow croaker in the seas around Chooja-do, Jeju Islands. The selectivity curve was estimated by using Kitahara's method. In order to determine the physical properties of the twine used in the experimental fi shing nets, we measured the breaking load, elongation, and stiffness under both dry and wet conditions. In terms of physical properties, the thinnest twine(No. 3) had the strongest breaking strength per unit cross-sectional area, along with good elongation and excellent fl exibility. The thickest twine(No. 5) had the lowest fl exibility. In terms of selectivity, the net of No. 3 twine showed the broadest selection range and, thus, a relatively low selectivity compared with the other nets, while the less fl exible net of No. 5 twine showed the narrowest selectivity range and high selectivity. In addition, it was found that a thicker twine resulted in a smaller haul of small fi sh. Therefore, it can be inferred that the thickness of the twine affects the size of the catch and selectivity, and thus the size composition of the catch as well.展开更多
The influence of hot-deformation on the microstructure,crystalline orientation,and texture evolution of Ti6Al4V-5Cu,an antibacterial(α+β)titanium alloy,was investigated.The alloy was deformed using a hot rolling pro...The influence of hot-deformation on the microstructure,crystalline orientation,and texture evolution of Ti6Al4V-5Cu,an antibacterial(α+β)titanium alloy,was investigated.The alloy was deformed using a hot rolling process in 15%,58%,and 73%thickness reduction ratios.It was found that the basal<α→>and pyramidal<c→+α→>type slip planes could be activated in theαphase,which dominated the deformation behavior of Ti6Al4V-5Cu alloy.Under various deformation conditions,the alloy revealed different microstructure features.On the 15%hot rolled alloy,the deformation was performed by the breakdown of priorβgrain boundaries(GBβ),which was attributed to the formation of coarseαgrains,rotated nearly 45°with respect to the transversal and rolling directions.The presence of different sub-structure geometries made the interior grain size distribution heterogeneous.On the 58%hot rolled alloy,Ti2Cu intermetallic compound was found at theα/βinterface.High-resolution transmission electron microscopy investigation showed the occurrence of grain rotation in different crystallographic directions.At room temperature,the percentage elongation(El)of the alloy reached 23.15%on the 58%hot rolled sample.On the 73%deformed alloy,refined and randomly oriented characteristics of grains were obtained due to higher thickness reduction,which resulted from the segregation of very fine granules.The influence of grain rotation during a hot rolling process revealed that theα/βtexture fiber separation angle to maintain the Burger orientation relationship of{0001}α//{110}βplanes decreased with increase of the thickness reduction ratio when Ti6Al4V-5Cu alloy was deformed by a hot rolling mechanism.Activation of tensile{1012}<1011>and compressive{1122}<1123>twins on the deformation of the alloy was also studied.展开更多
For block ciphers,Bogdanov et al.found that there are some linear approximations satisfying that their biases are deterministically invariant under key difference.This property is called key difference invariant bias....For block ciphers,Bogdanov et al.found that there are some linear approximations satisfying that their biases are deterministically invariant under key difference.This property is called key difference invariant bias.Based on this property,Bogdanov et al.proposed a related-key statistical distinguisher and turned it into key-recovery attacks on LBlock and TWINE-128.In this paper,we propose a new related-key model by combining multidimensional linear cryptanalysis with key difference invariant bias.The main theoretical advantage is that our new model does not depend on statistical independence of linear approximations.We demonstrate our cryptanalysis technique by performing key recovery attacks on LBlock and TWINE-128.By using the relations of the involved round keys to reduce the number of guessed subkey bits.Moreover,the partial-compression technique is used to reduce the time complexity.We can recover the master key of LBlock up to 25 rounds with about 260.4 distinct known plaintexts,278.85 time complexity and 261 bytes of memory requirements.Our attack can recover the master key of TWINE-128 up to 28 rounds with about 261.5 distinct known plaintexts,2126.15 time complexity and 261 bytes of memory requirements.The results are the currently best ones on cryptanalysis of LBlock and TWINE-128.展开更多
For block ciphers,Bogdanov et al.found that there are some linear approximations satisfying that their biases are deterministically invariant under key difference.This property is called key difference invariant bias....For block ciphers,Bogdanov et al.found that there are some linear approximations satisfying that their biases are deterministically invariant under key difference.This property is called key difference invariant bias.Based on this property,Bogdanov et al.proposed a related-key statistical distinguisher and turned it into key-recovery attacks on LBlock and TWINE-128.In this paper,we propose a new related-key model by combining multidimensional linear cryptanalysis with key difference invariant bias.The main theoretical advantage is that our new model does not depend on statistical independence of linear approximations.We demonstrate our cryptanalysis technique by performing key recovery attacks on LBlock and TWINE-128.By using the relations of the involved round keys to reduce the number of guessed subkey bits.Moreover,the partial-compression technique is used to reduce the time complexity.We can recover the master key of LBlock up to 25 rounds with about 2^(60.4)distinct known plaintexts,2^(78.85)time complexity and 2^(61)bytes of memory requirements.Our attack can recover the master key of TWINE-128 up to 28 rounds with about 2^(61.5)distinct known plaintexts,2^(126.15)time complexity and 261 bytes of memory requirements.The results are the currently best ones on cryptanalysis of LBlock and TWINE-128.展开更多
Vessel-shaped fish cages are promising large aquaculture structures developed in recent years,with an overall length of nearly 400 m.In this paper,a coupled hydroelasticity model of a vessel-shaped fish cage is used t...Vessel-shaped fish cages are promising large aquaculture structures developed in recent years,with an overall length of nearly 400 m.In this paper,a coupled hydroelasticity model of a vessel-shaped fish cage is used to calculate the motion and structural response in the time domain.First,the floating body of the cage is discretized into a multimodule system to calculate the frequency-domain hydrodynamic loads.Then,the multimodule system is connected by equivalent elastic beams to consider the hydroelastic be-havior in the time domain.The hydrodynamic loads of the multimodule system are transformed from the frequency-domain loads.Moreover,based on the velocity field transfer functions and the motion of the multimodule system,coupling wave fields considering incident,diffraction and radiation waves are built and used to calculate the loads on the net and steel frame.By iterating the motion response of the multi-module system and the hydrodynamic loads on the net and steel frame in the time domain,the balanced hydroelasticity response of the whole cage is finally obtained.The results show that the hydroelasticity effects have a significant influence on the vertical displacement and cross-sectional load effects of the vessel-shaped fish cage.展开更多
基金Supported by the CAS Special Grant for Postgraduate Research,Innovation and Practice~~
文摘Phylogenetic relations of twining chirality of Dioscorea sp.in China were analyzed based on the genes matK,rbcL and trnL;phylogenetic character of higher-level phylogeny of twining plants was analyzed at a high taxon level based on matK gene.A significant phylogenetic framework of chirality was found:(i)based on matK analysis,right-handed Dioscorea species in China congregate completely to form a monophyly;(ii)rbcL and trnL data sets also supported Chinese right-handed Dioscorea a monophyly,although with ex...
基金supported in part by Natural Science Foundation Key projects of Hebei Province under Grant E2021203125in part by the Joint fund of the Science&Technology Department of Liaoning Province and State Key Laboratory of Robotics,China under Grant 2021KF2206+1 种基金in part by Local science and technology development fund projects guided by the central government under Grant 206Z1807Gin part by Hebei Province Graduate Innovation Funding Project under Grant CXZZBS2022127.
文摘To improve the grasping power of soft robots,inspired by the scene of intertwined and interdependent vine branches safely clinging to habitats in a violent storm and the phenomenon of large grasping force after being entangled by aquatic plants,this paper proposes a soft robotic gripper with multi-stem twining.The proposed robotic gripper can realize a larger contact area of surrounding or containing object and more layers of a twining object than the current twining gripping methods.It not only retains the adaptive advantages of twining grasping but also improves the grasping force.First,based on the mechanical characteristics of the multi-stem twining of the gripper,the twining grasping model is developed.Then,the force on the fiber is deduced by using the twining theory,and the axial force of the gripper is analyzed based on the equivalent model of the rubber ring.Finally,the torsion experiments of fibers and the grasping experiments of the gripper are designed and conducted.The torsion experiment of fibers verifies the influence of a different number of fiber ropes and fiber torque on the grasping force,and the grasping experiment reflects the large load of the gripper and the high adaptability and practicability under different tasks.
基金the National Natural Science Foundation of China(Grant Nos.51175363 and 51474152)the Research Project Supported by the Shanxi Scholarship Council of China(Grant Nos.2014029)。
文摘To improve the homogeneity and rolling formability of as-cast AZ91 magnesium,the effects of pre-homogenizing treatment on microstructure evolution,deformation mechanism,mechanical properties and tensile fracture morphology of hot-rolled AZ91 magnesium alloy were studied.The results showed that the amount of coarseβ-Mg17Al12 phase decreases dramatically,being distributed along the grain boundaries as small strips after homogenizing.Twining plays a dominant role in the deformation mechanism of AZ91 alloys in the experimental condition,while dynamic recrystallization(DRX)considerably occurred in homogenized-rolled alloys,contributed to microstructure uniformity andβ-Mg17Al12 phase precipitated refinement.The tensile strength of homogenized-rolled AZ91 alloys increases dramatically with elongation declining slightly in contrast to homogenized alloys.The fracture surface of homogenized-rolled specimen exhibits more ductile fracture with the manifestation of a large amount of dimples distributing higher density in matrix,while the micro cracks are prone to initiate around the Mg/Mg17Al12 phase interface and grain boundaries owing to the fragile interface bonding of two phases.
基金supported by JSTP KAKENHI Grant No. 19H02476The Light Meal Education Foundation, Inc.China Scholarship Council for the award of fellowship and funding (No. 201707040058)
文摘Compared to cold drawing,dieless drawing has shown great potential for manufacturing biodegradable Mg alloy microtubes due to the large reduction in area acquired in a single pass.However,owing to the local heating and local deformation,the deformation mechanism during dieless drawing is not clear,and thus causing difficulties in controlling the microstructure of dieless drawn tubes.For the purpose of acquiring a desired microstructure.in this study the deformation mechanism of ZM21 Mg alloy tube was clarified by conducting continuous observation of the microstructural evolution during dieless drawing.The results show that both SRX and DRX occurred during dieless drawing.SRX occurred before the plastic deformation to soften dieless drawn tubes.With increase of feeding speed,the deformation mechanism changed accordingly:(1) At the low-speed of 0.02 mm/s,the deformation mechanism was dominated by twin-slip sliding,during which {10-12} tension twins were generated inside grains to accommodate the plastic deformation by changing the crystal orientation.(2) At the intermediate-speed of 2 mm/s,a twin-DRX process related to {10-12} tension twin was observed,which was characterized by the generation of abundant {10-12} tension twins and the evolution of misorientation angle of {10-12} tension twins.Moreover,the transformation from twin-DRX to CDRX can be observed at the late stage of plastic deformation,which was attributed to the inhomogeneous conditions of dieless drawing.(3) At the high-speed of 5 mm/s,a CDRX process was observed,during which grain boundary sliding and grain tilting were observed,in addition to the gradual rotation of subgrains.These results show that during dieless drawing,DRX is not only a temperature-dependent phenomenon,but also influenced by the variation of feeding speed.
文摘It was found that copper powder after 20h of milling shows the formation of a number of mechanical twins. The observed twins belong to two types: multiple twins and high-order ones.It is suggested that Venables model on mechanical twins in face-center-cubic metals is reasonable in this case. The generation of mechanical twins could be explained as follows:the shear stress (P_(max)) induced by ball milling exceeds the critical shear stress for twinning(τ):the grain size decreases to a critical value below which twinning rather than slip is the preferred mode of deformation as well as the strain rate induced by ball milling is high.
基金Supported by the National Institute of Fisheries Science(No.R2015041)
文摘In order to determine the effect of twine thickness on the size-selectivity of the driftnet used for the yellow croaker, size-selectivity tests were conducted with three different twine thicknesses(monofi lament diameters of 0.279 mm(number's method; No. 3), 0.321 mm(No. 4), and 0.360 mm(No. 5)) of driftnets for the yellow croaker in the seas around Chooja-do, Jeju Islands. The selectivity curve was estimated by using Kitahara's method. In order to determine the physical properties of the twine used in the experimental fi shing nets, we measured the breaking load, elongation, and stiffness under both dry and wet conditions. In terms of physical properties, the thinnest twine(No. 3) had the strongest breaking strength per unit cross-sectional area, along with good elongation and excellent fl exibility. The thickest twine(No. 5) had the lowest fl exibility. In terms of selectivity, the net of No. 3 twine showed the broadest selection range and, thus, a relatively low selectivity compared with the other nets, while the less fl exible net of No. 5 twine showed the narrowest selectivity range and high selectivity. In addition, it was found that a thicker twine resulted in a smaller haul of small fi sh. Therefore, it can be inferred that the thickness of the twine affects the size of the catch and selectivity, and thus the size composition of the catch as well.
基金supported by the National Natural Science Foundation of China(No.51631009)the authors acknowledge the CAS-TWAS presidential scholarship program.
文摘The influence of hot-deformation on the microstructure,crystalline orientation,and texture evolution of Ti6Al4V-5Cu,an antibacterial(α+β)titanium alloy,was investigated.The alloy was deformed using a hot rolling process in 15%,58%,and 73%thickness reduction ratios.It was found that the basal<α→>and pyramidal<c→+α→>type slip planes could be activated in theαphase,which dominated the deformation behavior of Ti6Al4V-5Cu alloy.Under various deformation conditions,the alloy revealed different microstructure features.On the 15%hot rolled alloy,the deformation was performed by the breakdown of priorβgrain boundaries(GBβ),which was attributed to the formation of coarseαgrains,rotated nearly 45°with respect to the transversal and rolling directions.The presence of different sub-structure geometries made the interior grain size distribution heterogeneous.On the 58%hot rolled alloy,Ti2Cu intermetallic compound was found at theα/βinterface.High-resolution transmission electron microscopy investigation showed the occurrence of grain rotation in different crystallographic directions.At room temperature,the percentage elongation(El)of the alloy reached 23.15%on the 58%hot rolled sample.On the 73%deformed alloy,refined and randomly oriented characteristics of grains were obtained due to higher thickness reduction,which resulted from the segregation of very fine granules.The influence of grain rotation during a hot rolling process revealed that theα/βtexture fiber separation angle to maintain the Burger orientation relationship of{0001}α//{110}βplanes decreased with increase of the thickness reduction ratio when Ti6Al4V-5Cu alloy was deformed by a hot rolling mechanism.Activation of tensile{1012}<1011>and compressive{1122}<1123>twins on the deformation of the alloy was also studied.
基金the National Natural Science Foundation of China(Grant No.61379138).
文摘For block ciphers,Bogdanov et al.found that there are some linear approximations satisfying that their biases are deterministically invariant under key difference.This property is called key difference invariant bias.Based on this property,Bogdanov et al.proposed a related-key statistical distinguisher and turned it into key-recovery attacks on LBlock and TWINE-128.In this paper,we propose a new related-key model by combining multidimensional linear cryptanalysis with key difference invariant bias.The main theoretical advantage is that our new model does not depend on statistical independence of linear approximations.We demonstrate our cryptanalysis technique by performing key recovery attacks on LBlock and TWINE-128.By using the relations of the involved round keys to reduce the number of guessed subkey bits.Moreover,the partial-compression technique is used to reduce the time complexity.We can recover the master key of LBlock up to 25 rounds with about 260.4 distinct known plaintexts,278.85 time complexity and 261 bytes of memory requirements.Our attack can recover the master key of TWINE-128 up to 28 rounds with about 261.5 distinct known plaintexts,2126.15 time complexity and 261 bytes of memory requirements.The results are the currently best ones on cryptanalysis of LBlock and TWINE-128.
基金supported by the National Natural Science Foundation of China(Grant No.61379138).
文摘For block ciphers,Bogdanov et al.found that there are some linear approximations satisfying that their biases are deterministically invariant under key difference.This property is called key difference invariant bias.Based on this property,Bogdanov et al.proposed a related-key statistical distinguisher and turned it into key-recovery attacks on LBlock and TWINE-128.In this paper,we propose a new related-key model by combining multidimensional linear cryptanalysis with key difference invariant bias.The main theoretical advantage is that our new model does not depend on statistical independence of linear approximations.We demonstrate our cryptanalysis technique by performing key recovery attacks on LBlock and TWINE-128.By using the relations of the involved round keys to reduce the number of guessed subkey bits.Moreover,the partial-compression technique is used to reduce the time complexity.We can recover the master key of LBlock up to 25 rounds with about 2^(60.4)distinct known plaintexts,2^(78.85)time complexity and 2^(61)bytes of memory requirements.Our attack can recover the master key of TWINE-128 up to 28 rounds with about 2^(61.5)distinct known plaintexts,2^(126.15)time complexity and 261 bytes of memory requirements.The results are the currently best ones on cryptanalysis of LBlock and TWINE-128.
基金National Natural Sci-ence Foundation of China (Grant No.52088102)National Sci-ence Fund for Distinguished Young Scholars (Grant No.51825903)+4 种基金the Fundamental Research Funds for the Central Universities,Key R&D program of Shandong Province (Grant No.2021SFGC0701)National Natural Science Foundation of China (Grant No.52271283 and Grant No.52111530135)State Key Labo-ratory of Ocean Engineering (Shanghai Jiao Tong University) (Grant No.GKZD010081)Shenlan Project (Grant No.SL2021MS018 and Grant No.SL2022ZD201)the Research Council of Norway through the centre of Excellence Funding Scheme (Grant No.223254).
文摘Vessel-shaped fish cages are promising large aquaculture structures developed in recent years,with an overall length of nearly 400 m.In this paper,a coupled hydroelasticity model of a vessel-shaped fish cage is used to calculate the motion and structural response in the time domain.First,the floating body of the cage is discretized into a multimodule system to calculate the frequency-domain hydrodynamic loads.Then,the multimodule system is connected by equivalent elastic beams to consider the hydroelastic be-havior in the time domain.The hydrodynamic loads of the multimodule system are transformed from the frequency-domain loads.Moreover,based on the velocity field transfer functions and the motion of the multimodule system,coupling wave fields considering incident,diffraction and radiation waves are built and used to calculate the loads on the net and steel frame.By iterating the motion response of the multi-module system and the hydrodynamic loads on the net and steel frame in the time domain,the balanced hydroelasticity response of the whole cage is finally obtained.The results show that the hydroelasticity effects have a significant influence on the vertical displacement and cross-sectional load effects of the vessel-shaped fish cage.