The influences of hydrogen on the mechanical properties and the fracture behaviour of Fe-22Mn-0.6C twinning induced plasticity steel have been investigated by slow strain rate tests and fractographic analysis.The stee...The influences of hydrogen on the mechanical properties and the fracture behaviour of Fe-22Mn-0.6C twinning induced plasticity steel have been investigated by slow strain rate tests and fractographic analysis.The steel showed high susceptibility to hydrogen embrittlement,which led to 62.9%and 74.2%reduction in engineering strain with 3.1 and 14.4 ppm diffusive hydrogen,respectively.The fracture surfaces revealed a transition from ductile to brittle dominated fracture modes with the rising hydrogen contents.The underlying deformation and fracture mechanisms were further exploited by examining the hydrogen effects on the dislocation substructure,stacking fault probability,and twinning behaviour in pre-strained slow strain rate test specimens and notched tensile specimens using coupled electron channelling contrast imaging and electron backscatter diffraction techniques.The results reveal that the addition of hydrogen promotes planar dislocation structures,earlier nucleation of stacking faults,and deformation twinning within those grains which have tensile axis orientations close to<111>//rolling direction and<112>//rolling direction.The developed twin lamellae result in strain localization and micro-voids at grain boundaries and eventually lead to grain boundary decohesion.展开更多
The influence of cold rolling reduction on microstructure and mechanical properties of the TWIP (ttwinning induced plasticity) steel was investigated. The results' indicated that the steel had better comprehensive ...The influence of cold rolling reduction on microstructure and mechanical properties of the TWIP (ttwinning induced plasticity) steel was investigated. The results' indicated that the steel had better comprehensive mechanical properties when cold rolling reduction was about 65.0% and the annealing temperature was 1000℃. The tensile strength of the steel is about 640MPa and the yield strength is higher than 255MPa, while the elongation is' above 82%. The microstructure is composed of austenitic matrix and annealing twins at room temperature, at the same time, a significant amount of annealing twins and stacking faults' are observed by transmission electron microscopy (TEM). Mechanical twins play a dominant role during deformation, and result in exceUent mechanical properties.展开更多
The microstructure and crack behaviour of twinning induced plasticity (TWIP) steel during tensile deformation was investigated with in-situ scanning electron microscopy (SEM). The results show that there are two m...The microstructure and crack behaviour of twinning induced plasticity (TWIP) steel during tensile deformation was investigated with in-situ scanning electron microscopy (SEM). The results show that there are two modes of plastic deformation during tensile test in the Fe-Mn-C TWIP steel: dislocation gliding and deformation twins. During the process of tensile deformation, secondary deformed twins are found. Inclusions have played a role in the course of ductile fracture, and microcracks initiate from inclusions and twin-twin intersections.展开更多
The microstructures and tension properties of Fe_(50)Mn_(20)Cr_(20)Ni_(10) medium entropy alloy(MEA)were investigated,which was produced by vacuum induction melting and subsequently was homogenized at 1200 C for 6 h.M...The microstructures and tension properties of Fe_(50)Mn_(20)Cr_(20)Ni_(10) medium entropy alloy(MEA)were investigated,which was produced by vacuum induction melting and subsequently was homogenized at 1200 C for 6 h.Microstructure characterization shows the single-phase solid solution with face-centered cubic structure by means of transmission electron microscopy and scanning electron microscopy combined with energy disperse spectroscopy.Our Fe-MEA has an ultimate tensile strength of 550±10 MPa and a high strain hardening exponent,n,of 0.41 as well as a higher ductility(60%)than those of CrMnFeCoNi alloy.The single-phase solid solution deforms plastically via dislocations and twins.Twin boundaries associated with deformation twinning impede dislocation motion,enhancing the strain hardening capacity.This article focuses on the insights into the concept of Fe-MEAs and provides a potential direction for the future development of high entropy alloys and MEAs.展开更多
Recently,high-and medium-entropy alloys(HEAs and MEAs) have been found to exhibit excellent cryogenic mechanical properties,but most of them contain high-priced Co element.Therefore,developing HEAs or MEAs with high s...Recently,high-and medium-entropy alloys(HEAs and MEAs) have been found to exhibit excellent cryogenic mechanical properties,but most of them contain high-priced Co element.Therefore,developing HEAs or MEAs with high strength and ductility and relatively low cost is urgent.In this work,novel Cofree Fex Mn(75-x) Ni(10)Cr(15)(x=50 and 55 at.%) MEAs were developed,which exhibit a good combination of low cost,high strength and ductility at cryogenic temperature.It was found that the Fe(50)Mn(25)Ni(10)Cr(15)MEA exhibits a combination of cryogenic tensile strength of^0.98 GPa and ductility of^83 %.The excellent cryogenic mechanical properties were attributed to joint of twinning-induced plasticity(TWIP) and transformation-induced plasticity(TRIP) effects.The present study sheds light on developing low cost MEAs with high perfo rmance for cryogenic-tempe rature applications.展开更多
The high-manganese steels are important structural materials,owing to their excellent toughness at low temperatures.However,the microstructural causes for their unusual properties have not adequately been understood t...The high-manganese steels are important structural materials,owing to their excellent toughness at low temperatures.However,the microstructural causes for their unusual properties have not adequately been understood thus far.Here,we report a reversal relationship between impact toughness and grain size in a high-manganese steel and its unrevealed microscopic mechanisms,which result in an excellent low-temperature toughness of the steel.Our investigations show that with increasing grain size the impact toughness of the steel can be improved drastically,especially at low-temperatures.Advanced electron microscopy characterization reveals that the enhanced impact toughness of the coarse-grained steel is attributed to the twinning induced plasticity and transformation induced plasticity effects,which produce large quantities of deformation twins,ε_(hcp)-martensite andα'_(bcc)-martensite.Inversely,in the fine-grained steels,the formation of deformation twins and martensite is significantly inhibited,leading to the decrease of impact toughness.Microstructural characterizations also indicate thatε_(hcp)-martensite becomes more stable thanα'_(bcc)-martensite with decreasing temperature,resulting in characteristic microstructures in the coarse-grained samples after impact deformation at liquid nitrogen temperature.In the coarse-grained samples under impact deformation at-80℃,ε_(hcp)-martensite transformation,α'_(bcc)-martensite transformation and deformation twinning all occur simultaneously,which greatly improves the toughness of the steel.展开更多
Effects of Cr addition(0,3,and 6 wt%) on Charpy impact properties of Fe-C-Mn-Cr-based steels were studied by conducting dynamic compression tests at room and cryogenic temperatures.At room temperature,deformation mech...Effects of Cr addition(0,3,and 6 wt%) on Charpy impact properties of Fe-C-Mn-Cr-based steels were studied by conducting dynamic compression tests at room and cryogenic temperatures.At room temperature,deformation mechanisms of Charpy impacted specimens were observed as twinning induced plasticity(TWIP) without any transfo rmation induced plasticity(TRIP) in all the steels.At cryogenic temperature,many twins were populated in the Cr-added steels,but,interestingly,fine ε-martensite was found in the OCr steel,satisfying the Shoji-Nishiyama(S-N) orientation relationship,{111}γ//{0002}ε and <101>γ//<1120>ε.Even though the cryogenic-temperature staking fault energies(SFEs) of the three steel were situated in the TWIP regime,the martensitic transformation was induced by Mn-and Cr-segregated bands.In the OCr steel,SFEs of low-(Mn,Cr) bands lay between the TWIP and TRIP regimes which were sensitively affected by a small change of SFE.The dynamic compressive test results well showed the relation between segregation bands and the SFEs.Effects of Cr were known as not only increasing the SFE but also promoting the carbide precipitation.In order to identify the possibility of carbide formation,a precipitation kinetics simulation was conducted,and the predicted fractions of precipitated M23C6 were negligible,0.4-1.1×10-5,even at the low cooling rate of 10℃/s.展开更多
In order to study the effect of alloy elements on mechanical properties of quenching and partitioning steels,the Q and P heat treatments on different chemical composition steels were carried on in lab.The tensile test...In order to study the effect of alloy elements on mechanical properties of quenching and partitioning steels,the Q and P heat treatments on different chemical composition steels were carried on in lab.The tensile test results indicated the strength of Nb+Ti-bearing steel was not increasing as expected,but lower than that of the Nb+Ti-free steel,and the elongation was raised to 26% from 9%.The Nb+Ti-bearing steel microstructures after tensile test were detected by TEM and found a certain amount of twins in the deformed microstructure while the deformed microstructure mainly was lath martensite in Nb+Ti-free steel,which means the addition of Nb and Ti elements could cause the twinning induced plasticity by inhibiting the phase transformation from austenite to martensite.Based on above analysis,adding trace Nb element could greatly increase the stacking fault energy of the retained austenite,which is beneficial to the formation of twins,and the formation of twins would lower the strength slightly and raise the elongation drastically.展开更多
Texture is one of the important factors affecting sheet metal forming performance.The through-thickness texture gradient during the hot-rolling process of twinning induced plasticity(TWIP)steel sheet was investigate...Texture is one of the important factors affecting sheet metal forming performance.The through-thickness texture gradient during the hot-rolling process of twinning induced plasticity(TWIP)steel sheet was investigated using electron backscatter diffraction and X-ray diffraction.With increasing reduction of the TWIP steel,the fraction of∑1 decreased,whereas the fractions of∑3,∑9,and∑27increased.During 53%reduction,a similar trend could be found from its surface to the center.The gradients of intensities of the fibers decreased with increasing hot-rolling reduction.The intensities of face-centered cubic(fcc)shear textures E and Y were higher in the center than that at the surface for both reductions.During 20% reduction,the intensity of fcc plain strain texture S orientation increased from the center to the surface.展开更多
文摘The influences of hydrogen on the mechanical properties and the fracture behaviour of Fe-22Mn-0.6C twinning induced plasticity steel have been investigated by slow strain rate tests and fractographic analysis.The steel showed high susceptibility to hydrogen embrittlement,which led to 62.9%and 74.2%reduction in engineering strain with 3.1 and 14.4 ppm diffusive hydrogen,respectively.The fracture surfaces revealed a transition from ductile to brittle dominated fracture modes with the rising hydrogen contents.The underlying deformation and fracture mechanisms were further exploited by examining the hydrogen effects on the dislocation substructure,stacking fault probability,and twinning behaviour in pre-strained slow strain rate test specimens and notched tensile specimens using coupled electron channelling contrast imaging and electron backscatter diffraction techniques.The results reveal that the addition of hydrogen promotes planar dislocation structures,earlier nucleation of stacking faults,and deformation twinning within those grains which have tensile axis orientations close to<111>//rolling direction and<112>//rolling direction.The developed twin lamellae result in strain localization and micro-voids at grain boundaries and eventually lead to grain boundary decohesion.
基金the National Natural Science Foundation of China (No. 50575022) Specialized Research Foundation for the Doctoral Program of Higher Education (No. 20040008024).
文摘The influence of cold rolling reduction on microstructure and mechanical properties of the TWIP (ttwinning induced plasticity) steel was investigated. The results' indicated that the steel had better comprehensive mechanical properties when cold rolling reduction was about 65.0% and the annealing temperature was 1000℃. The tensile strength of the steel is about 640MPa and the yield strength is higher than 255MPa, while the elongation is' above 82%. The microstructure is composed of austenitic matrix and annealing twins at room temperature, at the same time, a significant amount of annealing twins and stacking faults' are observed by transmission electron microscopy (TEM). Mechanical twins play a dominant role during deformation, and result in exceUent mechanical properties.
基金supported by the National High-Tech Research and Development Program of China (No.2008AA03E502)the Science and Technology Support Program of China (No.2006BAE03A06)
文摘The microstructure and crack behaviour of twinning induced plasticity (TWIP) steel during tensile deformation was investigated with in-situ scanning electron microscopy (SEM). The results show that there are two modes of plastic deformation during tensile test in the Fe-Mn-C TWIP steel: dislocation gliding and deformation twins. During the process of tensile deformation, secondary deformed twins are found. Inclusions have played a role in the course of ductile fracture, and microcracks initiate from inclusions and twin-twin intersections.
基金the Natural Science Foundation of Shanxi Province,China(Nos.201901DI11105 and 201901D111114)Transformation of Scientific and Technological Achievements Programs of Higher Education Institutions in Shanxi(2019)+2 种基金State Key Lab of Advanced Metals and Materials of China(Grant No.2020-Z09)the opening project of the State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology)the opening project number is KFJJ20-13M.
文摘The microstructures and tension properties of Fe_(50)Mn_(20)Cr_(20)Ni_(10) medium entropy alloy(MEA)were investigated,which was produced by vacuum induction melting and subsequently was homogenized at 1200 C for 6 h.Microstructure characterization shows the single-phase solid solution with face-centered cubic structure by means of transmission electron microscopy and scanning electron microscopy combined with energy disperse spectroscopy.Our Fe-MEA has an ultimate tensile strength of 550±10 MPa and a high strain hardening exponent,n,of 0.41 as well as a higher ductility(60%)than those of CrMnFeCoNi alloy.The single-phase solid solution deforms plastically via dislocations and twins.Twin boundaries associated with deformation twinning impede dislocation motion,enhancing the strain hardening capacity.This article focuses on the insights into the concept of Fe-MEAs and provides a potential direction for the future development of high entropy alloys and MEAs.
基金financially supported by the National Natural Science Foundation of China (Nos. U1832203, 11975202, U1704159 and 51701183)the Key Research & Development and Promotion of Special Project of Henan Province (Science & Technology) (No. 192102210006)。
文摘Recently,high-and medium-entropy alloys(HEAs and MEAs) have been found to exhibit excellent cryogenic mechanical properties,but most of them contain high-priced Co element.Therefore,developing HEAs or MEAs with high strength and ductility and relatively low cost is urgent.In this work,novel Cofree Fex Mn(75-x) Ni(10)Cr(15)(x=50 and 55 at.%) MEAs were developed,which exhibit a good combination of low cost,high strength and ductility at cryogenic temperature.It was found that the Fe(50)Mn(25)Ni(10)Cr(15)MEA exhibits a combination of cryogenic tensile strength of^0.98 GPa and ductility of^83 %.The excellent cryogenic mechanical properties were attributed to joint of twinning-induced plasticity(TWIP) and transformation-induced plasticity(TRIP) effects.The present study sheds light on developing low cost MEAs with high perfo rmance for cryogenic-tempe rature applications.
基金supported by the National Natural Science Foundation of China[Grant Nos.5180106051831004+6 种基金1142780651671082]the China Postdoctoral Science Foundation(grant number 2019M652756)the National Key Research and Development Program of China(grant number 2016YFB0300801)the China Scholarship Council(grant number 201606130008)the financial support from Austrain Science Fund(FWF)(grant number P 32378-N37)BMBWF(grant number KR 06/2020)。
文摘The high-manganese steels are important structural materials,owing to their excellent toughness at low temperatures.However,the microstructural causes for their unusual properties have not adequately been understood thus far.Here,we report a reversal relationship between impact toughness and grain size in a high-manganese steel and its unrevealed microscopic mechanisms,which result in an excellent low-temperature toughness of the steel.Our investigations show that with increasing grain size the impact toughness of the steel can be improved drastically,especially at low-temperatures.Advanced electron microscopy characterization reveals that the enhanced impact toughness of the coarse-grained steel is attributed to the twinning induced plasticity and transformation induced plasticity effects,which produce large quantities of deformation twins,ε_(hcp)-martensite andα'_(bcc)-martensite.Inversely,in the fine-grained steels,the formation of deformation twins and martensite is significantly inhibited,leading to the decrease of impact toughness.Microstructural characterizations also indicate thatε_(hcp)-martensite becomes more stable thanα'_(bcc)-martensite with decreasing temperature,resulting in characteristic microstructures in the coarse-grained samples after impact deformation at liquid nitrogen temperature.In the coarse-grained samples under impact deformation at-80℃,ε_(hcp)-martensite transformation,α'_(bcc)-martensite transformation and deformation twinning all occur simultaneously,which greatly improves the toughness of the steel.
基金supported financially by the Korea University Grant for the eighth author, the Ministry of Knowledge Economy (No. 10044574-2013-45)Brain Korea 21 Plus Project for Center for Creative Industrial materialsKorea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (No. P0002020, The Competency Development Program for Industry Specialist)。
文摘Effects of Cr addition(0,3,and 6 wt%) on Charpy impact properties of Fe-C-Mn-Cr-based steels were studied by conducting dynamic compression tests at room and cryogenic temperatures.At room temperature,deformation mechanisms of Charpy impacted specimens were observed as twinning induced plasticity(TWIP) without any transfo rmation induced plasticity(TRIP) in all the steels.At cryogenic temperature,many twins were populated in the Cr-added steels,but,interestingly,fine ε-martensite was found in the OCr steel,satisfying the Shoji-Nishiyama(S-N) orientation relationship,{111}γ//{0002}ε and <101>γ//<1120>ε.Even though the cryogenic-temperature staking fault energies(SFEs) of the three steel were situated in the TWIP regime,the martensitic transformation was induced by Mn-and Cr-segregated bands.In the OCr steel,SFEs of low-(Mn,Cr) bands lay between the TWIP and TRIP regimes which were sensitively affected by a small change of SFE.The dynamic compressive test results well showed the relation between segregation bands and the SFEs.Effects of Cr were known as not only increasing the SFE but also promoting the carbide precipitation.In order to identify the possibility of carbide formation,a precipitation kinetics simulation was conducted,and the predicted fractions of precipitated M23C6 were negligible,0.4-1.1×10-5,even at the low cooling rate of 10℃/s.
文摘In order to study the effect of alloy elements on mechanical properties of quenching and partitioning steels,the Q and P heat treatments on different chemical composition steels were carried on in lab.The tensile test results indicated the strength of Nb+Ti-bearing steel was not increasing as expected,but lower than that of the Nb+Ti-free steel,and the elongation was raised to 26% from 9%.The Nb+Ti-bearing steel microstructures after tensile test were detected by TEM and found a certain amount of twins in the deformed microstructure while the deformed microstructure mainly was lath martensite in Nb+Ti-free steel,which means the addition of Nb and Ti elements could cause the twinning induced plasticity by inhibiting the phase transformation from austenite to martensite.Based on above analysis,adding trace Nb element could greatly increase the stacking fault energy of the retained austenite,which is beneficial to the formation of twins,and the formation of twins would lower the strength slightly and raise the elongation drastically.
基金Sponsored by National Natural Science Foundation of China(50934011)Shanghai Leading Academic Discipline Projectof China(J51402)
文摘Texture is one of the important factors affecting sheet metal forming performance.The through-thickness texture gradient during the hot-rolling process of twinning induced plasticity(TWIP)steel sheet was investigated using electron backscatter diffraction and X-ray diffraction.With increasing reduction of the TWIP steel,the fraction of∑1 decreased,whereas the fractions of∑3,∑9,and∑27increased.During 53%reduction,a similar trend could be found from its surface to the center.The gradients of intensities of the fibers decreased with increasing hot-rolling reduction.The intensities of face-centered cubic(fcc)shear textures E and Y were higher in the center than that at the surface for both reductions.During 20% reduction,the intensity of fcc plain strain texture S orientation increased from the center to the surface.