The accurate prediction of the friction angle of clays is crucial for assessing slope stability in engineering applications.This study addresses the importance of estimating the friction angle and presents the develop...The accurate prediction of the friction angle of clays is crucial for assessing slope stability in engineering applications.This study addresses the importance of estimating the friction angle and presents the development of four soft computing models:YJ-FPA-MLPnet,YJ-CRO-MLPnet,YJ-ACOC-MLPnet,and YJCSA-MLPnet.First of all,the Yeo-Johnson(YJ)transformation technique was used to stabilize the variance of data and make it more suitable for parametric statistical models that assume normality and equal variances.This technique is expected to improve the accuracy of friction angle prediction models.The friction angle prediction models then utilized multi-layer perceptron neural networks(MLPnet)and metaheuristic optimization algorithms to further enhance performance,including flower pollination algorithm(FPA),coral reefs optimization(CRO),ant colony optimization continuous(ACOC),and cuckoo search algorithm(CSA).The prediction models without the YJ technique,i.e.FPA-MLPnet,CRO-MLPnet,ACOC-MLPnet,and CSA-MLPnet,were then compared to those with the YJ technique,i.e.YJ-FPA-MLPnet,YJ-CRO-MLPnet,YJ-ACOC-MLPnet,and YJ-CSA-MLPnet.Among these,the YJ-CRO-MLPnet model demonstrated superior reliability,achieving an accuracy of up to 83%in predicting the friction angle of clay in practical engineering scenarios.This improvement is significant,as it represents an increase from 1.3%to approximately 20%compared to the models that did not utilize the YJ transformation technique.展开更多
Biomimetic design has recently received widespread attention.Inspired by the Terebridae structure,this paper provides a structural form for suppressing vortex-induced vibration(VIV)response.Four different structural f...Biomimetic design has recently received widespread attention.Inspired by the Terebridae structure,this paper provides a structural form for suppressing vortex-induced vibration(VIV)response.Four different structural forms are shown,including the traditional smooth cylinder(P0),and the Terebridae-inspired cylinder with the helical angle of 30°(P_(30)),60°(P_(60)),and 90°(P_(90)).Computational fluid dynamics(CFD)method is adopted to solve the flow pass the Terebridae-inspired structures,and the vibration equation is solved using the Newmark-βmethod.The results show that for P_(30),P_(60) and P_(90),the VIV responses are effectively suppressed in the lock-in region,and P_(60) showed the best VIV suppression performance.The transverse amplitude and the downstream amplitude can be reduced by 82.67%and 91.43%respectively for P_(60) compared with that for P0,and the peak of the mean-drag coefficient is suppressed by 53.33%.The Q-criterion vortices of P_(30),P_(60),and P_(90) are destroyed,with irregular vortices shedding.It is also found that the boundary layer separation is located on the Terebridae-inspired ribs.The twisted ribs cause the separation point to constantly change along the spanwise direction,resulting in the development of the boundary layer separation being completely destroyed.The strength of the wake flow is significantly weakened for the Terebridae-inspired cylinder.展开更多
Cavitation is a common issue in pumps,causing a decrease in pump head,a fall in volumetric efficiency,and an intensification of outlet flow pulsation.It is one of the main hazards that affect the regular operation of ...Cavitation is a common issue in pumps,causing a decrease in pump head,a fall in volumetric efficiency,and an intensification of outlet flow pulsation.It is one of the main hazards that affect the regular operation of the pump.Research on pump cavitation mainly focuses on mixed flow pumps,jet pumps,external spur gear pumps,etc.However,there are few cavitation studies on external herringbone gear pumps.In addition,pumps with different working principles significantly differ in the flow and complexity of the internal flow field.Therefore,it is urgent to study the cavitation characteristics of external herringbone gear pumps.Compared with experimentalmethods,visual research and cavitation area identification are achieved through computation fluid dynamic(CFD),and changing the boundary conditions and shape of the gear rotor is easier.The simulation yields a head error of only 0.003%under different grid numbers,and the deviation between experimental and simulation results is less than 5%.The study revealed that cavitation causes flow pulsation at the outlet,and the cavitation serious area is mainly distributed in the meshing gap and meshing area.Cavitation can be inhibited by reducing the speed,increasing the inlet pressure,and changing the helix angle can be achieved.For example,when the inlet pressure is 5 bar,the maximumgas volume fraction in themeshing area is less than 50%.These results provide a reference for optimizing the design and finding the optimal design parameters to reduce or eliminate cavitation.展开更多
Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft ...Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft unsteady aerodynamic design and flight dynamics analysis.In this paper,aiming at the problems of poor generalization of traditional aerodynamic models and intelligent models,an intelligent aerodynamic modeling method based on gated neural units is proposed.The time memory characteristics of the gated neural unit is fully utilized,thus the nonlinear flow field characterization ability of the learning and training process is enhanced,and the generalization ability of the whole prediction model is improved.The prediction and verification of the model are carried out under the maneuvering flight condition of NACA0015 airfoil.The results show that the model has good adaptability.In the interpolation prediction,the maximum prediction error of the lift and drag coefficients and the moment coefficient does not exceed 10%,which can basically represent the variation characteristics of the entire flow field.In the construction of extrapolation models,the training model based on the strong nonlinear data has good accuracy for weak nonlinear prediction.Furthermore,the error is larger,even exceeding 20%,which indicates that the extrapolation and generalization capabilities need to be further optimized by integrating physical models.Compared with the conventional state space equation model,the proposed method can improve the extrapolation accuracy and efficiency by 78%and 60%,respectively,which demonstrates the applied potential of this method in aerodynamic modeling.展开更多
The conventional approach to optimizing tilt angles for fixed solar panels aims to maximize energy generation over the entire year. However, in the context of a supply controlled electric grid, where solar energy avai...The conventional approach to optimizing tilt angles for fixed solar panels aims to maximize energy generation over the entire year. However, in the context of a supply controlled electric grid, where solar energy availability varies, this criterion may not be optimal. This study explores two alternative optimization criteria focused on maximizing baseload supply potential and minimizing required storage capacity to address seasonality in energy generation. The optimal tilt angles determined for these criteria differed significantly from the standard approach. This research highlights additional factors crucial for designing solar power systems beyond gross energy generation, essential for the global transition towards a fully renewable energy-based electric grid in the future.展开更多
The wettability of rocks affects the balance between capillary and viscous forces during multiphase flow through porous media,which in turn determines the fluid displacement process governing the recovery of oil from ...The wettability of rocks affects the balance between capillary and viscous forces during multiphase flow through porous media,which in turn determines the fluid displacement process governing the recovery of oil from subsurface formations.In this work,the mechanism of wettability reversal of aged synthetic sandstones by metal oxide nanoparticles(SiO_(2) and Al_(2)O_(3))was investigated with particular focus on the impact of surface roughness,zeta potential,and temperature.The synthetic surfaces were prepared from powders of Berea sandstone with known grain size ranges and their average roughness and roughness ratio were obtained from the 3D surface reconstruction of their microscope images.Each surface was subsequently aged in Permian crude oil to alter its wettability.For surfaces with larger grain sizes and lower surface roughness ratios,the lower capillary pressure allowed stronger oil/surface interactions,leading to enhanced oil-wetness.The wettability alteration effects of nanoparticles were then examined through real-time top view imaging and dynamic front view contact angle experiments.The negatively charged SiO_(2) nanoparticles rapidly reversed the sandstone wettability,indicating their potential applicability as wettability alteration agents.By contrast,the positively charged Al_(2)O_(3) counterpart caused no wettability reversal.The mechanism of wettability alteration was further studied by microscale interaction analyses and nanoscale transmission electron microscopy.Because nanoparticles were only a few nanometers large,the microscale roughness had a negligible effect on the wettability reversal.Instead,the combined effect of van der Waals dispersion forces and surface-charge-induced electrostatic forces were recognized as the two key factors affecting the wettability of sandstone particles.Such interactions may be curbed at elevated temperatures due to a decrease in the zeta potential and colloidal stability of the particles.展开更多
The data we use to express angle or direction are entitled directional data. In a plan right angled coordinate system the traditional control chart can’t solve the quality control problem which the characteristic val...The data we use to express angle or direction are entitled directional data. In a plan right angled coordinate system the traditional control chart can’t solve the quality control problem which the characteristic value is angle. This paper analyses and calculates the one valued control limits by control chart of angles.展开更多
We investigated the effect of microscopic distribution modes of hydrates in porous sediments, and the saturation of hydrates and free gas on the elastic properties of saturated sediments. We simulated the propagation ...We investigated the effect of microscopic distribution modes of hydrates in porous sediments, and the saturation of hydrates and free gas on the elastic properties of saturated sediments. We simulated the propagation of seismic waves in gas hydrate-bearing sediments beneath the seafloor, and obtained the common receiver gathers of compressional waves(P-waves) and shear waves(S-waves). The numerical results suggest that the interface between sediments containing gas hydrates and free gas produces a large-amplitude bottomsimulating reflector. The analysis of multicomponent common receiver data suggests that ocean-bottom seismometers receive the converted waves of upgoing P- and S-waves, which increases the complexity of the wavefield record.展开更多
This study investigated experimentally the coupled effects of hydrophilic SiO_(2) nanoparticles(NPs)and low-salinity water(LSW)on the wettability of synthetic clay-free Berea sandstone.Capillary pressure,interfacial t...This study investigated experimentally the coupled effects of hydrophilic SiO_(2) nanoparticles(NPs)and low-salinity water(LSW)on the wettability of synthetic clay-free Berea sandstone.Capillary pressure,interfacial tension(IFT),contact angle,Zeta potential,and dynamic displacement measurements were performed at various NP mass fractions and brine salinities.The U.S.Bureau of Mines(USBM)index was used to quantify the wettability alteration.Furthermore,the NP stability and retention and the effect of enhanced oil recovery by nanofluid were examined.The results showed that LSW immiscible displacement with NPs altered the wettability toward more water wet.With the decreasing brine salinity and increasing NP mass fraction,the IFT and contact angle decreased.The wettability alteration intensified most as the brine salinity decreased to 4000 mg/L and the NP mass fraction increased to 0.075%.Under these conditions,the resulting incremental oil recovery factor was approximately 13 percentage points.When the brine salinity was 4000 mg/L and the NP mass fraction was 0.025%,the retention of NPs caused the minimum damage to permeability.展开更多
Coronary stent is used to treat stenosis artery by recovering the luminal diameter of artery and maintaining the normal blood flow. The geometry of coronary stent is an important factor for the radial force. In this s...Coronary stent is used to treat stenosis artery by recovering the luminal diameter of artery and maintaining the normal blood flow. The geometry of coronary stent is an important factor for the radial force. In this study,the relation between the radial force of stent and crown angle was discussed. The result showed that there was no particular rule between the radial force of stent and the crown angle. The maximum radial force of stent was obtained when the crown angle was 50. 04° and the minimum radial force was got when the crown angle was 75°.展开更多
Mathematical geophone (MG) and equal-time stacking (ETS) principles are used to implement seismic prestack forward modeling with irregular surfaces using the oneway acoustic wave-equation. This method receives sei...Mathematical geophone (MG) and equal-time stacking (ETS) principles are used to implement seismic prestack forward modeling with irregular surfaces using the oneway acoustic wave-equation. This method receives seismic primary reflections from the subsurface using a set of virtual MGs. The receivers can be located anywhere on an irregular observing surface. Moreover, the ETS method utilizes the one-way acoustic wave equation to easily and quickly image and extrapolate seismic reflection data. The method is illustrated using high single-noise ratio common shot gathers computed by numerical forward modeling of two simple models, one with a flat surface and one with an irregular surface, and a complex normal fault model. A prestack depth migration method for irregular surface topography was used to reoroduce the normal fault model with high accuracy.展开更多
The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the targe...The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the target crosses the baseline is constructed.Then,the detection method of the for-ward-scatter signal based on the Rényi entropy of time-fre-quency distribution is proposed and the detection performance with different time-frequency distributions is compared.Simula-tion results show that the method based on the smooth pseudo Wigner-Ville distribution(SPWVD)can achieve the best perfor-mance.Next,combined with the geometry of FSR,the influence on detection performance of the relative distance between the target and the baseline is analyzed.Finally,the proposed method is validated by the anechoic chamber measurements and the results show that the detection ability has a 10 dB improvement compared with the common constant false alarm rate(CFAR)detection.展开更多
In dialysis treatment, the radio-cephalic arteriovenous fistula (RCAVF) is a commonly used fistula, yet its low maturation rate remains a challenge. To enhance surgical outcomes, the relationship between stenosis-pron...In dialysis treatment, the radio-cephalic arteriovenous fistula (RCAVF) is a commonly used fistula, yet its low maturation rate remains a challenge. To enhance surgical outcomes, the relationship between stenosis-prone locations and RCAVF anastomosis angle is studied during maturation by developing two sets of RCAVF models for early (non-mature) and mature RCAVFs at five anastomosis angles. The impact of hemodynamics and wall shear stress (WSS) is examined to determine optimal anastomotic angles. Results indicate that acute angles produce more physiological WSS distributions and fewer disturbed regions, with early stenosis-prone regions located near the anastomosis that shift to the bending venous segment during remodeling. A pilot study comparing clinical and numerical results is conducted for validation.展开更多
Fine-grained silt is widely distributed in the Huanghe River Delta(HRD)in China,and the sedimentary structure is complex,meaning that the clay content in the silt is variable.The piezocone penetration test(CPTu)is the...Fine-grained silt is widely distributed in the Huanghe River Delta(HRD)in China,and the sedimentary structure is complex,meaning that the clay content in the silt is variable.The piezocone penetration test(CPTu)is the most widely approved in situ test method.It can be used to invert soil properties and interpret soil behavior.To analyse the strength properties of surface sediments in the HRD,this paper evaluated the friction angle and its inversion formula through the CPTu penetration test and monotonic simple shear test and other soil unit experiments.The evaluation showed that the empirical formula proposed by Kulhawy and Mayne had better prediction and inversion effect.The HRD silts with clay contents of 9.2%,21.4%and 30.3%were selected as samples for the CPTu variable rate penetration test.The results show as follows.(1)The effects of the clay content on the tip resistance and the pore pressure of silt under different penetration rates were summarized.The tip resistance Q_t is strongly dependent on the clay content of the silt,the B_(q)value of the silt tends to 0 and is not significantly affected by the change of the CPTu penetration rate.(2)Five soil behavior type classification charts and three soil behavior type indexes based on CPTu data were evaluated.The results show that the soil behavior type classification chart based on soil behavior type index ISBT,the Robertson 2010 behavior type classification chart are more suitable for the silty soil in the HRD.展开更多
Two problems of a one-dimensional(1D)piezoelectric quasicrystal(QC)wedge are investigated,i.e.,the two sides of the wedge subject to uniform tractions and the wedge apex subject to the concentrated force.By virtue of ...Two problems of a one-dimensional(1D)piezoelectric quasicrystal(QC)wedge are investigated,i.e.,the two sides of the wedge subject to uniform tractions and the wedge apex subject to the concentrated force.By virtue of the Stroh formalism and Barnett-Lothe matrices,the analytical expressions of the displacements and stresses are derived,and the generalized solutions for the critical wedge angles are discussed.Numerical examples are given to present the mechanical behaviors of the wedge in each field.The results indicate that the effects of the uniform tractions and the concentrated force on the phonon field displacement are larger than those on the phason field.展开更多
To deeply exploit the mechanisms of ant colony optimization (ACO) applied to develop routing in mobile ad hoe networks (MANETS),some existing representative ant colony routing protocols were analyzed and compared....To deeply exploit the mechanisms of ant colony optimization (ACO) applied to develop routing in mobile ad hoe networks (MANETS),some existing representative ant colony routing protocols were analyzed and compared.The analysis results show that every routing protocol has its own characteristics and competitive environment.No routing protocol is better than others in all aspects.Therefore,based on no free lunch theory,ant routing protocols were decomposed into three key components:route discovery,route maintenance (including route refreshing and route failure handling) and data forwarding.Moreover,component based ant routing protocol (CBAR) was proposed.For purpose of analysis,it only maintained basic ant routing process,and it was simple and efficient with a low overhead.Subsequently,different mechanisms used in every component and their effect on performance were analyzed and tested by simulations.Finally,future research strategies and trends were also summarized.展开更多
Cone penetration testing (CPT) is an extensively utilized and cost effective tool for geotechnical site characterization. CPT consists of pushing at a constant rate an electronic cone into penetrable soils and recordi...Cone penetration testing (CPT) is an extensively utilized and cost effective tool for geotechnical site characterization. CPT consists of pushing at a constant rate an electronic cone into penetrable soils and recording the resistance to the cone tip (q<sub>c</sub> value). The measured q<sub>c</sub> values (after correction for the pore water pressure) are utilized to estimate soil type and associated soil properties based predominantly on empirical correlations. The most common cone tips have associated areas of 10 cm<sup>2</sup> and 15 cm<sup>2</sup>. Investigators also utilized significantly larger cone tips (33 cm<sup>2</sup> and 40 cm<sup>2</sup>) so that gravelly soils can be penetrated. Small cone tips (2 cm<sup>2</sup> and 5 cm<sup>2</sup>) are utilized for shallow soil investigations. The cone tip resistance measured at a particular depth is affected by the values above and below the depth of interest which results in a smoothing or blurring of the true bearing values. Extensive work has been carried out in mathematically modelling the smoothing function which results in the blurred cone bearing measurements. This paper outlines a technique which facilitates estimating the dominant parameters of the cone smoothing function from processing real cone bearing data sets. This cone calibration technique is referred to as the so-called CPSPE algorithm. The mathematical details of the CPSPE algorithm are outlined in this paper along with the results from a challenging test bed simulation.展开更多
As an effective and universal acaricide, amitraz is widely used on beehives against varroasis caused by the mite Varroa jacobsoni. Its residues in honey pose a great danger to human health. In this study, a sensitive,...As an effective and universal acaricide, amitraz is widely used on beehives against varroasis caused by the mite Varroa jacobsoni. Its residues in honey pose a great danger to human health. In this study, a sensitive, rapid, and environmentally friendly surface-enhanced Raman spectroscopy method (SERS) was developed for the determination of trace amount of amitraz in honey with the use of silver nanorod (AgNR) array substrate. The AgNR array substrate fabricated by an oblique angle deposition technique exhibited an excellent SERS activity with an enhancement factor of -10^7. Density function theory was employed to assign the characteristic peak of amitraz. The detection of amitraz was further explored and amitraz in honey at concentrations as low as 0.08 mg/kg can be identified. Specifically, partial least square regression analysis was employed to correlate the SERS spectra in full-wavelength with Camitraz to afford a multiple-quantitative amitraz predicting model. Preliminary results show that the predicted concentrations of amitraz in honey samples are in good agreement with their real concentrations. Compared with the conventional univariate quantitative model based on single peak’s intensity, the proposed multiple-quantitative predicting model integrates all the characteristic peaks of amitraz, thus offering an improved detecting accuracy and anti-interference ability.展开更多
文摘The accurate prediction of the friction angle of clays is crucial for assessing slope stability in engineering applications.This study addresses the importance of estimating the friction angle and presents the development of four soft computing models:YJ-FPA-MLPnet,YJ-CRO-MLPnet,YJ-ACOC-MLPnet,and YJCSA-MLPnet.First of all,the Yeo-Johnson(YJ)transformation technique was used to stabilize the variance of data and make it more suitable for parametric statistical models that assume normality and equal variances.This technique is expected to improve the accuracy of friction angle prediction models.The friction angle prediction models then utilized multi-layer perceptron neural networks(MLPnet)and metaheuristic optimization algorithms to further enhance performance,including flower pollination algorithm(FPA),coral reefs optimization(CRO),ant colony optimization continuous(ACOC),and cuckoo search algorithm(CSA).The prediction models without the YJ technique,i.e.FPA-MLPnet,CRO-MLPnet,ACOC-MLPnet,and CSA-MLPnet,were then compared to those with the YJ technique,i.e.YJ-FPA-MLPnet,YJ-CRO-MLPnet,YJ-ACOC-MLPnet,and YJ-CSA-MLPnet.Among these,the YJ-CRO-MLPnet model demonstrated superior reliability,achieving an accuracy of up to 83%in predicting the friction angle of clay in practical engineering scenarios.This improvement is significant,as it represents an increase from 1.3%to approximately 20%compared to the models that did not utilize the YJ transformation technique.
基金supported by the Joint Postdoc Scheme with Non-local Institutions of the Hong Kong Polytechnic University(Grant No.1-YY4P).
文摘Biomimetic design has recently received widespread attention.Inspired by the Terebridae structure,this paper provides a structural form for suppressing vortex-induced vibration(VIV)response.Four different structural forms are shown,including the traditional smooth cylinder(P0),and the Terebridae-inspired cylinder with the helical angle of 30°(P_(30)),60°(P_(60)),and 90°(P_(90)).Computational fluid dynamics(CFD)method is adopted to solve the flow pass the Terebridae-inspired structures,and the vibration equation is solved using the Newmark-βmethod.The results show that for P_(30),P_(60) and P_(90),the VIV responses are effectively suppressed in the lock-in region,and P_(60) showed the best VIV suppression performance.The transverse amplitude and the downstream amplitude can be reduced by 82.67%and 91.43%respectively for P_(60) compared with that for P0,and the peak of the mean-drag coefficient is suppressed by 53.33%.The Q-criterion vortices of P_(30),P_(60),and P_(90) are destroyed,with irregular vortices shedding.It is also found that the boundary layer separation is located on the Terebridae-inspired ribs.The twisted ribs cause the separation point to constantly change along the spanwise direction,resulting in the development of the boundary layer separation being completely destroyed.The strength of the wake flow is significantly weakened for the Terebridae-inspired cylinder.
基金supported by a Grant(2024-MOIS35-005)of Policy-linked Technology Development Program on Natural Disaster Prevention and Mitigation funded by Ministry of Interior and Safety(MOIS,Korea).
文摘Cavitation is a common issue in pumps,causing a decrease in pump head,a fall in volumetric efficiency,and an intensification of outlet flow pulsation.It is one of the main hazards that affect the regular operation of the pump.Research on pump cavitation mainly focuses on mixed flow pumps,jet pumps,external spur gear pumps,etc.However,there are few cavitation studies on external herringbone gear pumps.In addition,pumps with different working principles significantly differ in the flow and complexity of the internal flow field.Therefore,it is urgent to study the cavitation characteristics of external herringbone gear pumps.Compared with experimentalmethods,visual research and cavitation area identification are achieved through computation fluid dynamic(CFD),and changing the boundary conditions and shape of the gear rotor is easier.The simulation yields a head error of only 0.003%under different grid numbers,and the deviation between experimental and simulation results is less than 5%.The study revealed that cavitation causes flow pulsation at the outlet,and the cavitation serious area is mainly distributed in the meshing gap and meshing area.Cavitation can be inhibited by reducing the speed,increasing the inlet pressure,and changing the helix angle can be achieved.For example,when the inlet pressure is 5 bar,the maximumgas volume fraction in themeshing area is less than 50%.These results provide a reference for optimizing the design and finding the optimal design parameters to reduce or eliminate cavitation.
基金supported in part by the National Natural Science Foundation of China (No. 12202363)。
文摘Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft unsteady aerodynamic design and flight dynamics analysis.In this paper,aiming at the problems of poor generalization of traditional aerodynamic models and intelligent models,an intelligent aerodynamic modeling method based on gated neural units is proposed.The time memory characteristics of the gated neural unit is fully utilized,thus the nonlinear flow field characterization ability of the learning and training process is enhanced,and the generalization ability of the whole prediction model is improved.The prediction and verification of the model are carried out under the maneuvering flight condition of NACA0015 airfoil.The results show that the model has good adaptability.In the interpolation prediction,the maximum prediction error of the lift and drag coefficients and the moment coefficient does not exceed 10%,which can basically represent the variation characteristics of the entire flow field.In the construction of extrapolation models,the training model based on the strong nonlinear data has good accuracy for weak nonlinear prediction.Furthermore,the error is larger,even exceeding 20%,which indicates that the extrapolation and generalization capabilities need to be further optimized by integrating physical models.Compared with the conventional state space equation model,the proposed method can improve the extrapolation accuracy and efficiency by 78%and 60%,respectively,which demonstrates the applied potential of this method in aerodynamic modeling.
文摘The conventional approach to optimizing tilt angles for fixed solar panels aims to maximize energy generation over the entire year. However, in the context of a supply controlled electric grid, where solar energy availability varies, this criterion may not be optimal. This study explores two alternative optimization criteria focused on maximizing baseload supply potential and minimizing required storage capacity to address seasonality in energy generation. The optimal tilt angles determined for these criteria differed significantly from the standard approach. This research highlights additional factors crucial for designing solar power systems beyond gross energy generation, essential for the global transition towards a fully renewable energy-based electric grid in the future.
基金the financial support from Baker Hughes Company and the U.S.National Science Foundation(NSF CAREER Award 1351296).
文摘The wettability of rocks affects the balance between capillary and viscous forces during multiphase flow through porous media,which in turn determines the fluid displacement process governing the recovery of oil from subsurface formations.In this work,the mechanism of wettability reversal of aged synthetic sandstones by metal oxide nanoparticles(SiO_(2) and Al_(2)O_(3))was investigated with particular focus on the impact of surface roughness,zeta potential,and temperature.The synthetic surfaces were prepared from powders of Berea sandstone with known grain size ranges and their average roughness and roughness ratio were obtained from the 3D surface reconstruction of their microscope images.Each surface was subsequently aged in Permian crude oil to alter its wettability.For surfaces with larger grain sizes and lower surface roughness ratios,the lower capillary pressure allowed stronger oil/surface interactions,leading to enhanced oil-wetness.The wettability alteration effects of nanoparticles were then examined through real-time top view imaging and dynamic front view contact angle experiments.The negatively charged SiO_(2) nanoparticles rapidly reversed the sandstone wettability,indicating their potential applicability as wettability alteration agents.By contrast,the positively charged Al_(2)O_(3) counterpart caused no wettability reversal.The mechanism of wettability alteration was further studied by microscale interaction analyses and nanoscale transmission electron microscopy.Because nanoparticles were only a few nanometers large,the microscale roughness had a negligible effect on the wettability reversal.Instead,the combined effect of van der Waals dispersion forces and surface-charge-induced electrostatic forces were recognized as the two key factors affecting the wettability of sandstone particles.Such interactions may be curbed at elevated temperatures due to a decrease in the zeta potential and colloidal stability of the particles.
基金National Natural Science Foundation of China ( 70 0 72 0 33)
文摘The data we use to express angle or direction are entitled directional data. In a plan right angled coordinate system the traditional control chart can’t solve the quality control problem which the characteristic value is angle. This paper analyses and calculates the one valued control limits by control chart of angles.
基金supported by the National Natural Science Foundation of China(No.41174087,41204089)the National Oil and Gas Major Project(No.2011ZX05005-005)
文摘We investigated the effect of microscopic distribution modes of hydrates in porous sediments, and the saturation of hydrates and free gas on the elastic properties of saturated sediments. We simulated the propagation of seismic waves in gas hydrate-bearing sediments beneath the seafloor, and obtained the common receiver gathers of compressional waves(P-waves) and shear waves(S-waves). The numerical results suggest that the interface between sediments containing gas hydrates and free gas produces a large-amplitude bottomsimulating reflector. The analysis of multicomponent common receiver data suggests that ocean-bottom seismometers receive the converted waves of upgoing P- and S-waves, which increases the complexity of the wavefield record.
基金Kuwait University General Research Facilities (GE01/17,GE01/07,and GS03/01)for their support in conducting the necessary experimental work of this study。
文摘This study investigated experimentally the coupled effects of hydrophilic SiO_(2) nanoparticles(NPs)and low-salinity water(LSW)on the wettability of synthetic clay-free Berea sandstone.Capillary pressure,interfacial tension(IFT),contact angle,Zeta potential,and dynamic displacement measurements were performed at various NP mass fractions and brine salinities.The U.S.Bureau of Mines(USBM)index was used to quantify the wettability alteration.Furthermore,the NP stability and retention and the effect of enhanced oil recovery by nanofluid were examined.The results showed that LSW immiscible displacement with NPs altered the wettability toward more water wet.With the decreasing brine salinity and increasing NP mass fraction,the IFT and contact angle decreased.The wettability alteration intensified most as the brine salinity decreased to 4000 mg/L and the NP mass fraction increased to 0.075%.Under these conditions,the resulting incremental oil recovery factor was approximately 13 percentage points.When the brine salinity was 4000 mg/L and the NP mass fraction was 0.025%,the retention of NPs caused the minimum damage to permeability.
基金Key Project of Medicine,Science and Technical Committee,China(No.10411953300)
文摘Coronary stent is used to treat stenosis artery by recovering the luminal diameter of artery and maintaining the normal blood flow. The geometry of coronary stent is an important factor for the radial force. In this study,the relation between the radial force of stent and crown angle was discussed. The result showed that there was no particular rule between the radial force of stent and the crown angle. The maximum radial force of stent was obtained when the crown angle was 50. 04° and the minimum radial force was got when the crown angle was 75°.
基金This work was funded by National Natural Science Foundation of China (No. 40474044).
文摘Mathematical geophone (MG) and equal-time stacking (ETS) principles are used to implement seismic prestack forward modeling with irregular surfaces using the oneway acoustic wave-equation. This method receives seismic primary reflections from the subsurface using a set of virtual MGs. The receivers can be located anywhere on an irregular observing surface. Moreover, the ETS method utilizes the one-way acoustic wave equation to easily and quickly image and extrapolate seismic reflection data. The method is illustrated using high single-noise ratio common shot gathers computed by numerical forward modeling of two simple models, one with a flat surface and one with an irregular surface, and a complex normal fault model. A prestack depth migration method for irregular surface topography was used to reoroduce the normal fault model with high accuracy.
基金This work was supported by the National Natural Science Foundation of China(62071475,61890541,62171447).
文摘The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the target crosses the baseline is constructed.Then,the detection method of the for-ward-scatter signal based on the Rényi entropy of time-fre-quency distribution is proposed and the detection performance with different time-frequency distributions is compared.Simula-tion results show that the method based on the smooth pseudo Wigner-Ville distribution(SPWVD)can achieve the best perfor-mance.Next,combined with the geometry of FSR,the influence on detection performance of the relative distance between the target and the baseline is analyzed.Finally,the proposed method is validated by the anechoic chamber measurements and the results show that the detection ability has a 10 dB improvement compared with the common constant false alarm rate(CFAR)detection.
文摘In dialysis treatment, the radio-cephalic arteriovenous fistula (RCAVF) is a commonly used fistula, yet its low maturation rate remains a challenge. To enhance surgical outcomes, the relationship between stenosis-prone locations and RCAVF anastomosis angle is studied during maturation by developing two sets of RCAVF models for early (non-mature) and mature RCAVFs at five anastomosis angles. The impact of hemodynamics and wall shear stress (WSS) is examined to determine optimal anastomotic angles. Results indicate that acute angles produce more physiological WSS distributions and fewer disturbed regions, with early stenosis-prone regions located near the anastomosis that shift to the bending venous segment during remodeling. A pilot study comparing clinical and numerical results is conducted for validation.
基金The National Natural Science Foundation of China under contract No.U2006213。
文摘Fine-grained silt is widely distributed in the Huanghe River Delta(HRD)in China,and the sedimentary structure is complex,meaning that the clay content in the silt is variable.The piezocone penetration test(CPTu)is the most widely approved in situ test method.It can be used to invert soil properties and interpret soil behavior.To analyse the strength properties of surface sediments in the HRD,this paper evaluated the friction angle and its inversion formula through the CPTu penetration test and monotonic simple shear test and other soil unit experiments.The evaluation showed that the empirical formula proposed by Kulhawy and Mayne had better prediction and inversion effect.The HRD silts with clay contents of 9.2%,21.4%and 30.3%were selected as samples for the CPTu variable rate penetration test.The results show as follows.(1)The effects of the clay content on the tip resistance and the pore pressure of silt under different penetration rates were summarized.The tip resistance Q_t is strongly dependent on the clay content of the silt,the B_(q)value of the silt tends to 0 and is not significantly affected by the change of the CPTu penetration rate.(2)Five soil behavior type classification charts and three soil behavior type indexes based on CPTu data were evaluated.The results show that the soil behavior type classification chart based on soil behavior type index ISBT,the Robertson 2010 behavior type classification chart are more suitable for the silty soil in the HRD.
基金Project supported by the National Natural Science Foundation of China(Nos.11972365,12102458,11972354)the China Agricultural University Education Foundation(No.1101-2412001)。
文摘Two problems of a one-dimensional(1D)piezoelectric quasicrystal(QC)wedge are investigated,i.e.,the two sides of the wedge subject to uniform tractions and the wedge apex subject to the concentrated force.By virtue of the Stroh formalism and Barnett-Lothe matrices,the analytical expressions of the displacements and stresses are derived,and the generalized solutions for the critical wedge angles are discussed.Numerical examples are given to present the mechanical behaviors of the wedge in each field.The results indicate that the effects of the uniform tractions and the concentrated force on the phonon field displacement are larger than those on the phason field.
基金Project(61225012)supported by the National Science Foundation for Distinguished Young Scholars of ChinaProjects(61070162,71071028,70931001)supported by the National Natural Science Foundation of China+4 种基金Project(20120042130003)supported by the Specialized Research Fund of the Doctoral Program of Higher Education for the Priority Development Areas,ChinaProjects(20100042110025,20110042110024)supported by the Specialized Research Fund for the Doctoral Program of Higher Education,ChinaProject(2012)supported by the Specialized Development Fund for the Internet of Things from the Ministry of Industry and Information Technology of ChinaProject(N110204003)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(L2013001)supported by the Scientific Research Fund of Liaoning Provincial Education Department,China
文摘To deeply exploit the mechanisms of ant colony optimization (ACO) applied to develop routing in mobile ad hoe networks (MANETS),some existing representative ant colony routing protocols were analyzed and compared.The analysis results show that every routing protocol has its own characteristics and competitive environment.No routing protocol is better than others in all aspects.Therefore,based on no free lunch theory,ant routing protocols were decomposed into three key components:route discovery,route maintenance (including route refreshing and route failure handling) and data forwarding.Moreover,component based ant routing protocol (CBAR) was proposed.For purpose of analysis,it only maintained basic ant routing process,and it was simple and efficient with a low overhead.Subsequently,different mechanisms used in every component and their effect on performance were analyzed and tested by simulations.Finally,future research strategies and trends were also summarized.
文摘Cone penetration testing (CPT) is an extensively utilized and cost effective tool for geotechnical site characterization. CPT consists of pushing at a constant rate an electronic cone into penetrable soils and recording the resistance to the cone tip (q<sub>c</sub> value). The measured q<sub>c</sub> values (after correction for the pore water pressure) are utilized to estimate soil type and associated soil properties based predominantly on empirical correlations. The most common cone tips have associated areas of 10 cm<sup>2</sup> and 15 cm<sup>2</sup>. Investigators also utilized significantly larger cone tips (33 cm<sup>2</sup> and 40 cm<sup>2</sup>) so that gravelly soils can be penetrated. Small cone tips (2 cm<sup>2</sup> and 5 cm<sup>2</sup>) are utilized for shallow soil investigations. The cone tip resistance measured at a particular depth is affected by the values above and below the depth of interest which results in a smoothing or blurring of the true bearing values. Extensive work has been carried out in mathematically modelling the smoothing function which results in the blurred cone bearing measurements. This paper outlines a technique which facilitates estimating the dominant parameters of the cone smoothing function from processing real cone bearing data sets. This cone calibration technique is referred to as the so-called CPSPE algorithm. The mathematical details of the CPSPE algorithm are outlined in this paper along with the results from a challenging test bed simulation.
基金supported by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (No.16KJB510009 and No.17KJB510017)Jiangsu Province Natural Science Foundation of China (BK20150228)
文摘As an effective and universal acaricide, amitraz is widely used on beehives against varroasis caused by the mite Varroa jacobsoni. Its residues in honey pose a great danger to human health. In this study, a sensitive, rapid, and environmentally friendly surface-enhanced Raman spectroscopy method (SERS) was developed for the determination of trace amount of amitraz in honey with the use of silver nanorod (AgNR) array substrate. The AgNR array substrate fabricated by an oblique angle deposition technique exhibited an excellent SERS activity with an enhancement factor of -10^7. Density function theory was employed to assign the characteristic peak of amitraz. The detection of amitraz was further explored and amitraz in honey at concentrations as low as 0.08 mg/kg can be identified. Specifically, partial least square regression analysis was employed to correlate the SERS spectra in full-wavelength with Camitraz to afford a multiple-quantitative amitraz predicting model. Preliminary results show that the predicted concentrations of amitraz in honey samples are in good agreement with their real concentrations. Compared with the conventional univariate quantitative model based on single peak’s intensity, the proposed multiple-quantitative predicting model integrates all the characteristic peaks of amitraz, thus offering an improved detecting accuracy and anti-interference ability.