A mechanical model of the quasi-static interface of a mode I crack between a rigid and a pressure-sensitive viscoelastic material was established to investigate the mechanical characteristic of ship-building engineeri...A mechanical model of the quasi-static interface of a mode I crack between a rigid and a pressure-sensitive viscoelastic material was established to investigate the mechanical characteristic of ship-building engineering hi-materials. In the stable growth stage, stress and strain have the same singularity, ie (σ, ε) ∝ r^-1/(n-1). The variable-separable asymptotic solutions of stress and strain at the crack tip were obtained by adopting Airy's stress function and the numerical results of stress and strain in the crack-tip field were obtained by the shooting method. The results showed that the near-tip fields are mainly governed by the power-hardening exponent n and the Poisson ratio v of the pressure-sensitive material. The fracture criterion of mode I quasi-static crack growth in pressure-sensitive materials, according to the asymptotic analyses of the crack-tip field, can be viewed from the perspective of strain.展开更多
The entanglement properties of the system of two two-level atoms interacting with a single-mode vacuum field are explored. The quantum entanglement between two two-level atoms and a single-mode vacuum field is investi...The entanglement properties of the system of two two-level atoms interacting with a single-mode vacuum field are explored. The quantum entanglement between two two-level atoms and a single-mode vacuum field is investigated by using the quantum reduced entropy; the quantum entanglement between two two-level atoms, and that between a single two-level atom and a single-mode vacuum field are studied in terms of the quantum relative entropy. The influences of the atomic dipole-dipole interaction on the quantum entanglement of the system are also discussed. Our results show that three entangled states of two atoms-field, atom-atom, and atom-field can be prepared via two two-level atoms interacting with a single-mode vacuum field.展开更多
We investigate the preparation and the control of entangled states in a system with the two-mode coherent fields interacting with a moving two-level atom via the two-photon transition. We discuss entanglement properti...We investigate the preparation and the control of entangled states in a system with the two-mode coherent fields interacting with a moving two-level atom via the two-photon transition. We discuss entanglement properties between the two-mode coherent fields and a moving two-level atom by using the quantum reduced entropy, and those between the two-mode coherent fields by using the quantum relative entropy. In addition, we examine the influences of the atomic motion and field-mode structure parameter p on the quantum entanglement of the system. Our results show that the period and the duration of the prepared maximal atom-field entangled states and the frequency of maximal two-mode field entangled states can be controlled, and that a sustained entangled state of the two-mode field, which is independent of atomic motion and the evolution time, can be obtained, by choosing appropriately the parameters of atomic motion, field-mode structure, initial state and interaction time of the system.展开更多
This paper investigates the entropy squeezing of a moving two-level atom interacting with the two-mode entangled coherent field via two-photon transition by using an entropic uncertainty relation and the degree of ent...This paper investigates the entropy squeezing of a moving two-level atom interacting with the two-mode entangled coherent field via two-photon transition by using an entropic uncertainty relation and the degree of entanglement between the two-mode fields by using quantum relative entropy.The results obtained from numerical calculation indicate that the squeezed period,the duration of entropy squeezing and the maximal squeezing can be controlled by appropriately choosing the intensity of the light field,the atomic motion and the field-mode structure.The atomic motion leads to the periodic recovery of the initial maximal degree of entanglement between the two-mode fields.Moreover,there exists a corresponding relation between the time evolution properties of the atomic entropy squeezing and those of the entanglement between the two-mode fields.展开更多
A fixed artificial source(greater than 200 kW) was used and the source location was selected at a high resistivity region to ensure high emission efficiency. Some publications used the "earth-ionosphere" mod...A fixed artificial source(greater than 200 kW) was used and the source location was selected at a high resistivity region to ensure high emission efficiency. Some publications used the "earth-ionosphere" mode in modeling the electromagnetic(EM) fields with the offset up to a thousand kilometer, and such EM fields still have a signal/noise ratio of 10-20 dB. This means that a new EM method with fixed source is feasible, but in their calculation, the displacement in air was neglected. In this work, some three-layer modeling results were presented to illustrate the basic EM fields' characteristics in the near, far and waveguide areas under "earth-ionosphere" mode, and a standard is given to distinguish the boundary of near, far and waveguide areas. Due to the influence of the ionosphere and displacement current in the air, the "earth-ionosphere" mode EM fields have an extra waveguide zone, where the fields' behavior is very different from that of the far field zone.展开更多
AIM:To assess the performance of macular ganglion cell-inner plexiform layer thickness(mGCIPLT)and 10-2 visual field(VF)parameters in detecting early glaucoma and evaluating the severity of advanced glaucoma.METHODS:T...AIM:To assess the performance of macular ganglion cell-inner plexiform layer thickness(mGCIPLT)and 10-2 visual field(VF)parameters in detecting early glaucoma and evaluating the severity of advanced glaucoma.METHODS:Totally 127 eyes from 89 participants(36 eyes of 19 healthy participants,45 eyes of 31 early glaucoma patients and 46 eyes of 39 advanced glaucoma patients)were included.The relationships between the optical coherence tomography(OCT)-derived parameters and VF sensitivity were determined.Patients with early glaucoma were divided into eyes with or without central 10°of the VF damages(CVFDs),and the diagnostic performances of OCT-derived parameters were assessed.RESULTS:In early glaucoma,the mGCIPLT was significantly correlated with 10-2 VF pattern standard deviation(PSD;with average mGCIPLT:β=-0.046,95%CI,-0.067 to-0.024,P<0.001).In advanced glaucoma,the mGCIPLT was related to the 24-2 VF mean deviation(MD;with average mGCIPLT:β=0.397,95%CI,0.199 to 0.595,P<0.001),10-2 VF MD(with average mGCIPLT:β=0.762,95%CI,0.485 to 1.038,P<0.001)and 24-2 VF PSD(with average mGCIPLT:β=0.244,95%CI,0.124 to 0.364,P<0.001).Except for the minimum and superotemporal mGCIPLT,the decrease of mGCIPLT in early glaucomatous eyes with CVFDs was more severe than that of early glaucomatous eyes without CVFDs.The area under the curve(AUC)of the average mGCIPLT(AUC=0.949,95%CI,0.868 to 0.982)was greater than that of the average circumpapillary retinal nerve fiber layer thickness(cpRNFLT;AUC=0.827,95%CI,0.674 to 0.918)and rim area(AUC=0.799,95%CI,0.610 to 0.907)in early glaucomatous eyes with CVFDs versus normal eyes.CONCLUSION:The 10-2 VF and mGCIPLT parameters are complementary to 24-2 VF,cpRNFLT and ONH parameters,especially in detecting early glaucoma with CVFDs and evaluating the severity of advanced glaucoma in group level.展开更多
From the viewpoint of quantum information, this paper studies preparation and control of atomic optimal entropy squeezing states (AOESS) for a moving two-level atom under control of the two-mode squeezing vacuum fie...From the viewpoint of quantum information, this paper studies preparation and control of atomic optimal entropy squeezing states (AOESS) for a moving two-level atom under control of the two-mode squeezing vacuum fields. Necessary conditions of preparation of the AOESS are analysed, and numerical verification of the AOESS is finished. It shows that the AOESS can be prepared by controlling the time of the atom interaction with the field, cutting the entanglement between the atom and field, and adjusting squeezing factor of the field. An atomic optimal entropy squeezing sudden generation in different components can alternately be realized by controlling the field-mode structure parameter.展开更多
We have considered two distant mesoscopic superconducting quantum interference device (SQUID) rings A and B in the presence of two-mode nonclassical state fields and investigated the correlation of the supercurrents...We have considered two distant mesoscopic superconducting quantum interference device (SQUID) rings A and B in the presence of two-mode nonclassical state fields and investigated the correlation of the supercurrents in the two rings using the normalized correlation function CAB. We show that when the parameter c~ is very small for the separable state with the density matrix ρ = {│α,-α) (α,-α│ + │-α, α) (-α, α│}/2 and entangled coherent state {(ECS) [u) = N1(│α, -α) + │-α, α)} fields, the dynamic behaviours of the normalized correlation function CAB are similar, but it is quite different for the entangled coherent state │u') = N2(│α,-α) - │-α, α)} field. When the parameter α is very large, the dynamic behaviours of CAB are almost the same for the separable state, entangled coherent state │u) and [u'〉 fields. For the two-mode squeezed vacuum state field the maximum of CAB increases monotonically with the squeezing parameter γ, and as γ→ ∞ , CAB→ 1. This means that the supercurrents in the two rings A and B are quantum mechanically correlated perfectly. It is concluded that not all the quantum correlations in the two-mode nonclassical state field can be transferred to the supercurrents; and the transfer depends on the state of the two-mode nonclassical state field prepared.展开更多
Metal–dielectric nanostructures in the optical anapole modes are essential for light–matter interactions due to the low material loss and high near-field enhancement. Herein, a hybrid metal–dielectric nanoantenna c...Metal–dielectric nanostructures in the optical anapole modes are essential for light–matter interactions due to the low material loss and high near-field enhancement. Herein, a hybrid metal–dielectric nanoantenna composed of six wedgeshaped gold(Au) nanoblocks as well as silica(SiO2) and silicon(Si) nanodiscs is designed and analyzed by the finite element method(FEM). The nanoantenna exhibits flexibility in excitation and manipulation of the anapole mode through the strong coupling between the metal and dielectrics, consequently improving the near-field enhancement at the gap. By systematically optimizing the structural parameters, the electric field enhancement factors at wavelengths corresponding to the anapole modes(AM1 and AM2) can be increased to 518 and 1482, respectively. Moreover, the nanoantenna delivers great performance in optical sensing such as a sensitivity of 550 nm/RIU. The results provide guidance and insights into enhancing the coupling between metals and dielectrics for applications such as surface-enhanced Raman scattering and optical sensing.展开更多
The effects of an applied low frequency field on the dynamics of a two-level atom interacting with a single-mode field are investigated. It is shown that the time evolution of the atomic population is mainly controlle...The effects of an applied low frequency field on the dynamics of a two-level atom interacting with a single-mode field are investigated. It is shown that the time evolution of the atomic population is mainly controlled by the coupling constants and the frequency of the low frequency field, which leads to a low frequency modulation function for the time evolution of the upper state population. The amplitude of the modulation function becomes larger as the coupling constants increase. The frequency of the modulation function is proportional to the frequency of the low frequency field, and decreases with increasing coupling constant.展开更多
An elastic-viscoplastic mechanics model is used to investigate asymptotically the mode Ⅲ dynamically propagating crack tip field in elastic-viscoplastic materials. The stress and strain fields at the crack tip posses...An elastic-viscoplastic mechanics model is used to investigate asymptotically the mode Ⅲ dynamically propagating crack tip field in elastic-viscoplastic materials. The stress and strain fields at the crack tip possess the same power-law singularity under a linear-hardening condition. The singularity exponent is uniquely determined by the viscosity coefficient of the material. Numerical results indicate that the motion parameter of the crack propagating speed has little effect on the zone structure at the crack tip. The hardening coefficient dominates the structure of the crack-tip field. However, the secondary plastic zone has little influence on the field. The viscosity of the material dominates the strength of stress and strain fields at the crack tip while it does have certain influence on the crack-tip field structure. The dynamic crack-tip field degenerates into the relevant quasi-static solution when the crack moving speed is zero. The corresponding perfectly-plastic solution is recovered from the linear-hardening solution when the hardening coefficient becomes zero.展开更多
The characteristics of optical waveguide of human photoreceptors play important roles in vision. The mode-field-diameter (MFD) is a very important parameter of a single-mode waveguide, and it is related to many import...The characteristics of optical waveguide of human photoreceptors play important roles in vision. The mode-field-diameter (MFD) is a very important parameter of a single-mode waveguide, and it is related to many important optical characteristics of a single-mode waveguide. Here we show that MFDs of outer segments of human foveal cones are close to the minimum values at their geometric diameter for outer segments of foveal cones. Small MFD of outer segment is important for eyes to have high spatial resolution and low interaction between neighboring cones. We propose that the ellipsoids of foveal cones act as spot size converters to reduce the coupling losses between myoids and outer segments.展开更多
This paper analyzes the characteristic of matching efficiency between the fundamental mode of two kinds of optical waveguides and its Gaussian approximate field.Then, it presents a new method where the mode-field half...This paper analyzes the characteristic of matching efficiency between the fundamental mode of two kinds of optical waveguides and its Gaussian approximate field.Then, it presents a new method where the mode-field half-width of Caussian approximation for the fundamental mode should be defined according to the maximal matching efficiency method. The relationship between the mode-field half-width of the Gaussian approximate field obtained from the maximal matching efficiency and normalized frequency is studied; furthermore, two formulas of mode-field half-widths as a function of normalized frequency are proposed.展开更多
The optimal magnetizing fields of the variable polarization effects of ferrite are studied by using thecoupling-wave(cw)theory,vaiational principle and optimization techniques.Several kinds of shapes of themagnetic li...The optimal magnetizing fields of the variable polarization effects of ferrite are studied by using thecoupling-wave(cw)theory,vaiational principle and optimization techniques.Several kinds of shapes of themagnetic line of force and some valuable results of the optimal magnetizing field are given.The theoretical cal-culations are in good agreement with the experimental results.展开更多
The properties of the field quantum entropy evolution in a system of a single-mode squeezed coherent state field interacting with a two-level atom is studied by utilizing the complete quantum theory, and we focus our ...The properties of the field quantum entropy evolution in a system of a single-mode squeezed coherent state field interacting with a two-level atom is studied by utilizing the complete quantum theory, and we focus our attention on the discussion of the influences of field squeezing parameter γ, atomic distribution angle θ and coupling strength g between the field and the atom on the properties of the evolution of field quantum entropy. The results obtained from numerical calculation indicate that the amplitude of oscillation of field quantum entropy evolution decreases with the increasing of squeezing parameter γ, and that both atomic distribution angle θ and coupling strength g between the field and the atom can influence the periodicity of field quantum entropy evolution.展开更多
Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding pro...Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding process were numerically simulated and experimentally measured. The results show that the rotated parabola body heat source is fit for the simulation of the electron beam welding. The temperature distribution is asymmetric along the weld center and the temperature in the titanium alloy plate is higher than that in the 304 STS plate. The thermal stress also appears to be in asymmetric distribution. The residual tensile stress mainly exists in the weld at the 304 STS side. The copper filler metal decreases the peak temperature and temperature grade in the joint as well as the residual stress. The longitudinal and lateral residual tensile strengths reduce by 66 MPa and 31 MPa, respectively. From the temperature and residual stress, it is concluded that copper is a good filler metal candidate for the electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel.展开更多
Measurements of N2O emissions from conventional rice cultivation (CRC), CRC with straw mulching, system of rice intensification (SRI) and SRI with plastic film mulching were conducted through static chamber/gas-...Measurements of N2O emissions from conventional rice cultivation (CRC), CRC with straw mulching, system of rice intensification (SRI) and SRI with plastic film mulching were conducted through static chamber/gas-chromatography techniques. The results show that daily fluctuation of N2O emissions in jointing stage are much higher than in others. A type peak of N2O seasonal emission presented between jointing and bearing stages companying with high daily average temperature and low precipitation. Biomass and leaf stomatal conductance were observed. Total quantities of N2O emission were budgeted. The results showed that after jointing stage the average N2O emission flux of SRI with plastic film mulching increased significantly than CRC with straw mulching and SRI, the leaf stomatal conductance of those showed the same trend (p〈 0.05). Yield and total quantity of N20 emission in CRC with straw mulching enhanced 13. 7% and 10.7% compared with those of CRC, respectively. The total quantity of N20 emissions reduced 3. 6% in SRI with plastic film mulching compared with CRC, however, the yield increase of that was not significant.展开更多
The Green's function is used to solve the scattering far fieldsolution of SH-wave by a mov- able rigid cylindrical interfaceinclusion in a linear elastic body. First, a suitable Green'sfunction is devel- oped,...The Green's function is used to solve the scattering far fieldsolution of SH-wave by a mov- able rigid cylindrical interfaceinclusion in a linear elastic body. First, a suitable Green'sfunction is devel- oped, which is the fundamental displacementsolution of an elastic half space with a movable rigid half-cylin-drical inclusion impacted by out-of-plane harmonic line source loadedat any point of its horizontal surface.展开更多
基金Supported by Heilongjiang Province Foundation under Grant No.LC08C02
文摘A mechanical model of the quasi-static interface of a mode I crack between a rigid and a pressure-sensitive viscoelastic material was established to investigate the mechanical characteristic of ship-building engineering hi-materials. In the stable growth stage, stress and strain have the same singularity, ie (σ, ε) ∝ r^-1/(n-1). The variable-separable asymptotic solutions of stress and strain at the crack tip were obtained by adopting Airy's stress function and the numerical results of stress and strain in the crack-tip field were obtained by the shooting method. The results showed that the near-tip fields are mainly governed by the power-hardening exponent n and the Poisson ratio v of the pressure-sensitive material. The fracture criterion of mode I quasi-static crack growth in pressure-sensitive materials, according to the asymptotic analyses of the crack-tip field, can be viewed from the perspective of strain.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374025).
文摘The entanglement properties of the system of two two-level atoms interacting with a single-mode vacuum field are explored. The quantum entanglement between two two-level atoms and a single-mode vacuum field is investigated by using the quantum reduced entropy; the quantum entanglement between two two-level atoms, and that between a single two-level atom and a single-mode vacuum field are studied in terms of the quantum relative entropy. The influences of the atomic dipole-dipole interaction on the quantum entanglement of the system are also discussed. Our results show that three entangled states of two atoms-field, atom-atom, and atom-field can be prepared via two two-level atoms interacting with a single-mode vacuum field.
基金Project supported by the National Natural Science Foundation of China (Grant No 19874020), the Natural Science Foundation of Hunan Province, China (Grant No 05JJ30004), and the Scientific Research Fund of Hunan Provincial Education Department, China(Grant No 03c543).
文摘We investigate the preparation and the control of entangled states in a system with the two-mode coherent fields interacting with a moving two-level atom via the two-photon transition. We discuss entanglement properties between the two-mode coherent fields and a moving two-level atom by using the quantum reduced entropy, and those between the two-mode coherent fields by using the quantum relative entropy. In addition, we examine the influences of the atomic motion and field-mode structure parameter p on the quantum entanglement of the system. Our results show that the period and the duration of the prepared maximal atom-field entangled states and the frequency of maximal two-mode field entangled states can be controlled, and that a sustained entangled state of the two-mode field, which is independent of atomic motion and the evolution time, can be obtained, by choosing appropriately the parameters of atomic motion, field-mode structure, initial state and interaction time of the system.
基金Project supported by the Scientific and Technological Program Foundation of Dezhou,Shandong Province of China (Grant No20080153)the Scientific Research Fund of Dezhou University of China (Grant No 07024)
文摘This paper investigates the entropy squeezing of a moving two-level atom interacting with the two-mode entangled coherent field via two-photon transition by using an entropic uncertainty relation and the degree of entanglement between the two-mode fields by using quantum relative entropy.The results obtained from numerical calculation indicate that the squeezed period,the duration of entropy squeezing and the maximal squeezing can be controlled by appropriately choosing the intensity of the light field,the atomic motion and the field-mode structure.The atomic motion leads to the periodic recovery of the initial maximal degree of entanglement between the two-mode fields.Moreover,there exists a corresponding relation between the time evolution properties of the atomic entropy squeezing and those of the entanglement between the two-mode fields.
基金Projects(41204054,41541036,41604111)supported by the National Natural Science Foundation of China
文摘A fixed artificial source(greater than 200 kW) was used and the source location was selected at a high resistivity region to ensure high emission efficiency. Some publications used the "earth-ionosphere" mode in modeling the electromagnetic(EM) fields with the offset up to a thousand kilometer, and such EM fields still have a signal/noise ratio of 10-20 dB. This means that a new EM method with fixed source is feasible, but in their calculation, the displacement in air was neglected. In this work, some three-layer modeling results were presented to illustrate the basic EM fields' characteristics in the near, far and waveguide areas under "earth-ionosphere" mode, and a standard is given to distinguish the boundary of near, far and waveguide areas. Due to the influence of the ionosphere and displacement current in the air, the "earth-ionosphere" mode EM fields have an extra waveguide zone, where the fields' behavior is very different from that of the far field zone.
基金National Natural Science Foundation of China(No.81860170).
文摘AIM:To assess the performance of macular ganglion cell-inner plexiform layer thickness(mGCIPLT)and 10-2 visual field(VF)parameters in detecting early glaucoma and evaluating the severity of advanced glaucoma.METHODS:Totally 127 eyes from 89 participants(36 eyes of 19 healthy participants,45 eyes of 31 early glaucoma patients and 46 eyes of 39 advanced glaucoma patients)were included.The relationships between the optical coherence tomography(OCT)-derived parameters and VF sensitivity were determined.Patients with early glaucoma were divided into eyes with or without central 10°of the VF damages(CVFDs),and the diagnostic performances of OCT-derived parameters were assessed.RESULTS:In early glaucoma,the mGCIPLT was significantly correlated with 10-2 VF pattern standard deviation(PSD;with average mGCIPLT:β=-0.046,95%CI,-0.067 to-0.024,P<0.001).In advanced glaucoma,the mGCIPLT was related to the 24-2 VF mean deviation(MD;with average mGCIPLT:β=0.397,95%CI,0.199 to 0.595,P<0.001),10-2 VF MD(with average mGCIPLT:β=0.762,95%CI,0.485 to 1.038,P<0.001)and 24-2 VF PSD(with average mGCIPLT:β=0.244,95%CI,0.124 to 0.364,P<0.001).Except for the minimum and superotemporal mGCIPLT,the decrease of mGCIPLT in early glaucomatous eyes with CVFDs was more severe than that of early glaucomatous eyes without CVFDs.The area under the curve(AUC)of the average mGCIPLT(AUC=0.949,95%CI,0.868 to 0.982)was greater than that of the average circumpapillary retinal nerve fiber layer thickness(cpRNFLT;AUC=0.827,95%CI,0.674 to 0.918)and rim area(AUC=0.799,95%CI,0.610 to 0.907)in early glaucomatous eyes with CVFDs versus normal eyes.CONCLUSION:The 10-2 VF and mGCIPLT parameters are complementary to 24-2 VF,cpRNFLT and ONH parameters,especially in detecting early glaucoma with CVFDs and evaluating the severity of advanced glaucoma in group level.
基金Project supported by the National Natural Science Foundation of China (Grant No. 19874020)the Natural Science Foundation of Hunan Province of China (Grant Nos. 09JJ3012 and 10JJ9002)the Research Foundation of Education Bureau of Hunan Province of China (Grant No. 10A032)
文摘From the viewpoint of quantum information, this paper studies preparation and control of atomic optimal entropy squeezing states (AOESS) for a moving two-level atom under control of the two-mode squeezing vacuum fields. Necessary conditions of preparation of the AOESS are analysed, and numerical verification of the AOESS is finished. It shows that the AOESS can be prepared by controlling the time of the atom interaction with the field, cutting the entanglement between the atom and field, and adjusting squeezing factor of the field. An atomic optimal entropy squeezing sudden generation in different components can alternately be realized by controlling the field-mode structure parameter.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374007).
文摘We have considered two distant mesoscopic superconducting quantum interference device (SQUID) rings A and B in the presence of two-mode nonclassical state fields and investigated the correlation of the supercurrents in the two rings using the normalized correlation function CAB. We show that when the parameter c~ is very small for the separable state with the density matrix ρ = {│α,-α) (α,-α│ + │-α, α) (-α, α│}/2 and entangled coherent state {(ECS) [u) = N1(│α, -α) + │-α, α)} fields, the dynamic behaviours of the normalized correlation function CAB are similar, but it is quite different for the entangled coherent state │u') = N2(│α,-α) - │-α, α)} field. When the parameter α is very large, the dynamic behaviours of CAB are almost the same for the separable state, entangled coherent state │u) and [u'〉 fields. For the two-mode squeezed vacuum state field the maximum of CAB increases monotonically with the squeezing parameter γ, and as γ→ ∞ , CAB→ 1. This means that the supercurrents in the two rings A and B are quantum mechanically correlated perfectly. It is concluded that not all the quantum correlations in the two-mode nonclassical state field can be transferred to the supercurrents; and the transfer depends on the state of the two-mode nonclassical state field prepared.
基金Project supported by the Outstanding young and middleaged research and innovation team of Northeast Petroleum University (Grant No. KYCXTD201801)the Natural Science Foundation Projects of Heilongjiang Province of China (Grant No. LH2021F007)+3 种基金the China Postdoctoral Science Foundation (Grant No. 2020M670881)the Study Abroad returnees merit-based Aid Foundation of Heilongjiang Province of China (Grant No. 070-719900103)the Northeastern University scientific research projects (Grant No. 2019KQ74)the City University of Hong Kong Donation Research (Grant Nos. 9220061 and DON-RMG 9229021),and the City University of Hong Kong Strategic Research (Grant No. SRG 7005505)。
文摘Metal–dielectric nanostructures in the optical anapole modes are essential for light–matter interactions due to the low material loss and high near-field enhancement. Herein, a hybrid metal–dielectric nanoantenna composed of six wedgeshaped gold(Au) nanoblocks as well as silica(SiO2) and silicon(Si) nanodiscs is designed and analyzed by the finite element method(FEM). The nanoantenna exhibits flexibility in excitation and manipulation of the anapole mode through the strong coupling between the metal and dielectrics, consequently improving the near-field enhancement at the gap. By systematically optimizing the structural parameters, the electric field enhancement factors at wavelengths corresponding to the anapole modes(AM1 and AM2) can be increased to 518 and 1482, respectively. Moreover, the nanoantenna delivers great performance in optical sensing such as a sensitivity of 550 nm/RIU. The results provide guidance and insights into enhancing the coupling between metals and dielectrics for applications such as surface-enhanced Raman scattering and optical sensing.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10664002 and 10832005)the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0730)the Program for International Science and Technology Cooperation Program of China (Grant No. 2009DFA02320)
文摘The effects of an applied low frequency field on the dynamics of a two-level atom interacting with a single-mode field are investigated. It is shown that the time evolution of the atomic population is mainly controlled by the coupling constants and the frequency of the low frequency field, which leads to a low frequency modulation function for the time evolution of the upper state population. The amplitude of the modulation function becomes larger as the coupling constants increase. The frequency of the modulation function is proportional to the frequency of the low frequency field, and decreases with increasing coupling constant.
文摘An elastic-viscoplastic mechanics model is used to investigate asymptotically the mode Ⅲ dynamically propagating crack tip field in elastic-viscoplastic materials. The stress and strain fields at the crack tip possess the same power-law singularity under a linear-hardening condition. The singularity exponent is uniquely determined by the viscosity coefficient of the material. Numerical results indicate that the motion parameter of the crack propagating speed has little effect on the zone structure at the crack tip. The hardening coefficient dominates the structure of the crack-tip field. However, the secondary plastic zone has little influence on the field. The viscosity of the material dominates the strength of stress and strain fields at the crack tip while it does have certain influence on the crack-tip field structure. The dynamic crack-tip field degenerates into the relevant quasi-static solution when the crack moving speed is zero. The corresponding perfectly-plastic solution is recovered from the linear-hardening solution when the hardening coefficient becomes zero.
文摘The characteristics of optical waveguide of human photoreceptors play important roles in vision. The mode-field-diameter (MFD) is a very important parameter of a single-mode waveguide, and it is related to many important optical characteristics of a single-mode waveguide. Here we show that MFDs of outer segments of human foveal cones are close to the minimum values at their geometric diameter for outer segments of foveal cones. Small MFD of outer segment is important for eyes to have high spatial resolution and low interaction between neighboring cones. We propose that the ellipsoids of foveal cones act as spot size converters to reduce the coupling losses between myoids and outer segments.
基金Project supported by Natural Science Foundation of the Department of Science & Technology of Fujian Province of China (GrantNo 2007F5040)
文摘This paper analyzes the characteristic of matching efficiency between the fundamental mode of two kinds of optical waveguides and its Gaussian approximate field.Then, it presents a new method where the mode-field half-width of Caussian approximation for the fundamental mode should be defined according to the maximal matching efficiency method. The relationship between the mode-field half-width of the Gaussian approximate field obtained from the maximal matching efficiency and normalized frequency is studied; furthermore, two formulas of mode-field half-widths as a function of normalized frequency are proposed.
文摘The optimal magnetizing fields of the variable polarization effects of ferrite are studied by using thecoupling-wave(cw)theory,vaiational principle and optimization techniques.Several kinds of shapes of themagnetic line of force and some valuable results of the optimal magnetizing field are given.The theoretical cal-culations are in good agreement with the experimental results.
基金Project supported by the Natural Science Foundation of Shaanxi Province (Grant No 2001SL04), the Scientific and Technological Key Program Foundation of Shaanxi Province (Grant No 2002K05-G9).
文摘The properties of the field quantum entropy evolution in a system of a single-mode squeezed coherent state field interacting with a two-level atom is studied by utilizing the complete quantum theory, and we focus our attention on the discussion of the influences of field squeezing parameter γ, atomic distribution angle θ and coupling strength g between the field and the atom on the properties of the evolution of field quantum entropy. The results obtained from numerical calculation indicate that the amplitude of oscillation of field quantum entropy evolution decreases with the increasing of squeezing parameter γ, and that both atomic distribution angle θ and coupling strength g between the field and the atom can influence the periodicity of field quantum entropy evolution.
基金Foundation item:Project (2010CB731704) supported by the National Basic Research Program of ChinaProject (51075189) supported by the National Natural Science Foundation of China
文摘Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding process were numerically simulated and experimentally measured. The results show that the rotated parabola body heat source is fit for the simulation of the electron beam welding. The temperature distribution is asymmetric along the weld center and the temperature in the titanium alloy plate is higher than that in the 304 STS plate. The thermal stress also appears to be in asymmetric distribution. The residual tensile stress mainly exists in the weld at the 304 STS side. The copper filler metal decreases the peak temperature and temperature grade in the joint as well as the residual stress. The longitudinal and lateral residual tensile strengths reduce by 66 MPa and 31 MPa, respectively. From the temperature and residual stress, it is concluded that copper is a good filler metal candidate for the electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel.
文摘Measurements of N2O emissions from conventional rice cultivation (CRC), CRC with straw mulching, system of rice intensification (SRI) and SRI with plastic film mulching were conducted through static chamber/gas-chromatography techniques. The results show that daily fluctuation of N2O emissions in jointing stage are much higher than in others. A type peak of N2O seasonal emission presented between jointing and bearing stages companying with high daily average temperature and low precipitation. Biomass and leaf stomatal conductance were observed. Total quantities of N2O emission were budgeted. The results showed that after jointing stage the average N2O emission flux of SRI with plastic film mulching increased significantly than CRC with straw mulching and SRI, the leaf stomatal conductance of those showed the same trend (p〈 0.05). Yield and total quantity of N20 emission in CRC with straw mulching enhanced 13. 7% and 10.7% compared with those of CRC, respectively. The total quantity of N20 emissions reduced 3. 6% in SRI with plastic film mulching compared with CRC, however, the yield increase of that was not significant.
文摘The Green's function is used to solve the scattering far fieldsolution of SH-wave by a mov- able rigid cylindrical interfaceinclusion in a linear elastic body. First, a suitable Green'sfunction is devel- oped, which is the fundamental displacementsolution of an elastic half space with a movable rigid half-cylin-drical inclusion impacted by out-of-plane harmonic line source loadedat any point of its horizontal surface.