Supercritical flows are ubiquitous in natural environments;however,there is rare 3D anatomy of their deposits.This study uses high-quality 3D seismic datasets from the world’s largest submarine fan,Bengal Fan,to inte...Supercritical flows are ubiquitous in natural environments;however,there is rare 3D anatomy of their deposits.This study uses high-quality 3D seismic datasets from the world’s largest submarine fan,Bengal Fan,to interpret 3D architectures and flow processes of Pliocene undulating bedforms that were related to supercritical flows.Bengal undulating bedforms as documented in this study were developed in unconfined settings,and are seismically imaged as strike-elongated,crescentic bedforms in plan view and as rhythmically undulating,upstream migrating,erosive,discontinuous reflections in section view.Their lee sides are overall 3 to 4 times steeper(0.280 to 1.19°in slope)and 3 to 4 times shorter(117 to 419 m in length)than their stoss flanks and were ascribed to faster(high flow velocities of 2.70 to 3.98 m/s)supercritical flows(Froude numbers of 1.53 to 2.27).Their stoss sides,in contrast,are overall 3 to 4 times gentler(0.120 to 0.270 in slope)and 3 to 4 times longer(410 to 1139 m in length)than their lee flanks and were related to slower(low velocities of 2.35 to 3.05 m/s)subcritical flows(Froude numbers of 0.58 to 0.97).Bengal wave-like features were,thus,created by supercriticalto-subcritical flow transformations through internal hydraulic jumps(i.e.,cyclic steps).They have crests that are positive relative to the surrounding region of the seafloor,suggesting the predominant deposition of draping sediments associated with net-depositional cyclic steps.Turbidity currents forming Bengal wave-like features were,thus,dominated by deposition,resulting in net-depositional cyclic steps.Sandy deposits associated with Bengal net-depositional cyclic steps are imaged themselves as closely spaced,strike-elongated high RMS-attribute patches,thereby showing closely spaced,long and linear,strike-elongated distribution patterns.展开更多
Kesterite Cu2ZnSn(S,Se)4(CZTSSe)solar cells have drawn worldwide attention for their promising photovoltaics performance and earth-abundant element composition,yet the record efficiency of this type of device is still...Kesterite Cu2ZnSn(S,Se)4(CZTSSe)solar cells have drawn worldwide attention for their promising photovoltaics performance and earth-abundant element composition,yet the record efficiency of this type of device is still far lower than its theoretical conversion efficiency.Undesirable band alignment and severe non-radiative recombination at CZTSSe/CdS heterojunction interfaces are the major causes limiting the current/voltage output and overall device performance.Herein,we propose a novel two-step CdS deposition strategy to improve the quality of CZTSSe/CdS heterojunction interface and thereby improve the performance of CZTSSe solar cell.The two-step strategy includes firstly pre-deposits CdS thin layer on CZTSSe absorber layer by chemical bath deposition(CBD),followed with a mild heat treatment to facilitate element inter-diffusion,and secondly deposits an appropriate thickness of CdS layer by CBD to cover the whole surface of pre-deposited CdS and CZTSSe layers.The solar energy conversion efficiency of CZTSSe solar cells with two-step deposited CdS layer approaches to 8.76%(with an active area of about 0.19 cm2),which shows an encouraging improvement of over 87.98%or 30.16%compared to the devices with traditional CBD-deposited CdS layer without and with the mild annealing process,respectively.The performance enhancement by the two-step CdS deposition is attributed to the formation of more favorable band alignment at CZTSSe/CdS interface as well as the effective decrease in interfacial recombination paths on the basis of material and device characterizations.The two-step CdS deposition strategy is simple but effective,and should have large room to improve the quality of CZTSSe/CdS heterojunction interface and further lift up the conversion efficiency of CZTSSe solar cells.展开更多
The current techniques used for the fabrication of nanosteps are normally done by layer growth and then ion beam thinning. There are also extra films grown on the step surfaces in order to reduce the roughness. So the...The current techniques used for the fabrication of nanosteps are normally done by layer growth and then ion beam thinning. There are also extra films grown on the step surfaces in order to reduce the roughness. So the whole process is time consuming. In this paper, a nanoscale step height structure is fabricated by atomic layer deposition (ALD) and wet etching techniques. According to the traceable of the step height value, the fabrication process is controllable. Because ALD technology can grow a variety of materials, aluminum oxide (Al2O3) is used to fabricate the nanostep. There are three steps of Al2O3 in this structure including 8 nm, 18 nm and 44 inn. The thickness of Al2O3 film and the height of the step are measured by anellipsometer. The experimental results show that the thickness of Al2O3 film is consistent with the height of the step. The height of the step is measured by AFM. The measurement results show that the height is related to the number of cycles of ALD and the wet etching time. The bottom and the sidewall surface roughness are related to the wet etching time. The step height is calibrated by Physikaliseh-Technische Bundesanstalt (PTB) and the results were 7.5±1.5 nm, 15.5±2.0 nm and 41.8±2.1 nm, respectively. This research provides a method for the fabrication of step height at nanoscale and the nanostep fabricated is potential used for standard references.展开更多
ZnTe, CdTe, and the ternary alloy CdZnTe are important semiconductor materials used widely for the detection of an important range of electromagnetic radiation as gamma ray and X-ray. Although, recently these material...ZnTe, CdTe, and the ternary alloy CdZnTe are important semiconductor materials used widely for the detection of an important range of electromagnetic radiation as gamma ray and X-ray. Although, recently these materials have acquired renewed importance due to the new explored nanolayer properties of modern devices. In addition, as shown in this work they can be grown using uncomplicated synthesis techniques based on the deposition in vapour phase of the elemental precursors. This work presents the results obtained from the deposition of nanolayers of these materials using the precursor vapour on GaAs and GaSb (001) substrates. This growth technique, extensively known as atomic layer deposition (ALD), allows the layers growth with nanometric dimension. The main results presented in this work are the used growth parameters and the results of the structural characterization of the layers by the means of Raman spectroscopy measurements. Raman scattering shows the peak corresponding to longitudinal optical (LO)-ZnTe, which is weak and slightly redshift in comparison with that reported for the ZnTe bulk at 210 cm^-1. For the case of the CdTe nanolayer, Raman spectra presented the LO-CdTe peak, which is indicative of the successful growth of the layer. Its weak and slightly redshift in comparison with that reported for the CdTe bulk can be related with the nanometric characteristic of this layer. The performed high-resolution X-ray diffraction (HR-XRD) measurement allows to study some important characteristics such as the crystallinity of the grown layer. In addition, the HR-XRD measurement suggests that the crystalline quality has dependence on the growth temperature.展开更多
The three measurement periods: the TOMS Nimbus-7 TOMSN7L3 v008 from 1978 to 1993, the TOMS EP TOMSEPL3 v008 from 1996 to 2005 and the OMI OMTO3d v003 from 2004 to 2008 have allowed the presence of dust to be observed ...The three measurement periods: the TOMS Nimbus-7 TOMSN7L3 v008 from 1978 to 1993, the TOMS EP TOMSEPL3 v008 from 1996 to 2005 and the OMI OMTO3d v003 from 2004 to 2008 have allowed the presence of dust to be observed in the 10°North to 20°North latitudinal band (10 - 20 band) of Africa. The 10 - 20 band has a permanent dust presence. The AERONET data show AOD peaks exceeding 2 in Senegal and Niger (on an AOD scale). The statistical study reveals intra-annual relationships in deposition. In Senegal, a significant deposition is observed.展开更多
The Dachang tin-polymetallic district, Guangxi,China, is one of the largest tin ore fields in the world. Both cassiterite-sulfide and Zn–Cu skarn mineralization are hosted in the Mid-Upper Devonian carbonate-rich sed...The Dachang tin-polymetallic district, Guangxi,China, is one of the largest tin ore fields in the world. Both cassiterite-sulfide and Zn–Cu skarn mineralization are hosted in the Mid-Upper Devonian carbonate-rich sediments adjacent to the underlying Cretaceous Longxianggai granite(91–97 Ma). The Lamo Zn–Cu deposit is a typical skarn deposit in the district and occurs at the contact zone between the Upper Devonian limestone and the granite.The ore minerals mainly consist of sphalerite, arsenopyrite,pyrrhotite, galena, chalcopyrite, and minor molybdenite.However, the age of mineralization and source of the metals are not well constrained. In this study, we use the molybdenite Re–Os dating method and in-situ Pb isotopes of sulfides from the Lamo deposit for the first time in order to directly determine the age of mineralization and the tracing source of metals. Six molybdenite samples yielded a more accurate Re–Os isochron age of 90.0 ± 1.1 Ma(MSWD = 0.72), which is much younger than the reported garnet Sm–Nd isochron age of 95 ± 11 Ma and quartz fluid inclusions Rb–Sr isochron age of 99 ± 6 Ma. This age is also interpreted as the age of Zn–Cu skarn mineralization in the Dachang district. Further, in this study we found that in-situ Pb isotopes of sulfides from the Lamo deposit and feldspars in the district's biotite granite and granitic porphyry dikes have a narrow range and an overlap of Pb isotopic compositions(^(206) Pb/^(204) Pb =18.417–18.594,^(207) Pb/^(204) Pb = 15.641–15.746, and^(208) Pb/^(204) Pb = 38.791–39.073), suggesting that the metals were mainly sourced from Cretaceous granitic magma.展开更多
Atomic layer deposition(ALD)attracts great attention nowadays due to its ability for designing and modifying catalytic systems at the molecular level.There are several reported review papers published recently discuss...Atomic layer deposition(ALD)attracts great attention nowadays due to its ability for designing and modifying catalytic systems at the molecular level.There are several reported review papers published recently discussing this technique in catalysis.However,the mechanism on how the deposited materials improve the catalyst stability and tune the reaction selectivity is still unclear.Herein,catalytic systems created via ALD on stepwise preparation and/or modification under self-limiting reaction conditions are summarized.The effects of deposited materials in terms of electronic/geometry modification over the catalytic nanoparticles(NPs)are discussed.These effects explain the mechanism of the catalytic stability improvement and the selectivity modification.The unique properties of ALD for designing new catalytic systems are further investigated for building up photocatalytic reaction nanobowls,tandem catalyst and bi-active-component metallic catalytic systems.展开更多
A two-year study in a typical red soil region of Southern China was conductedto determine 1) the dry deposition velocity (V_d) for SO_2 and particulate SO_4^(2-) above abroadleaf forest, and 2) atmospheric sulfur flux...A two-year study in a typical red soil region of Southern China was conductedto determine 1) the dry deposition velocity (V_d) for SO_2 and particulate SO_4^(2-) above abroadleaf forest, and 2) atmospheric sulfur fluxes so as to estimate the contribution of variousfractions in the total. Using a resistance model based on continuous hourly meteorological data,atmospheric dry sulfur deposition in a forest was estimated according to V_d and concentrations ofboth atmospheric SO_2 and particulate SO_4^(2-). Meanwhile, wet S deposition was estimated based onrainfall and sulfate concentrations in the rainwater. Results showed that about 99% of the drysulfur deposition flux in the forest resulted from SO_2 dry deposition. In addition, the observeddry S deposition was greater in 2002 than in 2000 because of a higher average concentration of SO_2in 2002 than in 2000 and not because of the average dry deposition velocity which was lower for SO_2in 2002. Also, dry SO_2 deposition was the dominant fraction of deposited atmospheric sulfur inforests, contributing over 69% of the total annual sulfur deposition. Thus, dry SO_2 depositionshould be considered when estimating sulfur balance in forest ecological systems.展开更多
Ge2Sb2Te5 gap filling is one of the key processes for phase-change random access memory manufacture. Physical vapor deposition is the mainstream method of Ge2Sb2Te5 film deposition due to its advantages of film qualit...Ge2Sb2Te5 gap filling is one of the key processes for phase-change random access memory manufacture. Physical vapor deposition is the mainstream method of Ge2Sb2Te5 film deposition due to its advantages of film quality, purity, and accurate composition control. However,the conventional physical vapor deposition process cannot meet the gap- filling requirement with the critical device dimension scaling down to 90 nm or below. In this study, we find that the deposit-etch-deposit process shows better gap-filling capability and scalability than the single-step deposition process, especially at the nano-scale critical dimension. The gap-filling mechanism of the deposit-etch-deposit process was briefly discussed. We also find that re-deposition of phase-change material from via the sidewall to via the bottom by argon ion bombardment during the etch step was a key ingredient for the final good gap filling. We achieve void-free gap filling of phase-change material on the 45-nm via the two-cycle deposit-etch-deposit process. We gain a rather comprehensive insight into the mechanism of deposit-etch-deposit process and propose a potential gap-filling solution for over 45-nm technology nodes for phase-change random access memory.展开更多
Large eddy simulation (LES) explicitly calculates the large-scale vortex field and parameterizes the small-scale vortices.In this study,LES and κ-ε models were developed for a specific geometrical configuration of b...Large eddy simulation (LES) explicitly calculates the large-scale vortex field and parameterizes the small-scale vortices.In this study,LES and κ-ε models were developed for a specific geometrical configuration of backward-facing step (BFS).The simulation results were validated with particle image velocimetry (PIV) measurements and direct numerical simulation (DNS).This LES simulation was carried out with a Reynolds number of 9000 in a pressurized water tunnel with an expansion ratio of 2.00.The results indicate that the LES model can reveal largescale vortex motion although with a larger grid-cell size.However,the LES model tends to overestimate the top wall separation and the Reynolds stress components for the BFS flow simulation without a sufficiently fine grid.Overall,LES is a potential tool for simulating separated flow controlled by large-scale vortices.展开更多
The Shazi deposit is a large-scale anatase deposit in Qinglong, Guizhou Province. Zircon grains from this deposit yielded a zircon U–Pb age of *259 Ma, representing the formation age of the deposit's parent rocks...The Shazi deposit is a large-scale anatase deposit in Qinglong, Guizhou Province. Zircon grains from this deposit yielded a zircon U–Pb age of *259 Ma, representing the formation age of the deposit's parent rocks.This age is identical to the eruption age of the Emeishan large igneous province, indicating a synchronous magmatic event. The rare-earth-element patterns of laterite samples were similar to those of the weathered basalt sample, and sub-parallel to those of the Emeishan high-Ti basalts,implying a genetic relationship between the laterite and the basalt. The Chemical Index of Alteration values of laterite ranged from 96 to 98, suggesting a high degree of weathering. SiO_2, MgO, and alkaline metal elements decreased with increasing degree of weathering, while Al_2O_3, Fe_2O_3,and TiO_2 increased. We found the highest TiO_2 in laterite and the lowest in pillow basalts, indicating that Ti migrated from basalt to laterite.Our U–Pb dating and whole-rock elemental geochemistry analyses suggest that the Emeishan basalt is the parent rock of the Shazi anatase ore deposit.Based on our analysis, we propose a metallogenic model to explain the ore-forming process, in which the karst terrain formed by the Emeishan mantle plume and the subsequent basaltic magma eruption were the key factors in the formation the Shazi anatase ore deposit.展开更多
On June 2011, the Beijing Research Institute of Uranium Geology, an Institute within the China National Nuclear Corporation (CNNC), and the Department of Geology & Mining CNNC carried out a project Scientific Drill...On June 2011, the Beijing Research Institute of Uranium Geology, an Institute within the China National Nuclear Corporation (CNNC), and the Department of Geology & Mining CNNC carried out a project Scientific Drilling.for Deep Metallogenic Research in the Xiangshan Large Uranium Ore Field. A year later on June 21, the project, representing the first scientific drilling of China's uranium, was officially launched, and successfully completed on June 17, 2013. A 2818.88 m of drilling depth has broken the previous record 1200 m of exploration depth.展开更多
The northern Guangxi region is an important rare metal, rare earth metal and polymetallic metallogenic province. In the region there exist five metallogenic series and two metallogenic subseries, whose metallogenesis ...The northern Guangxi region is an important rare metal, rare earth metal and polymetallic metallogenic province. In the region there exist five metallogenic series and two metallogenic subseries, whose metallogenesis shows features of polycyclic spiral evolution throughout the geological history. As far as various cycles are concerned, mantle-derived ore substances were reduced while crust-derived ore substances increased from early to late timesfin the whole geological evolutionary history, mantle-derived substances decreased gradually while crust-derived ones increased. Meanwhile ore element associations became more and more varied. In terms of space, mineralization migrated from the old basement outwards, i.e. from west to east during the Precambrian, and from north to south during the Phanerozoic, and again from east to west during the Yanshanian.展开更多
The Liaoji Proterozoic rift is an inter-intracontinenatl rift developed from Archean granite-greenstone tectonic regime and contains many important mineral deposits of U, B, magnesite, Pb-Zn, Au, Ag, Co and P. These d...The Liaoji Proterozoic rift is an inter-intracontinenatl rift developed from Archean granite-greenstone tectonic regime and contains many important mineral deposits of U, B, magnesite, Pb-Zn, Au, Ag, Co and P. These deposits were formed as the result of late mobilization, transportation and concentfation of the previously enriched ore-forming mate- rials in several ore-bearing formations formed during the rift stage. So the metallogeny of these deposits in the rift shows both inheritance and new generation of the ore-forming materials. In future ore-searching practice, attentions should be paid on the studies of the ore-bearing formations in the rift, on the multiple stages of metallogeny and and on multiple derivations of the ore-forming materials.展开更多
InGaN/GaN multiple quantum well (MQW) solar cells with stepped-thickness quantum wells (SQW) are designed and grown by metal-organic chemical vapor deposition. The stepped-thickness quantum wells structure, in whi...InGaN/GaN multiple quantum well (MQW) solar cells with stepped-thickness quantum wells (SQW) are designed and grown by metal-organic chemical vapor deposition. The stepped-thickness quantum wells structure, in which the well thickness becomes smaller and smaller along the growth direction, reveals better crystalline quality and better spectral overlap with the solar spectrum. Consequently, the short-circuit current density (Jsc) and conversion efficiency of the solar cell are enhanced by 27.12% and 56.41% compared with the conventional structure under illumination of AM1.5G (100 mW/cm2). In addition, approaches to further promote the performance of InGaN/GaN multiple quantum well solar cells are discussed and presented.展开更多
Binary wolf pack algorithm (BWPA) is a kind of intelligence algorithm which can solve combination optimization problems in discrete spaces.Based on BWPA, an improved binary wolf pack algorithm (AIBWPA) can be proposed...Binary wolf pack algorithm (BWPA) is a kind of intelligence algorithm which can solve combination optimization problems in discrete spaces.Based on BWPA, an improved binary wolf pack algorithm (AIBWPA) can be proposed by adopting adaptive step length and improved update strategy of wolf pack. AIBWPA is applied to 10 classic 0-1 knapsack problems and compared with BWPA, DPSO, which proves that AIBWPA has higher optimization accuracy and better computational robustness. AIBWPA makes the parameters simple, protects the population diversity and enhances the global convergence.展开更多
The development of aqueous battery with dual mechanisms is now arousing more and more interest.The dual mechanisms of Zn^(2+)(de)intercalation and I^(-)/I_(2)redox bring unexpected effects.Herein,differing from previo...The development of aqueous battery with dual mechanisms is now arousing more and more interest.The dual mechanisms of Zn^(2+)(de)intercalation and I^(-)/I_(2)redox bring unexpected effects.Herein,differing from previous studies using Zn I_(2)additive,this work designs an aqueous Bi I_(3)-Zn battery with selfsupplied I^(-).Ex situ tests reveal the conversion of Bi I_(3)into Bi(discharge)and Bi OI(charge)at the 1st cycle and the dissolved I^(-)in electrolyte.The active I^(-)species enhances the specific capacity and discharge medium voltage of electrode as well as improves the generation of Zn dendrite and by-product.Furthermore,the porous hard carbon is introduced to enhance the electronic/ionic conductivity and adsorb iodine species,proven by experimental and theoretical studies.Accordingly,the well-designed Bi I_(3)-Zn battery delivers a high reversible capacity of 182 m A h g^(-1)at 0.2 A g^(-1),an excellent rate capability with 88 m A h g^(-1)at 10 A g^(-1),and an impressive cyclability with 63%capacity retention over 20 K cycles at 10 A g^(-1).An excellent electrochemical performance is obtained even at a high mass loading of 6 mg cm^(-2).Moreover,a flexible quasi-solid-state Bi I_(3)-Zn battery exhibits satisfactory battery performances.This work provides a new idea for designing high-performance aqueous battery with dual mechanisms.展开更多
基金jointly funded by PetroChina Hangzhou Research Institute of Geology(No.2019D-4309)。
文摘Supercritical flows are ubiquitous in natural environments;however,there is rare 3D anatomy of their deposits.This study uses high-quality 3D seismic datasets from the world’s largest submarine fan,Bengal Fan,to interpret 3D architectures and flow processes of Pliocene undulating bedforms that were related to supercritical flows.Bengal undulating bedforms as documented in this study were developed in unconfined settings,and are seismically imaged as strike-elongated,crescentic bedforms in plan view and as rhythmically undulating,upstream migrating,erosive,discontinuous reflections in section view.Their lee sides are overall 3 to 4 times steeper(0.280 to 1.19°in slope)and 3 to 4 times shorter(117 to 419 m in length)than their stoss flanks and were ascribed to faster(high flow velocities of 2.70 to 3.98 m/s)supercritical flows(Froude numbers of 1.53 to 2.27).Their stoss sides,in contrast,are overall 3 to 4 times gentler(0.120 to 0.270 in slope)and 3 to 4 times longer(410 to 1139 m in length)than their lee flanks and were related to slower(low velocities of 2.35 to 3.05 m/s)subcritical flows(Froude numbers of 0.58 to 0.97).Bengal wave-like features were,thus,created by supercriticalto-subcritical flow transformations through internal hydraulic jumps(i.e.,cyclic steps).They have crests that are positive relative to the surrounding region of the seafloor,suggesting the predominant deposition of draping sediments associated with net-depositional cyclic steps.Turbidity currents forming Bengal wave-like features were,thus,dominated by deposition,resulting in net-depositional cyclic steps.Sandy deposits associated with Bengal net-depositional cyclic steps are imaged themselves as closely spaced,strike-elongated high RMS-attribute patches,thereby showing closely spaced,long and linear,strike-elongated distribution patterns.
基金supported by the National Natural Science Foundation of China(91833303,51872044,51372036,51202025 and 51602047)the Key Project of Chinese Ministry of Education(113020A)+3 种基金the 111 project(B13013)the Jilin Province Science and Technology Development Project(20180101175JC and 20140520096JH)the Fundamental Research Funds for the Central Universities(2412019FZ043)the Open Project of Key Laboratory for UV Emitting Materials and Technology of Ministry of Education(130028857).
文摘Kesterite Cu2ZnSn(S,Se)4(CZTSSe)solar cells have drawn worldwide attention for their promising photovoltaics performance and earth-abundant element composition,yet the record efficiency of this type of device is still far lower than its theoretical conversion efficiency.Undesirable band alignment and severe non-radiative recombination at CZTSSe/CdS heterojunction interfaces are the major causes limiting the current/voltage output and overall device performance.Herein,we propose a novel two-step CdS deposition strategy to improve the quality of CZTSSe/CdS heterojunction interface and thereby improve the performance of CZTSSe solar cell.The two-step strategy includes firstly pre-deposits CdS thin layer on CZTSSe absorber layer by chemical bath deposition(CBD),followed with a mild heat treatment to facilitate element inter-diffusion,and secondly deposits an appropriate thickness of CdS layer by CBD to cover the whole surface of pre-deposited CdS and CZTSSe layers.The solar energy conversion efficiency of CZTSSe solar cells with two-step deposited CdS layer approaches to 8.76%(with an active area of about 0.19 cm2),which shows an encouraging improvement of over 87.98%or 30.16%compared to the devices with traditional CBD-deposited CdS layer without and with the mild annealing process,respectively.The performance enhancement by the two-step CdS deposition is attributed to the formation of more favorable band alignment at CZTSSe/CdS interface as well as the effective decrease in interfacial recombination paths on the basis of material and device characterizations.The two-step CdS deposition strategy is simple but effective,and should have large room to improve the quality of CZTSSe/CdS heterojunction interface and further lift up the conversion efficiency of CZTSSe solar cells.
基金Supported by National Natural Science Foundation of China(Grant No.51175418)Major Research Program on Nanomanufacturing of National Natural Science Foundation of China(Grant No.91323303)+1 种基金Fund of the State Key Laboratory of Precision Measuring Technology and Instruments(Tianjin University and Tsinghua University)of China(Grant No.PIL1403)Collaborative Innovation Center of Suzhou Nano Science and Technology of China
文摘The current techniques used for the fabrication of nanosteps are normally done by layer growth and then ion beam thinning. There are also extra films grown on the step surfaces in order to reduce the roughness. So the whole process is time consuming. In this paper, a nanoscale step height structure is fabricated by atomic layer deposition (ALD) and wet etching techniques. According to the traceable of the step height value, the fabrication process is controllable. Because ALD technology can grow a variety of materials, aluminum oxide (Al2O3) is used to fabricate the nanostep. There are three steps of Al2O3 in this structure including 8 nm, 18 nm and 44 inn. The thickness of Al2O3 film and the height of the step are measured by anellipsometer. The experimental results show that the thickness of Al2O3 film is consistent with the height of the step. The height of the step is measured by AFM. The measurement results show that the height is related to the number of cycles of ALD and the wet etching time. The bottom and the sidewall surface roughness are related to the wet etching time. The step height is calibrated by Physikaliseh-Technische Bundesanstalt (PTB) and the results were 7.5±1.5 nm, 15.5±2.0 nm and 41.8±2.1 nm, respectively. This research provides a method for the fabrication of step height at nanoscale and the nanostep fabricated is potential used for standard references.
文摘ZnTe, CdTe, and the ternary alloy CdZnTe are important semiconductor materials used widely for the detection of an important range of electromagnetic radiation as gamma ray and X-ray. Although, recently these materials have acquired renewed importance due to the new explored nanolayer properties of modern devices. In addition, as shown in this work they can be grown using uncomplicated synthesis techniques based on the deposition in vapour phase of the elemental precursors. This work presents the results obtained from the deposition of nanolayers of these materials using the precursor vapour on GaAs and GaSb (001) substrates. This growth technique, extensively known as atomic layer deposition (ALD), allows the layers growth with nanometric dimension. The main results presented in this work are the used growth parameters and the results of the structural characterization of the layers by the means of Raman spectroscopy measurements. Raman scattering shows the peak corresponding to longitudinal optical (LO)-ZnTe, which is weak and slightly redshift in comparison with that reported for the ZnTe bulk at 210 cm^-1. For the case of the CdTe nanolayer, Raman spectra presented the LO-CdTe peak, which is indicative of the successful growth of the layer. Its weak and slightly redshift in comparison with that reported for the CdTe bulk can be related with the nanometric characteristic of this layer. The performed high-resolution X-ray diffraction (HR-XRD) measurement allows to study some important characteristics such as the crystallinity of the grown layer. In addition, the HR-XRD measurement suggests that the crystalline quality has dependence on the growth temperature.
文摘The three measurement periods: the TOMS Nimbus-7 TOMSN7L3 v008 from 1978 to 1993, the TOMS EP TOMSEPL3 v008 from 1996 to 2005 and the OMI OMTO3d v003 from 2004 to 2008 have allowed the presence of dust to be observed in the 10°North to 20°North latitudinal band (10 - 20 band) of Africa. The 10 - 20 band has a permanent dust presence. The AERONET data show AOD peaks exceeding 2 in Senegal and Niger (on an AOD scale). The statistical study reveals intra-annual relationships in deposition. In Senegal, a significant deposition is observed.
基金supported by the National Science Foundation of China(Grants Nos.41672080,41772079,41272113)Outstanding Talent Foundation of the Institute of Geochemistry,Chinese Academy of Sciences
文摘The Dachang tin-polymetallic district, Guangxi,China, is one of the largest tin ore fields in the world. Both cassiterite-sulfide and Zn–Cu skarn mineralization are hosted in the Mid-Upper Devonian carbonate-rich sediments adjacent to the underlying Cretaceous Longxianggai granite(91–97 Ma). The Lamo Zn–Cu deposit is a typical skarn deposit in the district and occurs at the contact zone between the Upper Devonian limestone and the granite.The ore minerals mainly consist of sphalerite, arsenopyrite,pyrrhotite, galena, chalcopyrite, and minor molybdenite.However, the age of mineralization and source of the metals are not well constrained. In this study, we use the molybdenite Re–Os dating method and in-situ Pb isotopes of sulfides from the Lamo deposit for the first time in order to directly determine the age of mineralization and the tracing source of metals. Six molybdenite samples yielded a more accurate Re–Os isochron age of 90.0 ± 1.1 Ma(MSWD = 0.72), which is much younger than the reported garnet Sm–Nd isochron age of 95 ± 11 Ma and quartz fluid inclusions Rb–Sr isochron age of 99 ± 6 Ma. This age is also interpreted as the age of Zn–Cu skarn mineralization in the Dachang district. Further, in this study we found that in-situ Pb isotopes of sulfides from the Lamo deposit and feldspars in the district's biotite granite and granitic porphyry dikes have a narrow range and an overlap of Pb isotopic compositions(^(206) Pb/^(204) Pb =18.417–18.594,^(207) Pb/^(204) Pb = 15.641–15.746, and^(208) Pb/^(204) Pb = 38.791–39.073), suggesting that the metals were mainly sourced from Cretaceous granitic magma.
基金supported by the U.S. Department of Energy, Office of Science, and Office of the Basic Energy Sciences, under Contract DE-AC-02-06CH11357~~
文摘Atomic layer deposition(ALD)attracts great attention nowadays due to its ability for designing and modifying catalytic systems at the molecular level.There are several reported review papers published recently discussing this technique in catalysis.However,the mechanism on how the deposited materials improve the catalyst stability and tune the reaction selectivity is still unclear.Herein,catalytic systems created via ALD on stepwise preparation and/or modification under self-limiting reaction conditions are summarized.The effects of deposited materials in terms of electronic/geometry modification over the catalytic nanoparticles(NPs)are discussed.These effects explain the mechanism of the catalytic stability improvement and the selectivity modification.The unique properties of ALD for designing new catalytic systems are further investigated for building up photocatalytic reaction nanobowls,tandem catalyst and bi-active-component metallic catalytic systems.
基金Project supported by the National Key Basic Research Support Foundation (NKBRSF) of China (No. 1999011805)the Knowledge Innovation Program of Chinese Academy of Sciences (No.ISSASIP0205) the State Key Laboratory of Soil and Sustainable Agriculture, C
文摘A two-year study in a typical red soil region of Southern China was conductedto determine 1) the dry deposition velocity (V_d) for SO_2 and particulate SO_4^(2-) above abroadleaf forest, and 2) atmospheric sulfur fluxes so as to estimate the contribution of variousfractions in the total. Using a resistance model based on continuous hourly meteorological data,atmospheric dry sulfur deposition in a forest was estimated according to V_d and concentrations ofboth atmospheric SO_2 and particulate SO_4^(2-). Meanwhile, wet S deposition was estimated based onrainfall and sulfate concentrations in the rainwater. Results showed that about 99% of the drysulfur deposition flux in the forest resulted from SO_2 dry deposition. In addition, the observeddry S deposition was greater in 2002 than in 2000 because of a higher average concentration of SO_2in 2002 than in 2000 and not because of the average dry deposition velocity which was lower for SO_2in 2002. Also, dry SO_2 deposition was the dominant fraction of deposited atmospheric sulfur inforests, contributing over 69% of the total annual sulfur deposition. Thus, dry SO_2 depositionshould be considered when estimating sulfur balance in forest ecological systems.
基金Project supported by the National Basic Research Program of China (Grant Nos.2010CB934300,2011CBA00607,and 2011CB932800)the National Integrate Circuit Research Program of China (Grant No. 2009ZX02023-003)+1 种基金the National Natural Science Foundation of China (Grant Nos. 60906004,60906003,61006087,and 61076121)the Science and Technology Council of Shanghai,China (Grant No. 1052nm07000)
文摘Ge2Sb2Te5 gap filling is one of the key processes for phase-change random access memory manufacture. Physical vapor deposition is the mainstream method of Ge2Sb2Te5 film deposition due to its advantages of film quality, purity, and accurate composition control. However,the conventional physical vapor deposition process cannot meet the gap- filling requirement with the critical device dimension scaling down to 90 nm or below. In this study, we find that the deposit-etch-deposit process shows better gap-filling capability and scalability than the single-step deposition process, especially at the nano-scale critical dimension. The gap-filling mechanism of the deposit-etch-deposit process was briefly discussed. We also find that re-deposition of phase-change material from via the sidewall to via the bottom by argon ion bombardment during the etch step was a key ingredient for the final good gap filling. We achieve void-free gap filling of phase-change material on the 45-nm via the two-cycle deposit-etch-deposit process. We gain a rather comprehensive insight into the mechanism of deposit-etch-deposit process and propose a potential gap-filling solution for over 45-nm technology nodes for phase-change random access memory.
基金supported by the National Natural Science Foundation of China(Grant No.51379128)
文摘Large eddy simulation (LES) explicitly calculates the large-scale vortex field and parameterizes the small-scale vortices.In this study,LES and κ-ε models were developed for a specific geometrical configuration of backward-facing step (BFS).The simulation results were validated with particle image velocimetry (PIV) measurements and direct numerical simulation (DNS).This LES simulation was carried out with a Reynolds number of 9000 in a pressurized water tunnel with an expansion ratio of 2.00.The results indicate that the LES model can reveal largescale vortex motion although with a larger grid-cell size.However,the LES model tends to overestimate the top wall separation and the Reynolds stress components for the BFS flow simulation without a sufficiently fine grid.Overall,LES is a potential tool for simulating separated flow controlled by large-scale vortices.
基金supported by the Natural Science Foundation of China (Grant No.41262005)
文摘The Shazi deposit is a large-scale anatase deposit in Qinglong, Guizhou Province. Zircon grains from this deposit yielded a zircon U–Pb age of *259 Ma, representing the formation age of the deposit's parent rocks.This age is identical to the eruption age of the Emeishan large igneous province, indicating a synchronous magmatic event. The rare-earth-element patterns of laterite samples were similar to those of the weathered basalt sample, and sub-parallel to those of the Emeishan high-Ti basalts,implying a genetic relationship between the laterite and the basalt. The Chemical Index of Alteration values of laterite ranged from 96 to 98, suggesting a high degree of weathering. SiO_2, MgO, and alkaline metal elements decreased with increasing degree of weathering, while Al_2O_3, Fe_2O_3,and TiO_2 increased. We found the highest TiO_2 in laterite and the lowest in pillow basalts, indicating that Ti migrated from basalt to laterite.Our U–Pb dating and whole-rock elemental geochemistry analyses suggest that the Emeishan basalt is the parent rock of the Shazi anatase ore deposit.Based on our analysis, we propose a metallogenic model to explain the ore-forming process, in which the karst terrain formed by the Emeishan mantle plume and the subsequent basaltic magma eruption were the key factors in the formation the Shazi anatase ore deposit.
文摘On June 2011, the Beijing Research Institute of Uranium Geology, an Institute within the China National Nuclear Corporation (CNNC), and the Department of Geology & Mining CNNC carried out a project Scientific Drilling.for Deep Metallogenic Research in the Xiangshan Large Uranium Ore Field. A year later on June 21, the project, representing the first scientific drilling of China's uranium, was officially launched, and successfully completed on June 17, 2013. A 2818.88 m of drilling depth has broken the previous record 1200 m of exploration depth.
基金This research was supported by the Chinese Foundation for Development of Geological Science and Technology (Project 49273162)the National Natural Science Foundation of China(Project 49273162)
文摘The northern Guangxi region is an important rare metal, rare earth metal and polymetallic metallogenic province. In the region there exist five metallogenic series and two metallogenic subseries, whose metallogenesis shows features of polycyclic spiral evolution throughout the geological history. As far as various cycles are concerned, mantle-derived ore substances were reduced while crust-derived ore substances increased from early to late timesfin the whole geological evolutionary history, mantle-derived substances decreased gradually while crust-derived ones increased. Meanwhile ore element associations became more and more varied. In terms of space, mineralization migrated from the old basement outwards, i.e. from west to east during the Precambrian, and from north to south during the Phanerozoic, and again from east to west during the Yanshanian.
文摘The Liaoji Proterozoic rift is an inter-intracontinenatl rift developed from Archean granite-greenstone tectonic regime and contains many important mineral deposits of U, B, magnesite, Pb-Zn, Au, Ag, Co and P. These deposits were formed as the result of late mobilization, transportation and concentfation of the previously enriched ore-forming mate- rials in several ore-bearing formations formed during the rift stage. So the metallogeny of these deposits in the rift shows both inheritance and new generation of the ore-forming materials. In future ore-searching practice, attentions should be paid on the studies of the ore-bearing formations in the rift, on the multiple stages of metallogeny and and on multiple derivations of the ore-forming materials.
基金the National Natural Science Foundation of China(Grant No.51172079)the Science and Technology Program of Guangdong Province,China(Grant Nos.2010B090400456 and 2010A081002002)the Science and Technology Program of Guangzhou,China(Grant No.2011J4300018)
文摘InGaN/GaN multiple quantum well (MQW) solar cells with stepped-thickness quantum wells (SQW) are designed and grown by metal-organic chemical vapor deposition. The stepped-thickness quantum wells structure, in which the well thickness becomes smaller and smaller along the growth direction, reveals better crystalline quality and better spectral overlap with the solar spectrum. Consequently, the short-circuit current density (Jsc) and conversion efficiency of the solar cell are enhanced by 27.12% and 56.41% compared with the conventional structure under illumination of AM1.5G (100 mW/cm2). In addition, approaches to further promote the performance of InGaN/GaN multiple quantum well solar cells are discussed and presented.
文摘Binary wolf pack algorithm (BWPA) is a kind of intelligence algorithm which can solve combination optimization problems in discrete spaces.Based on BWPA, an improved binary wolf pack algorithm (AIBWPA) can be proposed by adopting adaptive step length and improved update strategy of wolf pack. AIBWPA is applied to 10 classic 0-1 knapsack problems and compared with BWPA, DPSO, which proves that AIBWPA has higher optimization accuracy and better computational robustness. AIBWPA makes the parameters simple, protects the population diversity and enhances the global convergence.
基金funding from National Natural Science Foundation of China(52103053,52102312)Huxiang Young Talents of Hunan Province(2022RC1004)+1 种基金Macao Young Scholars Program(AM2021011)Foundation of State Key Laboratory of Utilization of Woody Oil Resource(GZKF202126)。
文摘The development of aqueous battery with dual mechanisms is now arousing more and more interest.The dual mechanisms of Zn^(2+)(de)intercalation and I^(-)/I_(2)redox bring unexpected effects.Herein,differing from previous studies using Zn I_(2)additive,this work designs an aqueous Bi I_(3)-Zn battery with selfsupplied I^(-).Ex situ tests reveal the conversion of Bi I_(3)into Bi(discharge)and Bi OI(charge)at the 1st cycle and the dissolved I^(-)in electrolyte.The active I^(-)species enhances the specific capacity and discharge medium voltage of electrode as well as improves the generation of Zn dendrite and by-product.Furthermore,the porous hard carbon is introduced to enhance the electronic/ionic conductivity and adsorb iodine species,proven by experimental and theoretical studies.Accordingly,the well-designed Bi I_(3)-Zn battery delivers a high reversible capacity of 182 m A h g^(-1)at 0.2 A g^(-1),an excellent rate capability with 88 m A h g^(-1)at 10 A g^(-1),and an impressive cyclability with 63%capacity retention over 20 K cycles at 10 A g^(-1).An excellent electrochemical performance is obtained even at a high mass loading of 6 mg cm^(-2).Moreover,a flexible quasi-solid-state Bi I_(3)-Zn battery exhibits satisfactory battery performances.This work provides a new idea for designing high-performance aqueous battery with dual mechanisms.