In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and ...In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and co-state variables, and piecewise constant function is used to approximate control variables. Generally, the optimal conditions for the problem are solved iteratively until the control variable reaches error tolerance. In order to calculate all the variables individually and parallelly, we introduce a gradient recovery based two-grid method. First, we solve the small scaled optimal control problem on coarse grids. Next, we use the gradient recovery technique to recover the gradients of state and co-state variables. Finally, using the recovered variables, we solve the large scaled optimal control problem for all variables independently. Moreover, we estimate priori error for the proposed scheme, and use an example to validate the theoretical results.展开更多
In this paper, we present the a posteriori error estimate of two-grid mixed finite element methods by averaging techniques for semilinear elliptic equations. We first propose the two-grid algorithms to linearize the m...In this paper, we present the a posteriori error estimate of two-grid mixed finite element methods by averaging techniques for semilinear elliptic equations. We first propose the two-grid algorithms to linearize the mixed method equations. Then, the averaging technique is used to construct the a posteriori error estimates of the two-grid mixed finite element method and theoretical analysis are given for the error estimators. Finally, we give some numerical examples to verify the reliability and efficiency of the a posteriori error estimator.展开更多
Local and parallel finite element algorithms based on two-grid discretization for Navier-Stokes equations in two dimension are presented. Its basis is a coarse finite element space on the global domain and a fine fini...Local and parallel finite element algorithms based on two-grid discretization for Navier-Stokes equations in two dimension are presented. Its basis is a coarse finite element space on the global domain and a fine finite element space on the subdomain. The local algorithm consists of finding a solution for a given nonlinear problem in the coarse finite element space and a solution for a linear problem in the fine finite element space, then droping the coarse solution of the region near the boundary. By overlapping domain decomposition, the parallel algorithms are obtained. This paper analyzes the error of these algorithms and gets some error estimates which are better than those of the standard finite element method. The numerical experiments are given too. By analyzing and comparing these results, it is shown that these algorithms are correct and high efficient.展开更多
A two-dimensional nonlinear sloshing problem is analyzed by means of the fully nonlinear theory and time domain second order theory of water waves. Liquid sloshing in a rectangular container Subjected to a horizontal ...A two-dimensional nonlinear sloshing problem is analyzed by means of the fully nonlinear theory and time domain second order theory of water waves. Liquid sloshing in a rectangular container Subjected to a horizontal excitation is simulated by the finite element method. Comparisons between the two theories are made based on their numerical results. It is found that good agreement is obtained for the case of small amplitude oscillation and obvious differences occur for large amplitude excitation. Even though, the second order solution can still exhibit typical nonlinear features of nonlinear wave and can be used instead of the fully nonlinear theory.展开更多
In this article, on the basis of two-level discretizations and multiscale finite element method, two kinds of finite element algorithms for steady Navier-Stokes problem are presented and discussed. The main technique ...In this article, on the basis of two-level discretizations and multiscale finite element method, two kinds of finite element algorithms for steady Navier-Stokes problem are presented and discussed. The main technique is first to use a standard finite element discretization on a coarse mesh to approximate low frequencies, then to apply the simple and Newton scheme to linearize discretizations on a fine grid. At this process, multiscale finite element method as a stabilized method deals with the lowest equal-order finite element pairs not satisfying the inf-sup condition. Under the uniqueness condition, error analyses for both algorithms are given. Numerical results are reported to demonstrate the effectiveness of the simple and Newton scheme.展开更多
We propose a simple experimental scheme in which an unknown two-qubit state is faithfully and deterministically teleported from Alice to Bob. The scheme is constructed with four photons from parametric down conversion...We propose a simple experimental scheme in which an unknown two-qubit state is faithfully and deterministically teleported from Alice to Bob. The scheme is constructed with four photons from parametric down conversion, linear optical elements, and conventional photon detectors, all of which are available in current technology. It is shown that the probability of successful teleportation ideally reaches 100% based on single-photon two-qubit-assisted Bell-state measurement, which can distinguish all four Bell-states simultaneously via conventional photon detectors. By generalizing the scheme, the teleportation of an unknown multi-qubit system can also be realized.展开更多
In this paper,two-grid immersed finite element (IFE) algorithms are proposed and analyzed for semi-linear interface problems with discontinuous diffusion coefficients in two dimension.Because of the advantages of fini...In this paper,two-grid immersed finite element (IFE) algorithms are proposed and analyzed for semi-linear interface problems with discontinuous diffusion coefficients in two dimension.Because of the advantages of finite element (FE) formulation and the simple structure of Cartesian grids,the IFE discretization is used in this paper.Two-grid schemes are formulated to linearize the FE equations.It is theoretically and numerically illustrated that the coarse space can be selected as coarse as H =O(h^1/4)(or H =O(h^1/8)),and the asymptotically optimal approximation can be achieved as the nonlinear schemes.As a result,we can settle a great majority of nonlinear equations as easy as linearized problems.In order to estimate the present two-grid algorithms,we derive the optimal error estimates of the IFE solution in the L^p norm.Numerical experiments are given to verify the theorems and indicate that the present two-grid algorithms can greatly improve the computing efficiency.展开更多
Applying the standard Galerkin finite element method for solving flow problems in porous media encounters some difficulties such as numerical oscillation at the shock front and discontinuity of the velocity field on e...Applying the standard Galerkin finite element method for solving flow problems in porous media encounters some difficulties such as numerical oscillation at the shock front and discontinuity of the velocity field on element faces.Discontinuity of velocity field leads this method not to conserve mass locally.Moreover,the accuracy and stability of a solution is highly affected by a non-conservative method.In this paper,a three dimensional control volume finite element method is developed for twophase fluid flow simulation which overcomes the deficiency of the standard finite element method,and attains high-orders of accuracy at a reasonable computational cost.Moreover,this method is capable of handling heterogeneity in a very rational way.A fully implicit scheme is applied to temporal discretization of the governing equations to achieve an unconditionally stable solution.The accuracy and efficiency of the method are verified by simulating some waterflooding experiments.Some representative examples are presented to illustrate the capability of the method to simulate two-phase fluid flow in heterogeneous porous media.展开更多
For two-dimension nonlinear convection diffusion equation, a two-grid method of characteristics finite-element solution was constructed. In this method the nonlinear iterations is only to execute on the coarse grid an...For two-dimension nonlinear convection diffusion equation, a two-grid method of characteristics finite-element solution was constructed. In this method the nonlinear iterations is only to execute on the coarse grid and the fine-grid solution can be obtained in a single linear step. For the nonlinear convection-dominated diffusion equation, this method can not only stabilize the numerical oscillation but also accelerate the convergence and improve the computational efficiency. The error analysis demonstrates if the mesh sizes between coarse-grid and fine-grid satisfy the certain relationship, the two-grid solution and the characteristics finite-element solution have the same order of accuracy. The numerical is more efficient than that of characteristics example confirms that the two-grid method finite-element method.展开更多
To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitr...To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitrary orientation. The boundary integral equation(BIE) representation solves the two-dimensional convected Helmholtz equation(CHE) and its fundamental solution, which must satisfy a new Sommerfeld radiation condition(SRC) in the physical space. In order to facilitate conventional formulations, the variables of the advanced form are expressed only in terms of the acoustic pressure as well as its normal and tangential derivatives, and their multiplication operators are based on the convected Green's kernel and its modified derivative. The proposed approach significantly reduces the CPU times of classical computational codes for modeling acoustic domains with arbitrary mean flow. It is validated by a comparison with the analytical solutions for the sound radiation problems of monopole,dipole and quadrupole sources in the presence of a subsonic uniform flow with arbitrary orientation.展开更多
The prediction of the mechanical and electric properties of piezoelectric fibre composites has become an active research area in recent years. By means of introducing a boundary layer problem, some new kinds of two-sc...The prediction of the mechanical and electric properties of piezoelectric fibre composites has become an active research area in recent years. By means of introducing a boundary layer problem, some new kinds of two-scale finite element methods for solutions to the electric potential and the displacement for composite material in periodic struc- ture under the coupled piezoelectricity are derived. The coupled two-scale relation of the electric potential and the displacement is set up, and some finite element approximate estimates and numerical examples which show the effectiveness of the method are presented.展开更多
Based on domain decomposition, a parallel two-level finite element method for the stationary Navier-Stokes equations is proposed and analyzed. The basic idea of the method is first to solve the Navier-Stokes equations...Based on domain decomposition, a parallel two-level finite element method for the stationary Navier-Stokes equations is proposed and analyzed. The basic idea of the method is first to solve the Navier-Stokes equations on a coarse grid, then to solve the resulted residual equations in parallel on a fine grid. This method has low communication complexity. It can be implemented easily. By local a priori error estimate for finite element discretizations, error bounds of the approximate solution are derived. Numerical results are also given to illustrate the high efficiency of the method.展开更多
Based on Biot theory of two-phase anisotropic media and Hamilton theory about dynamic problem,finite element equations of elastic wave propagation in two-phase anisotropic media are derived in this paper.Numerical sol...Based on Biot theory of two-phase anisotropic media and Hamilton theory about dynamic problem,finite element equations of elastic wave propagation in two-phase anisotropic media are derived in this paper.Numerical solution of finite element equations is given.Finally,Properties of elastic wave propagation are observed and analyzed through FEM modeling.展开更多
In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference me...In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.展开更多
Some theorems of compactly supported non-tensor product form two-dimension Daubechies wavelet were analysed carefully. Compactly supported non-tensor product form two-dimension wavelet was constructed, then non-tensor...Some theorems of compactly supported non-tensor product form two-dimension Daubechies wavelet were analysed carefully. Compactly supported non-tensor product form two-dimension wavelet was constructed, then non-tensor product form two dimension wavelet finite element was used to solve the deflection problem of elastic thin plate. The error order was researched. A numerical example was given at last.展开更多
针对红外图像与可见光图像融合中细节丢失严重,红外图像的特征信息未能突出显示以及源图像的语义信息被忽视的问题,提出一种基于二次图像分解的红外图像与可见光图像融合网络(Secondary Image Decomposition For Infrared And Visible I...针对红外图像与可见光图像融合中细节丢失严重,红外图像的特征信息未能突出显示以及源图像的语义信息被忽视的问题,提出一种基于二次图像分解的红外图像与可见光图像融合网络(Secondary Image Decomposition For Infrared And Visible Image Fusion,SIDFuse)。利用编码器对源图像进行二次分解以提取不同尺度的特征信息,然后利用双元素注意力为不同尺度的特征信息分配权重、引入全局语义支路,再采用像素相加法作为融合策略,最后通过解码器重建融合图像。实验选择FLIR数据集用于训练,采用TNO和RoadScene两个数据集进行测试,并选取八种图像融合客观评价参数进行实验对比分析。由TNO数据集的图像融合实验表明,在信息熵、标准差、空间频率、视觉保真度、平均梯度、差异相关系数、多层级结构相似性、梯度融合性能评价指标上,SIDFuse比基于卷积网络中经典融合算法DenseFuse分别平均提高12.2%,9.0%,90.2%,13.9%,85.1%,16.8%,6.7%,30.7%,比最新的融合网络LRRNet分别平均提高2.5%,5.6%,31.5%,5.4%,25.2%,17.9%,7.5%,20.7%。可见本文所提算法融合的图像对比度较高,可以同时更有效保留可见光图像的细节纹理和红外图像的特征信息,在同类方法中占有明显优势。展开更多
文摘In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and co-state variables, and piecewise constant function is used to approximate control variables. Generally, the optimal conditions for the problem are solved iteratively until the control variable reaches error tolerance. In order to calculate all the variables individually and parallelly, we introduce a gradient recovery based two-grid method. First, we solve the small scaled optimal control problem on coarse grids. Next, we use the gradient recovery technique to recover the gradients of state and co-state variables. Finally, using the recovered variables, we solve the large scaled optimal control problem for all variables independently. Moreover, we estimate priori error for the proposed scheme, and use an example to validate the theoretical results.
文摘In this paper, we present the a posteriori error estimate of two-grid mixed finite element methods by averaging techniques for semilinear elliptic equations. We first propose the two-grid algorithms to linearize the mixed method equations. Then, the averaging technique is used to construct the a posteriori error estimates of the two-grid mixed finite element method and theoretical analysis are given for the error estimators. Finally, we give some numerical examples to verify the reliability and efficiency of the a posteriori error estimator.
基金Project supported by the National Natural Science Foundation of China (No. 10371096)
文摘Local and parallel finite element algorithms based on two-grid discretization for Navier-Stokes equations in two dimension are presented. Its basis is a coarse finite element space on the global domain and a fine finite element space on the subdomain. The local algorithm consists of finding a solution for a given nonlinear problem in the coarse finite element space and a solution for a linear problem in the fine finite element space, then droping the coarse solution of the region near the boundary. By overlapping domain decomposition, the parallel algorithms are obtained. This paper analyzes the error of these algorithms and gets some error estimates which are better than those of the standard finite element method. The numerical experiments are given too. By analyzing and comparing these results, it is shown that these algorithms are correct and high efficient.
文摘A two-dimensional nonlinear sloshing problem is analyzed by means of the fully nonlinear theory and time domain second order theory of water waves. Liquid sloshing in a rectangular container Subjected to a horizontal excitation is simulated by the finite element method. Comparisons between the two theories are made based on their numerical results. It is found that good agreement is obtained for the case of small amplitude oscillation and obvious differences occur for large amplitude excitation. Even though, the second order solution can still exhibit typical nonlinear features of nonlinear wave and can be used instead of the fully nonlinear theory.
文摘In this article, on the basis of two-level discretizations and multiscale finite element method, two kinds of finite element algorithms for steady Navier-Stokes problem are presented and discussed. The main technique is first to use a standard finite element discretization on a coarse mesh to approximate low frequencies, then to apply the simple and Newton scheme to linearize discretizations on a fine grid. At this process, multiscale finite element method as a stabilized method deals with the lowest equal-order finite element pairs not satisfying the inf-sup condition. Under the uniqueness condition, error analyses for both algorithms are given. Numerical results are reported to demonstrate the effectiveness of the simple and Newton scheme.
文摘We propose a simple experimental scheme in which an unknown two-qubit state is faithfully and deterministically teleported from Alice to Bob. The scheme is constructed with four photons from parametric down conversion, linear optical elements, and conventional photon detectors, all of which are available in current technology. It is shown that the probability of successful teleportation ideally reaches 100% based on single-photon two-qubit-assisted Bell-state measurement, which can distinguish all four Bell-states simultaneously via conventional photon detectors. By generalizing the scheme, the teleportation of an unknown multi-qubit system can also be realized.
基金Project supported by the National Natural Science Foundation of China(Nos.11671157 and11826212)
文摘In this paper,two-grid immersed finite element (IFE) algorithms are proposed and analyzed for semi-linear interface problems with discontinuous diffusion coefficients in two dimension.Because of the advantages of finite element (FE) formulation and the simple structure of Cartesian grids,the IFE discretization is used in this paper.Two-grid schemes are formulated to linearize the FE equations.It is theoretically and numerically illustrated that the coarse space can be selected as coarse as H =O(h^1/4)(or H =O(h^1/8)),and the asymptotically optimal approximation can be achieved as the nonlinear schemes.As a result,we can settle a great majority of nonlinear equations as easy as linearized problems.In order to estimate the present two-grid algorithms,we derive the optimal error estimates of the IFE solution in the L^p norm.Numerical experiments are given to verify the theorems and indicate that the present two-grid algorithms can greatly improve the computing efficiency.
基金Iranian Offshore Oil Company (IOOC) for financial support of this work
文摘Applying the standard Galerkin finite element method for solving flow problems in porous media encounters some difficulties such as numerical oscillation at the shock front and discontinuity of the velocity field on element faces.Discontinuity of velocity field leads this method not to conserve mass locally.Moreover,the accuracy and stability of a solution is highly affected by a non-conservative method.In this paper,a three dimensional control volume finite element method is developed for twophase fluid flow simulation which overcomes the deficiency of the standard finite element method,and attains high-orders of accuracy at a reasonable computational cost.Moreover,this method is capable of handling heterogeneity in a very rational way.A fully implicit scheme is applied to temporal discretization of the governing equations to achieve an unconditionally stable solution.The accuracy and efficiency of the method are verified by simulating some waterflooding experiments.Some representative examples are presented to illustrate the capability of the method to simulate two-phase fluid flow in heterogeneous porous media.
文摘For two-dimension nonlinear convection diffusion equation, a two-grid method of characteristics finite-element solution was constructed. In this method the nonlinear iterations is only to execute on the coarse grid and the fine-grid solution can be obtained in a single linear step. For the nonlinear convection-dominated diffusion equation, this method can not only stabilize the numerical oscillation but also accelerate the convergence and improve the computational efficiency. The error analysis demonstrates if the mesh sizes between coarse-grid and fine-grid satisfy the certain relationship, the two-grid solution and the characteristics finite-element solution have the same order of accuracy. The numerical is more efficient than that of characteristics example confirms that the two-grid method finite-element method.
基金supported by National Engineering School of Tunis (No.13039.1)
文摘To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitrary orientation. The boundary integral equation(BIE) representation solves the two-dimensional convected Helmholtz equation(CHE) and its fundamental solution, which must satisfy a new Sommerfeld radiation condition(SRC) in the physical space. In order to facilitate conventional formulations, the variables of the advanced form are expressed only in terms of the acoustic pressure as well as its normal and tangential derivatives, and their multiplication operators are based on the convected Green's kernel and its modified derivative. The proposed approach significantly reduces the CPU times of classical computational codes for modeling acoustic domains with arbitrary mean flow. It is validated by a comparison with the analytical solutions for the sound radiation problems of monopole,dipole and quadrupole sources in the presence of a subsonic uniform flow with arbitrary orientation.
基金supported by the National Natural Science Foundation of China(Nos.10801042 and 11171257)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20104410120001)
文摘The prediction of the mechanical and electric properties of piezoelectric fibre composites has become an active research area in recent years. By means of introducing a boundary layer problem, some new kinds of two-scale finite element methods for solutions to the electric potential and the displacement for composite material in periodic struc- ture under the coupled piezoelectricity are derived. The coupled two-scale relation of the electric potential and the displacement is set up, and some finite element approximate estimates and numerical examples which show the effectiveness of the method are presented.
基金Project supported by the National Natural Science Foundation of China(No.11001061)the Science and Technology Foundation of Guizhou Province of China(No.[2008]2123)
文摘Based on domain decomposition, a parallel two-level finite element method for the stationary Navier-Stokes equations is proposed and analyzed. The basic idea of the method is first to solve the Navier-Stokes equations on a coarse grid, then to solve the resulted residual equations in parallel on a fine grid. This method has low communication complexity. It can be implemented easily. By local a priori error estimate for finite element discretizations, error bounds of the approximate solution are derived. Numerical results are also given to illustrate the high efficiency of the method.
文摘Based on Biot theory of two-phase anisotropic media and Hamilton theory about dynamic problem,finite element equations of elastic wave propagation in two-phase anisotropic media are derived in this paper.Numerical solution of finite element equations is given.Finally,Properties of elastic wave propagation are observed and analyzed through FEM modeling.
基金heprojectissupportedbyNNSFofChina (No .1 9972 0 39) .
文摘In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.
文摘Some theorems of compactly supported non-tensor product form two-dimension Daubechies wavelet were analysed carefully. Compactly supported non-tensor product form two-dimension wavelet was constructed, then non-tensor product form two dimension wavelet finite element was used to solve the deflection problem of elastic thin plate. The error order was researched. A numerical example was given at last.
文摘针对红外图像与可见光图像融合中细节丢失严重,红外图像的特征信息未能突出显示以及源图像的语义信息被忽视的问题,提出一种基于二次图像分解的红外图像与可见光图像融合网络(Secondary Image Decomposition For Infrared And Visible Image Fusion,SIDFuse)。利用编码器对源图像进行二次分解以提取不同尺度的特征信息,然后利用双元素注意力为不同尺度的特征信息分配权重、引入全局语义支路,再采用像素相加法作为融合策略,最后通过解码器重建融合图像。实验选择FLIR数据集用于训练,采用TNO和RoadScene两个数据集进行测试,并选取八种图像融合客观评价参数进行实验对比分析。由TNO数据集的图像融合实验表明,在信息熵、标准差、空间频率、视觉保真度、平均梯度、差异相关系数、多层级结构相似性、梯度融合性能评价指标上,SIDFuse比基于卷积网络中经典融合算法DenseFuse分别平均提高12.2%,9.0%,90.2%,13.9%,85.1%,16.8%,6.7%,30.7%,比最新的融合网络LRRNet分别平均提高2.5%,5.6%,31.5%,5.4%,25.2%,17.9%,7.5%,20.7%。可见本文所提算法融合的图像对比度较高,可以同时更有效保留可见光图像的细节纹理和红外图像的特征信息,在同类方法中占有明显优势。