Synthetic aperture radar(SAR)and wave spectrometers,crucial in microwave remote sensing,play an essential role in monitoring sea surface wind and wave conditions.However,they face inherent limitations in observing sea...Synthetic aperture radar(SAR)and wave spectrometers,crucial in microwave remote sensing,play an essential role in monitoring sea surface wind and wave conditions.However,they face inherent limitations in observing sea surface phenomena.SAR systems,for instance,are hindered by an azimuth cut-off phenomenon in sea surface wind field observation.Wave spectrometers,while unaffected by the azimuth cutoff phenomenon,struggle with low azimuth resolution,impacting the capture of detailed wave and wind field data.This study utilizes SAR and surface wave investigation and monitoring(SWIM)data to initially extract key feature parameters,which are then prioritized using the extreme gradient boosting(XGBoost)algorithm.The research further addresses feature collinearity through a combined analysis of feature importance and correlation,leading to the development of an inversion model for wave and wind parameters based on XGBoost.A comparative analysis of this model with ERA5 reanalysis and buoy data for of significant wave height,mean wave period,wind direction,and wind speed reveals root mean square errors of 0.212 m,0.525 s,27.446°,and 1.092 m/s,compared to 0.314 m,0.888 s,27.698°,and 1.315 m/s from buoy data,respectively.These results demonstrate the model’s effective retrieval of wave and wind parameters.Finally,the model,incorporating altimeter and scatterometer data,is evaluated against SAR/SWIM single and dual payload inversion methods across different wind speeds.This comparison highlights the model’s superior inversion accuracy over other methods.展开更多
The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(R...The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.展开更多
Geomechanical parameters of intact metamorphic rocks determined from laboratory testing remain highly uncertain because of the great intrinsic variability associated with the degrees of metamorphism.The aim of this pa...Geomechanical parameters of intact metamorphic rocks determined from laboratory testing remain highly uncertain because of the great intrinsic variability associated with the degrees of metamorphism.The aim of this paper is to develop a proper methodology to analyze the uncertainties of geomechanical characteristics by focusing on three domains,i.e.data treatment process,schistosity angle,and mineralogy.First,the variabilities of the geomechanical laboratory data of Westwood Mine(Quebec,Canada)were examined statistically by applying different data treatment techniques,through which the most suitable outlier methods were selected for each parameter using multiple decision-making criteria and engineering judgment.Results indicated that some methods exhibited better performance in identifying the possible outliers,although several others were unsuccessful because of their limitation in large sample size.The well-known boxplot method might not be the best outlier method for most geomechanical parameters because its calculated confidence range was not acceptable according to engineering judgment.However,several approaches,including adjusted boxplot,2MADe,and 2SD,worked very well in the detection of true outliers.Also,the statistical tests indicate that the best-fitting probability distribution function for geomechanical intact parameters might not be the normal distribution,unlike what is assumed in most geomechanical studies.Moreover,the negative effects of schistosity angle on the uniaxial compressive strength(UCS)variabilities were reduced by excluding the samples within a specific angle range where the UCS data present the highest variation.Finally,a petrographic analysis was conducted to assess the associated uncertainties such that a logical link was found between the dispersion and the variabilities of hard and soft minerals.展开更多
Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM)...Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM),metal ingot producers and even die casters.The aim of this study was to minimize the intermetallic formation in Mg sludge via the optimization of the chemistry and process parameters.The Al8Mn5 intermetallic particles were identified by the microstructure analysis based on the Al and Mn ratio.The design of experiment(DOE)technique,Taguchi method,was employed to minimize the intermetallic formation in the sludge of Mg alloys with various chemical compositions of Al,Mn,Fe,and different process parameters,holding temperature and holding time.The sludge yield(SY)and intermetallic size(IS)was selected as two responses.The optimum combination of the levels in terms of minimizing the intermetallic formation were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,690℃ for the holding temperature and holding at 30 mins for the holding time,respectively.The best combination for smallest intermetallic size were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,630℃ for the holding temperature and holding at 60 mins for the holding time,respectively.Three groups of sludge factors,Chemical Sludge(CSF),Physical Sludge(PSF)and Comprehensive Sludge Factors(and CPSF)were established for prediction of sludge yields and intermetallic sizes in Al-containing Mg alloys.The CPSF with five independent variables including both chemical elements and process parameters gave high accuracy in prediction,as the prediction of the PSF with only the two processing parameters of the melt holding temperature and time showed a relatively large deviation from the experimental data.The Chemical Sludge Factor was primarily designed for small ingot producers and die casters with a limited melting and holding capacity,of which process parameters could be fixed easily.The Physical Sludge Factor could be used for mass production with a single type of Mg alloy,in which the chemistry fluctuation might be negligible.In large Mg casting suppliers with multiple melting and holding furnaces and a number of Mg alloys in production,the Comprehensive Sludge Factor should be implemented to diminish the sludge formation.展开更多
Transmission line(TL)Parameter Identification(PI)method plays an essential role in the transmission system.The existing PI methods usually have two limitations:(1)These methods only model for single TL,and can not con...Transmission line(TL)Parameter Identification(PI)method plays an essential role in the transmission system.The existing PI methods usually have two limitations:(1)These methods only model for single TL,and can not consider the topology connection of multiple branches for simultaneous identification.(2)Transient bad data is ignored by methods,and the random selection of terminal section data may cause the distortion of PI and have serious consequences.Therefore,a multi-task PI model considering multiple TLs’spatial constraints and massive electrical section data is proposed in this paper.The Graph Attention Network module is used to draw a single TL into a node and calculate its influence coefficient in the transmission network.Multi-Task strategy of Hard Parameter Sharing is used to identify the conductance ofmultiple branches simultaneously.Experiments show that themethod has good accuracy and robustness.Due to the consideration of spatial constraints,the method can also obtain more accurate conductance values under different training and testing conditions.展开更多
For an in-depth study on the integration problem of the constrained mechanical systems the method of integration for the Birkhoffian system with constraints is discussed and the method of variation of parameters for s...For an in-depth study on the integration problem of the constrained mechanical systems the method of integration for the Birkhoffian system with constraints is discussed and the method of variation of parameters for solving the dynamical equations of the constrained Birkhoffian system is provided.First the differential equations of motion for the constrained Birkhoffian system as well as for the corresponding free Birkhoffian system are established.Secondly a system of auxiliary equations is constructed and the general solution of the equations is found.Finally by varying the parameters and utilizing the properties of the generalized canonical transformation of the Birkhoffian system the solution of the problem can be obtained.The proposed method reveals the inherent relationship between the solution of a free Birkhoffian system and that of a constrained Birkhoffian system. The research results are of universal significance which can be further used in a variety of constrained mechanical systems such as non-conservative systems and nonholonomic systems etc.展开更多
The estimation of model parameters is an important subject in engineering.In this area of work,the prevailing approach is to estimate or calculate these as deterministic parameters.In this study,we consider the model ...The estimation of model parameters is an important subject in engineering.In this area of work,the prevailing approach is to estimate or calculate these as deterministic parameters.In this study,we consider the model parameters from the perspective of random variables and describe the general form of the parameter distribution inference problem.Under this framework,we propose an ensemble Bayesian method by introducing Bayesian inference and the Markov chain Monte Carlo(MCMC)method.Experiments on a finite cylindrical reactor and a 2D IAEA benchmark problem show that the proposed method converges quickly and can estimate parameters effectively,even for several correlated parameters simultaneously.Our experiments include cases of engineering software calls,demonstrating that the method can be applied to engineering,such as nuclear reactor engineering.展开更多
In the traditional strength reduction method,the cohesion and the friction angle adopt the same reduction parameter,resulting in equivalent proportional reduction.This method does not consider the different effects of...In the traditional strength reduction method,the cohesion and the friction angle adopt the same reduction parameter,resulting in equivalent proportional reduction.This method does not consider the different effects of the cohesion and friction angle on the stability of the same slope and is defective to some extent.Regarding this defect,a strength reduction method based on double reduction parameters,which adopts different reduction parameters,is proposed.The core of the double-parameter reduction method is the matching reduction principle of the slope with different angles.This principle is represented by the ratio of the reduction parameter of the cohesion to that of the friction angle,described as η.With the increase in the slopeangle,ηincreases; in particular,when the slope angle is 45°,tηis 1.0.Through the matching reduction principle,different safety margin factors can be calculated for the cohesion and friction angle.In combination with these two safety margin factors,a formula for calculating the overall safety factor of the slope is proposed,reflecting the different contributions of the cohesion and friction angle to the slope stability.Finally,it is shown that the strength reduction method based on double reduction parameters acquires a larger safety factor than the classic limit equilibrium method,but the calculation results are very close to those obtained by the limit equilibrium method.展开更多
This paper investigates the effects of charge parameters of the underwater contact explosion based on the axisymmetric smoothed particle hydrodynamics (SPH) method. The dynamic boundary particle is proposed to impro...This paper investigates the effects of charge parameters of the underwater contact explosion based on the axisymmetric smoothed particle hydrodynamics (SPH) method. The dynamic boundary particle is proposed to improve the pressure fluctuation and numerical accuracy near the symmetric axis. An in-depth study is carried out over the influence of charge shapes and detonation modes on the near-field loads in terms of the peak pressure and impulse of shock waves. For different charge shapes, the cylindrical charge with different length-diameter ratios may cause strong directivity of peak pressure and impulse in the near field. Compared with spherical charge, the peak pressure of cylindrical charge may be either weakened or enhanced in different directions. Within a certain range, the greater the length-diameter ratio is, the more obvious the effect will be. The weakened ratio near the detonation end may reach 25% approximately, while the enhanced ratio may reach around 20% in the opposite direction. However, the impulse in different directions seems to be uniform. For different detonation modes, compared with point-source explosion, the peak pressure of plane-source explosion is enhanced by about 5%. Besides, the impulse of plane-source explosion is enhanced by around 5% near the detonation end, but close to those of the point-source explosion in other directions. Based on the material constitutive relation in the axisymmetric coordinates, a simple case of underwater contact explosion is simulated to verify the above conclusions, showing that the charge parameters of underwater contact explosion should not be ignored.展开更多
A new numerical technique named as fuzzy finite difference method is proposed to solve the heat conduction problems with fuzzy uncertainties in both the phys- ical parameters and initial/boundary conditions. In virtue...A new numerical technique named as fuzzy finite difference method is proposed to solve the heat conduction problems with fuzzy uncertainties in both the phys- ical parameters and initial/boundary conditions. In virtue of the level-cut method, the difference discrete equations with fuzzy parameters are equivalently transformed into groups of interval equations. New stability analysis theory suited to fuzzy difference schemes is developed. Based on the parameter perturbation method, the interval ranges of the uncertain temperature field can be approximately predicted. Subsequently, fuzzy solutions to the original difference equations are obtained by the fuzzy resolution theorem. Two numerical examples are given to demonstrate the feasibility and efficiency of the presented method for solving both steady-state and transient heat conduction problems.展开更多
A hybrid numerical-experimental approach to identify elastic modulus of a textile composite panel using vibration test data is proposed and investi- gated. Homogenization method is adopted to predict the initial value...A hybrid numerical-experimental approach to identify elastic modulus of a textile composite panel using vibration test data is proposed and investi- gated. Homogenization method is adopted to predict the initial values of elastic parameters of the composite, and parameter identification is transformed to an optimization problem in which the objective function is the minimization of the discrepancies between the experimental and numerical modal data. Case study is conducted employing a woven fabric reinforced composite panel. Three parameters (Ell, E22, G12) with higher sensitivities are selected to be identified. It is shown that the elastic parameters can be accurately identified from experimental modal data.展开更多
The inverse heat conduction method is one of methods to identify the casting simulation parameters. A new inverse method was presented according to the Tikhonov regularization theory. One appropriate regularized funct...The inverse heat conduction method is one of methods to identify the casting simulation parameters. A new inverse method was presented according to the Tikhonov regularization theory. One appropriate regularized functional was established, and the functional was solved by the sensitivity coefficient and Newtonaphson iteration method. Moreover, the orthogonal experimental design was used to estimate the appropriate initial value and variation domain of each variable to decrease the number of iteration and improve the identification accuracy and efficiency. It illustrated a detailed case of AlSiTMg sand mold casting and the temperature measurement experiment was done. The physical properties of sand mold and the interracial heat transfer coefficient were identified at the meantime. The results indicated that the new regularization method was efficient in overcoming the ill-posedness of the inverse heat conduction problem and improving the stability and accuracy of the solutions.展开更多
Reviewing the empirical and theoretical parameter relationships between various parameters is a good way to understand more about contact binary systems.In this investigation,two-dimensional(2D)relationships for P–MV...Reviewing the empirical and theoretical parameter relationships between various parameters is a good way to understand more about contact binary systems.In this investigation,two-dimensional(2D)relationships for P–MV(system),P–L1,2,M1,2–L1,2,and q–Lratiowere revisited.The sample used is related to 118 contact binary systems with an orbital period shorter than 0.6 days whose absolute parameters were estimated based on the Gaia Data Release 3 parallax.We reviewed previous studies on 2D relationships and updated six parameter relationships.Therefore,Markov chain Monte Carlo and Machine Learning methods were used,and the outcomes were compared.We selected 22 contact binary systems from eight previous studies for comparison,which had light curve solutions using spectroscopic data.The results show that the systems are in good agreement with the results of this study.展开更多
Squeeze casting(SC)is an advanced net manufacturing process with many advantages for which the quality and properties of the manufactured parts depend strongly on the process parameters.Unfortunately,a universal effic...Squeeze casting(SC)is an advanced net manufacturing process with many advantages for which the quality and properties of the manufactured parts depend strongly on the process parameters.Unfortunately,a universal efficient method for the determination of optimal process parameters is still unavailable.In view of the shortcomings and development needs of the current research methods for the setting of SC process parameters,by consulting and analyzing the recent research literature on SC process parameters and using the CiteSpace literature analysis software,manual reading and statistical analysis,the current state and characteristics of the research methods used for the determination of SC process parameters are summarized.The literature data show that the number of pub-lications in the literature related to the design of SC process parameters generally trends upward albeit with signifi-cant fluctuations.Analysis of the research focus shows that both“mechanical properties”and“microstructure”are the two main subjects in the studies of SC process parameters.With regard to materials,aluminum alloys have been extensively studied.Five methods have been used to obtain SC process parameters:Physical experiments,numeri-cal simulation,modeling optimization,formula calculation,and the use of empirical values.Physical experiments are the main research methods.The main methods for designing SC process parameters are divided into three categories:Fully experimental methods,optimization methods that involve modeling based on experimental data,and theoreti-cal calculation methods that involve establishing an analytical formula.The research characteristics and shortcomings of each method were analyzed.Numerical simulations and model-based optimization have become the new required methods.Considering the development needs and data-driven trends of the SC process,suggestions for the develop-ment of SC process parameter research have been proposed.展开更多
Offshore platforms are susceptible to structural damage due to prolonged exposure to random loads,such as wind,waves,and currents.This is particularly true for platforms that have been in service for an extended perio...Offshore platforms are susceptible to structural damage due to prolonged exposure to random loads,such as wind,waves,and currents.This is particularly true for platforms that have been in service for an extended period.Identifying the modal parameters of offshore platforms is crucial for damage diagno sis,as it serves as a prerequisite and foundation for the process.Therefore,it holds great significance to prioritize the identification of these parameters.Aiming at the shortcomings of the traditional Fast Bayesian Fast Fourier Transform(FBFFT) method,this paper proposes a modal parameter identification method based on Automatic Frequency Domain Decomposition(AFDD) and optimized FBFFT.By introducing the AFDD method and Powell optimization algorithm,this method can automatically identify the initial value of natural frequency and solve the objective function efficiently and simply.In order to verify the feasibility and effectiveness of the proposed method,it is used to identify the modal parameters of the IASC-ASCE benchmark model and the j acket platform structure model,and the Most Probable Value(MPV) of the modal parameters and their respective posterior uncertainties are successfully identified.The identification results of the IASC-ASCE benc hmark model are compared with the identification re sults of the MODE-ID method,which verifies the effectivene ss and accuracy of the proposed method for identifying modal parameters.It provides a simple and feasible method for quantifying the influence of uncertain factors such as environmental parameters on the identification results,and also provide s a reference for modal parameter identification of other large structures.展开更多
The exact calculation of point kinetic parameters is very important in nuclear reactor safety assessment, and most sophisticated safety codes such as RELAP5, PARCS,DYN3D, and PARET are using these parameters in their ...The exact calculation of point kinetic parameters is very important in nuclear reactor safety assessment, and most sophisticated safety codes such as RELAP5, PARCS,DYN3D, and PARET are using these parameters in their dynamic models. These parameters include effective delayed neutron fractions as well as mean generation time.These parameters are adjoint-weighted, and adjoint flux is employed as a weighting function in their evaluation.Adjoint flux calculation is an easy task for most of deterministic codes, but its evaluation is cumbersome for Monte Carlo codes. However, in recent years, some sophisticated techniques have been proposed for Monte Carlo-based point kinetic parameters calculation without any need of adjoint flux. The most straightforward scheme is known as the ‘‘prompt method'' and has been used widely in literature. The main objective of this article is dedicated to point kinetic parameters calculation in Tehran research reactor(TRR) using deterministic as well as probabilistic techniques. WIMS-D5B and CITATION codes have been used in deterministic calculation of forward and adjoint fluxes in the TRR core. On the other hand, the MCNP Monte Carlo code has been employed in the ‘‘prompt method''scheme for effective delayed neutron fraction evaluation.Deterministic results have been cross-checked with probabilistic ones and validated with SAR and experimental data. In comparison with experimental results, the relativedifferences of deterministic as well as probabilistic methods are 7.6 and 3.2%, respectively. These quantities are10.7 and 6.4%, respectively, in comparison with SAR report.展开更多
This paper focuses on studying the integration method of a generalized Birkhoffian system.The method of variation on parameters for the dynamical equations of a generalized Birkhoffian system is presented.The procedur...This paper focuses on studying the integration method of a generalized Birkhoffian system.The method of variation on parameters for the dynamical equations of a generalized Birkhoffian system is presented.The procedure for solving the problem can be divided into two steps:the first step,a system of auxiliary equations is constructed and its general solution is given;the second step,the parameters are varied,and the solution of the problem is obtained by using the properties of generalized canonical transformation.The method of variation on parameters for the generalized Birkhoffian system is of universal significance,and we take a nonholonomic system and a nonconservative system as examples to illustrate the application of the results of this paper.展开更多
The origin and movement of groundwater are the fundamental questions that address both the temporal and spatial aspects of ground water run and water supply related issues in hydrological systems.As groundwater flows ...The origin and movement of groundwater are the fundamental questions that address both the temporal and spatial aspects of ground water run and water supply related issues in hydrological systems.As groundwater flows through an aquifer,its composition and temperature may variation dependent on the aquifer condition through which it flows.Thus,hydrologic investigations can also provide useful information about the subsurface geology of a region.But because such studies investigate processes that follow under the Earth's shallow,obtaining the information necessary to answer these questions is not continuously easy.Springs,which discharge groundwater table directly,afford to study subsurface hydrogeological processes.The present study of estimation of aquifer factors such as transmissivity(T)and storativity(S)are vital for the evaluation of groundwater resources.There are several methods to estimate the accurate aquifer parameters(i.e.hydrograph analysis,pumping test,etc.).In initial days,these parameters are projected either by means of in-situ test or execution test on aquifer well samples carried in the laboratory.The simultaneous information on the hydraulic behavior of the well(borehole)that provides on this method,the reservoir and the reservoir boundaries,are important for efficient aquifer and well data management and analysis.The most common in-situ test is pumping test performed on wells,which involves the measurement of the fall and increase of groundwater level with respect to time.The alteration in groundwater level(drawdown/recovery)is caused due to pumping of water from the well.Theis(1935)was first to propose method to evaluate aquifer parameters from the pumping test on a bore well in a confined aquifer.It is essential to know the transmissivity(T=Kb,where b is the aquifer thickness;pumping flow rate,Q=TW(dh/dl)flow through an aquifer)and storativity(confined aquifer:S=bS_s,unconfined:S=S_y),for the characterization of the aquifer parameters in an unknown area so as to predict the rate of drawdown of the groundwater table/potentiometric surface throughout the pumping test of an aquifer.The determination of aquifer's parameters is an important basis for groundwater resources evaluation,numerical simulation,development and protection as well as scientific management.For determining aquifer's parameters,pumping test is a main method.A case study shows that these techniques have been fast speed and high correctness.The results of parameter's determination are optimized so that it has important applied value for scientific research and geology engineering preparation.展开更多
The Hansen solubility parameters(HSP)are frequently used for solvent selection and characterization of polymers,and are directly related to the suspension behavior of pigments in solvent mixtures.The performance of cu...The Hansen solubility parameters(HSP)are frequently used for solvent selection and characterization of polymers,and are directly related to the suspension behavior of pigments in solvent mixtures.The performance of currently available group contribution(GC)methods for HSP were evaluated and found to be insufficient for computer-aided product design(CAPD)of paints and coatings.A revised and,for this purpose,improved GC method is presented for estimating HSP of organic compounds,intended for organic pigments.Due to the significant limitations of GC methods,an uncertainty analysis and parameter confidence intervals are provided in order to better quantify the estimation accuracy of the proposed approach.Compared to other applicable GC methods,the prediction error is reduced significantly with average absolute errors of 0.45 MPa^(1/2),1.35 MPa^(1/2),and 1.09 MPa^(1/2) for the partial dispersion(δD),polar(δP)and hydrogen-bonding(δH)solubility parameters respectively for a database of 1106 compounds.The performance for organic pigments is comparable to the overall method performance,with higher average errors forδD and lower average errors forδP andδH.展开更多
The calculation results of marine environmental design parameters obtained from different data sampling methods,model distributions,and parameter estimation methods often vary greatly.To better analyze the uncertainti...The calculation results of marine environmental design parameters obtained from different data sampling methods,model distributions,and parameter estimation methods often vary greatly.To better analyze the uncertainties in the calculation of marine environmental design parameters,a general model uncertainty assessment method is necessary.We proposed a new multivariate model uncertainty assessment method for the calculation of marine environmental design parameters.The method divides the overall model uncertainty into two categories:aleatory uncertainty and epistemic uncertainty.The aleatory uncertainty of the model is obtained by analyzing the influence of the number and the dispersion degree of samples on the information entropy of the model.The epistemic uncertainty of the model is calculated using the information entropy of the model itself and the prediction error.The advantages of this method are that it does not require many-year-observation data for the marine environmental elements,and the method can be used to analyze any specific factors that cause model uncertainty.Results show that by applying the method to the South China Sea,the aleatory uncertainty of the model increases with the number of samples and then stabilizes.A positive correlation was revealed between the dispersion of the samples and the aleatory uncertainty of the model.Both the distribution of the model and the parameter estimation results of the model have significant effects on the epistemic uncertainty of the model.When the goodness-of-fit of the model is relatively close,the best model can be selected according to the criterion of the lowest overall uncertainty of the models,which can both ensure a better model fit and avoid too much uncertainty in the model calculation results.The presented multivariate model uncertainty assessment method provides a criterion to measure the advantages and disadvantages of the marine environmental design parameter calculation model from the aspect of uncertainty,which is of great significance to analyze the uncertainties in the calculation of marine environmental design parameters and improve the accuracy of the calculation results.展开更多
基金The project supported by Key Laboratory of Space Ocean Remote Sensing and Application,Ministry of Natural Resources under contract No.2023CFO016the National Natural Science Foundation of China under contract No.61931025+1 种基金the Innovation Fund Project for Graduate Student of China University of Petroleum(East China)the Fundamental Research Funds for the Central Universities under contract No.23CX04042A.
文摘Synthetic aperture radar(SAR)and wave spectrometers,crucial in microwave remote sensing,play an essential role in monitoring sea surface wind and wave conditions.However,they face inherent limitations in observing sea surface phenomena.SAR systems,for instance,are hindered by an azimuth cut-off phenomenon in sea surface wind field observation.Wave spectrometers,while unaffected by the azimuth cutoff phenomenon,struggle with low azimuth resolution,impacting the capture of detailed wave and wind field data.This study utilizes SAR and surface wave investigation and monitoring(SWIM)data to initially extract key feature parameters,which are then prioritized using the extreme gradient boosting(XGBoost)algorithm.The research further addresses feature collinearity through a combined analysis of feature importance and correlation,leading to the development of an inversion model for wave and wind parameters based on XGBoost.A comparative analysis of this model with ERA5 reanalysis and buoy data for of significant wave height,mean wave period,wind direction,and wind speed reveals root mean square errors of 0.212 m,0.525 s,27.446°,and 1.092 m/s,compared to 0.314 m,0.888 s,27.698°,and 1.315 m/s from buoy data,respectively.These results demonstrate the model’s effective retrieval of wave and wind parameters.Finally,the model,incorporating altimeter and scatterometer data,is evaluated against SAR/SWIM single and dual payload inversion methods across different wind speeds.This comparison highlights the model’s superior inversion accuracy over other methods.
基金supported by the National Key Research and Development Program of China(No.2023YFC2907600)the National Natural Science Foundation of China(Nos.42077267,42277174 and 52074164)+2 种基金the Natural Science Foundation of Shandong Province,China(No.ZR2020JQ23)the Opening Project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology(No.KFJJ21-02Z)the Fundamental Research Funds for the Central Universities,China(No.2022JCCXSB03).
文摘The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.
基金The authors would like to thank the Natural Sciences and Engineering Research Council of Canada(NSERC),IAMGOLD Corporation,and Westwood mine for supporting and funding this research(Grant No.RDCPJ 520428e17)also NSERC discovery funding(Grant No.RGPIN-2019-06693).
文摘Geomechanical parameters of intact metamorphic rocks determined from laboratory testing remain highly uncertain because of the great intrinsic variability associated with the degrees of metamorphism.The aim of this paper is to develop a proper methodology to analyze the uncertainties of geomechanical characteristics by focusing on three domains,i.e.data treatment process,schistosity angle,and mineralogy.First,the variabilities of the geomechanical laboratory data of Westwood Mine(Quebec,Canada)were examined statistically by applying different data treatment techniques,through which the most suitable outlier methods were selected for each parameter using multiple decision-making criteria and engineering judgment.Results indicated that some methods exhibited better performance in identifying the possible outliers,although several others were unsuccessful because of their limitation in large sample size.The well-known boxplot method might not be the best outlier method for most geomechanical parameters because its calculated confidence range was not acceptable according to engineering judgment.However,several approaches,including adjusted boxplot,2MADe,and 2SD,worked very well in the detection of true outliers.Also,the statistical tests indicate that the best-fitting probability distribution function for geomechanical intact parameters might not be the normal distribution,unlike what is assumed in most geomechanical studies.Moreover,the negative effects of schistosity angle on the uniaxial compressive strength(UCS)variabilities were reduced by excluding the samples within a specific angle range where the UCS data present the highest variation.Finally,a petrographic analysis was conducted to assess the associated uncertainties such that a logical link was found between the dispersion and the variabilities of hard and soft minerals.
基金Meridian Lightweight Technologies Inc.,Strathroy,Ontario Canadathe University of Windsor,Windsor,Ontario,Canada for supporting this workpart of a large project funded by Meridian Lightweight Technologies,Inc.
文摘Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM),metal ingot producers and even die casters.The aim of this study was to minimize the intermetallic formation in Mg sludge via the optimization of the chemistry and process parameters.The Al8Mn5 intermetallic particles were identified by the microstructure analysis based on the Al and Mn ratio.The design of experiment(DOE)technique,Taguchi method,was employed to minimize the intermetallic formation in the sludge of Mg alloys with various chemical compositions of Al,Mn,Fe,and different process parameters,holding temperature and holding time.The sludge yield(SY)and intermetallic size(IS)was selected as two responses.The optimum combination of the levels in terms of minimizing the intermetallic formation were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,690℃ for the holding temperature and holding at 30 mins for the holding time,respectively.The best combination for smallest intermetallic size were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,630℃ for the holding temperature and holding at 60 mins for the holding time,respectively.Three groups of sludge factors,Chemical Sludge(CSF),Physical Sludge(PSF)and Comprehensive Sludge Factors(and CPSF)were established for prediction of sludge yields and intermetallic sizes in Al-containing Mg alloys.The CPSF with five independent variables including both chemical elements and process parameters gave high accuracy in prediction,as the prediction of the PSF with only the two processing parameters of the melt holding temperature and time showed a relatively large deviation from the experimental data.The Chemical Sludge Factor was primarily designed for small ingot producers and die casters with a limited melting and holding capacity,of which process parameters could be fixed easily.The Physical Sludge Factor could be used for mass production with a single type of Mg alloy,in which the chemistry fluctuation might be negligible.In large Mg casting suppliers with multiple melting and holding furnaces and a number of Mg alloys in production,the Comprehensive Sludge Factor should be implemented to diminish the sludge formation.
基金supported by the National Natural Science Foundation of PR China(42075130)the Postgraduate Research and Innovation Project of Jiangsu Province(1534052101133).
文摘Transmission line(TL)Parameter Identification(PI)method plays an essential role in the transmission system.The existing PI methods usually have two limitations:(1)These methods only model for single TL,and can not consider the topology connection of multiple branches for simultaneous identification.(2)Transient bad data is ignored by methods,and the random selection of terminal section data may cause the distortion of PI and have serious consequences.Therefore,a multi-task PI model considering multiple TLs’spatial constraints and massive electrical section data is proposed in this paper.The Graph Attention Network module is used to draw a single TL into a node and calculate its influence coefficient in the transmission network.Multi-Task strategy of Hard Parameter Sharing is used to identify the conductance ofmultiple branches simultaneously.Experiments show that themethod has good accuracy and robustness.Due to the consideration of spatial constraints,the method can also obtain more accurate conductance values under different training and testing conditions.
基金The National Natural Science Foundation of China(No.10972151,11272227)
文摘For an in-depth study on the integration problem of the constrained mechanical systems the method of integration for the Birkhoffian system with constraints is discussed and the method of variation of parameters for solving the dynamical equations of the constrained Birkhoffian system is provided.First the differential equations of motion for the constrained Birkhoffian system as well as for the corresponding free Birkhoffian system are established.Secondly a system of auxiliary equations is constructed and the general solution of the equations is found.Finally by varying the parameters and utilizing the properties of the generalized canonical transformation of the Birkhoffian system the solution of the problem can be obtained.The proposed method reveals the inherent relationship between the solution of a free Birkhoffian system and that of a constrained Birkhoffian system. The research results are of universal significance which can be further used in a variety of constrained mechanical systems such as non-conservative systems and nonholonomic systems etc.
基金partially sponsored by the Natural Science Foundation of Shanghai(No.23ZR1429300)the Innovation Fund of CNNC(Lingchuang Fund)。
文摘The estimation of model parameters is an important subject in engineering.In this area of work,the prevailing approach is to estimate or calculate these as deterministic parameters.In this study,we consider the model parameters from the perspective of random variables and describe the general form of the parameter distribution inference problem.Under this framework,we propose an ensemble Bayesian method by introducing Bayesian inference and the Markov chain Monte Carlo(MCMC)method.Experiments on a finite cylindrical reactor and a 2D IAEA benchmark problem show that the proposed method converges quickly and can estimate parameters effectively,even for several correlated parameters simultaneously.Our experiments include cases of engineering software calls,demonstrating that the method can be applied to engineering,such as nuclear reactor engineering.
基金Project(KZCX2-YW-T12)supported by the Chinese Academy of Science,China
文摘In the traditional strength reduction method,the cohesion and the friction angle adopt the same reduction parameter,resulting in equivalent proportional reduction.This method does not consider the different effects of the cohesion and friction angle on the stability of the same slope and is defective to some extent.Regarding this defect,a strength reduction method based on double reduction parameters,which adopts different reduction parameters,is proposed.The core of the double-parameter reduction method is the matching reduction principle of the slope with different angles.This principle is represented by the ratio of the reduction parameter of the cohesion to that of the friction angle,described as η.With the increase in the slopeangle,ηincreases; in particular,when the slope angle is 45°,tηis 1.0.Through the matching reduction principle,different safety margin factors can be calculated for the cohesion and friction angle.In combination with these two safety margin factors,a formula for calculating the overall safety factor of the slope is proposed,reflecting the different contributions of the cohesion and friction angle to the slope stability.Finally,it is shown that the strength reduction method based on double reduction parameters acquires a larger safety factor than the classic limit equilibrium method,but the calculation results are very close to those obtained by the limit equilibrium method.
基金supported by the National Natural Science Foundation of China(No.51379039)the Excellent Young Scientists Fund(No.51222904)
文摘This paper investigates the effects of charge parameters of the underwater contact explosion based on the axisymmetric smoothed particle hydrodynamics (SPH) method. The dynamic boundary particle is proposed to improve the pressure fluctuation and numerical accuracy near the symmetric axis. An in-depth study is carried out over the influence of charge shapes and detonation modes on the near-field loads in terms of the peak pressure and impulse of shock waves. For different charge shapes, the cylindrical charge with different length-diameter ratios may cause strong directivity of peak pressure and impulse in the near field. Compared with spherical charge, the peak pressure of cylindrical charge may be either weakened or enhanced in different directions. Within a certain range, the greater the length-diameter ratio is, the more obvious the effect will be. The weakened ratio near the detonation end may reach 25% approximately, while the enhanced ratio may reach around 20% in the opposite direction. However, the impulse in different directions seems to be uniform. For different detonation modes, compared with point-source explosion, the peak pressure of plane-source explosion is enhanced by about 5%. Besides, the impulse of plane-source explosion is enhanced by around 5% near the detonation end, but close to those of the point-source explosion in other directions. Based on the material constitutive relation in the axisymmetric coordinates, a simple case of underwater contact explosion is simulated to verify the above conclusions, showing that the charge parameters of underwater contact explosion should not be ignored.
基金supported by the National Special Fund for Major Research Instrument Development(2011YQ140145)111 Project(B07009)+1 种基金the National Natural Science Foundation of China(11002013)Defense Industrial Technology Development Program(A2120110001 and B2120110011)
文摘A new numerical technique named as fuzzy finite difference method is proposed to solve the heat conduction problems with fuzzy uncertainties in both the phys- ical parameters and initial/boundary conditions. In virtue of the level-cut method, the difference discrete equations with fuzzy parameters are equivalently transformed into groups of interval equations. New stability analysis theory suited to fuzzy difference schemes is developed. Based on the parameter perturbation method, the interval ranges of the uncertain temperature field can be approximately predicted. Subsequently, fuzzy solutions to the original difference equations are obtained by the fuzzy resolution theorem. Two numerical examples are given to demonstrate the feasibility and efficiency of the presented method for solving both steady-state and transient heat conduction problems.
基金supported by the Program for New Century Excellent Talents in University(NCET11-0086)the National Natural Science Foundation of China(10902024)+1 种基金the Doctoral Program of Higher Education of China(20130092120039)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD-1105007001)
文摘A hybrid numerical-experimental approach to identify elastic modulus of a textile composite panel using vibration test data is proposed and investi- gated. Homogenization method is adopted to predict the initial values of elastic parameters of the composite, and parameter identification is transformed to an optimization problem in which the objective function is the minimization of the discrepancies between the experimental and numerical modal data. Case study is conducted employing a woven fabric reinforced composite panel. Three parameters (Ell, E22, G12) with higher sensitivities are selected to be identified. It is shown that the elastic parameters can be accurately identified from experimental modal data.
文摘The inverse heat conduction method is one of methods to identify the casting simulation parameters. A new inverse method was presented according to the Tikhonov regularization theory. One appropriate regularized functional was established, and the functional was solved by the sensitivity coefficient and Newtonaphson iteration method. Moreover, the orthogonal experimental design was used to estimate the appropriate initial value and variation domain of each variable to decrease the number of iteration and improve the identification accuracy and efficiency. It illustrated a detailed case of AlSiTMg sand mold casting and the temperature measurement experiment was done. The physical properties of sand mold and the interracial heat transfer coefficient were identified at the meantime. The results indicated that the new regularization method was efficient in overcoming the ill-posedness of the inverse heat conduction problem and improving the stability and accuracy of the solutions.
基金The Binary Systems of South and North(BSN)project(https://bsnp.info/)。
文摘Reviewing the empirical and theoretical parameter relationships between various parameters is a good way to understand more about contact binary systems.In this investigation,two-dimensional(2D)relationships for P–MV(system),P–L1,2,M1,2–L1,2,and q–Lratiowere revisited.The sample used is related to 118 contact binary systems with an orbital period shorter than 0.6 days whose absolute parameters were estimated based on the Gaia Data Release 3 parallax.We reviewed previous studies on 2D relationships and updated six parameter relationships.Therefore,Markov chain Monte Carlo and Machine Learning methods were used,and the outcomes were compared.We selected 22 contact binary systems from eight previous studies for comparison,which had light curve solutions using spectroscopic data.The results show that the systems are in good agreement with the results of this study.
基金Supported by National Natural Science Foundation of China(Grant Nos.51965006 and 51875209)Guangxi Natural Science Foundation of China(Grant No.2018GXNSFAA050111)+1 种基金Innovation Project of Guangxi Graduate Education of China(Grant No.YCSW2019035)Open Fund of National Engineering Research Center of Near-Shape Forming for Metallic Materials of China(Grant No.2019001).
文摘Squeeze casting(SC)is an advanced net manufacturing process with many advantages for which the quality and properties of the manufactured parts depend strongly on the process parameters.Unfortunately,a universal efficient method for the determination of optimal process parameters is still unavailable.In view of the shortcomings and development needs of the current research methods for the setting of SC process parameters,by consulting and analyzing the recent research literature on SC process parameters and using the CiteSpace literature analysis software,manual reading and statistical analysis,the current state and characteristics of the research methods used for the determination of SC process parameters are summarized.The literature data show that the number of pub-lications in the literature related to the design of SC process parameters generally trends upward albeit with signifi-cant fluctuations.Analysis of the research focus shows that both“mechanical properties”and“microstructure”are the two main subjects in the studies of SC process parameters.With regard to materials,aluminum alloys have been extensively studied.Five methods have been used to obtain SC process parameters:Physical experiments,numeri-cal simulation,modeling optimization,formula calculation,and the use of empirical values.Physical experiments are the main research methods.The main methods for designing SC process parameters are divided into three categories:Fully experimental methods,optimization methods that involve modeling based on experimental data,and theoreti-cal calculation methods that involve establishing an analytical formula.The research characteristics and shortcomings of each method were analyzed.Numerical simulations and model-based optimization have become the new required methods.Considering the development needs and data-driven trends of the SC process,suggestions for the develop-ment of SC process parameter research have been proposed.
基金financially supported by the Natural Science Foundation of Heilongjiang Province of China (Grant No. LH2020E016)the National Natural Science Foundation of China (Grant No.11472076)。
文摘Offshore platforms are susceptible to structural damage due to prolonged exposure to random loads,such as wind,waves,and currents.This is particularly true for platforms that have been in service for an extended period.Identifying the modal parameters of offshore platforms is crucial for damage diagno sis,as it serves as a prerequisite and foundation for the process.Therefore,it holds great significance to prioritize the identification of these parameters.Aiming at the shortcomings of the traditional Fast Bayesian Fast Fourier Transform(FBFFT) method,this paper proposes a modal parameter identification method based on Automatic Frequency Domain Decomposition(AFDD) and optimized FBFFT.By introducing the AFDD method and Powell optimization algorithm,this method can automatically identify the initial value of natural frequency and solve the objective function efficiently and simply.In order to verify the feasibility and effectiveness of the proposed method,it is used to identify the modal parameters of the IASC-ASCE benchmark model and the j acket platform structure model,and the Most Probable Value(MPV) of the modal parameters and their respective posterior uncertainties are successfully identified.The identification results of the IASC-ASCE benc hmark model are compared with the identification re sults of the MODE-ID method,which verifies the effectivene ss and accuracy of the proposed method for identifying modal parameters.It provides a simple and feasible method for quantifying the influence of uncertain factors such as environmental parameters on the identification results,and also provide s a reference for modal parameter identification of other large structures.
文摘The exact calculation of point kinetic parameters is very important in nuclear reactor safety assessment, and most sophisticated safety codes such as RELAP5, PARCS,DYN3D, and PARET are using these parameters in their dynamic models. These parameters include effective delayed neutron fractions as well as mean generation time.These parameters are adjoint-weighted, and adjoint flux is employed as a weighting function in their evaluation.Adjoint flux calculation is an easy task for most of deterministic codes, but its evaluation is cumbersome for Monte Carlo codes. However, in recent years, some sophisticated techniques have been proposed for Monte Carlo-based point kinetic parameters calculation without any need of adjoint flux. The most straightforward scheme is known as the ‘‘prompt method'' and has been used widely in literature. The main objective of this article is dedicated to point kinetic parameters calculation in Tehran research reactor(TRR) using deterministic as well as probabilistic techniques. WIMS-D5B and CITATION codes have been used in deterministic calculation of forward and adjoint fluxes in the TRR core. On the other hand, the MCNP Monte Carlo code has been employed in the ‘‘prompt method''scheme for effective delayed neutron fraction evaluation.Deterministic results have been cross-checked with probabilistic ones and validated with SAR and experimental data. In comparison with experimental results, the relativedifferences of deterministic as well as probabilistic methods are 7.6 and 3.2%, respectively. These quantities are10.7 and 6.4%, respectively, in comparison with SAR report.
基金supported by the National Natural Science Foundation of China (10972151)
文摘This paper focuses on studying the integration method of a generalized Birkhoffian system.The method of variation on parameters for the dynamical equations of a generalized Birkhoffian system is presented.The procedure for solving the problem can be divided into two steps:the first step,a system of auxiliary equations is constructed and its general solution is given;the second step,the parameters are varied,and the solution of the problem is obtained by using the properties of generalized canonical transformation.The method of variation on parameters for the generalized Birkhoffian system is of universal significance,and we take a nonholonomic system and a nonconservative system as examples to illustrate the application of the results of this paper.
文摘The origin and movement of groundwater are the fundamental questions that address both the temporal and spatial aspects of ground water run and water supply related issues in hydrological systems.As groundwater flows through an aquifer,its composition and temperature may variation dependent on the aquifer condition through which it flows.Thus,hydrologic investigations can also provide useful information about the subsurface geology of a region.But because such studies investigate processes that follow under the Earth's shallow,obtaining the information necessary to answer these questions is not continuously easy.Springs,which discharge groundwater table directly,afford to study subsurface hydrogeological processes.The present study of estimation of aquifer factors such as transmissivity(T)and storativity(S)are vital for the evaluation of groundwater resources.There are several methods to estimate the accurate aquifer parameters(i.e.hydrograph analysis,pumping test,etc.).In initial days,these parameters are projected either by means of in-situ test or execution test on aquifer well samples carried in the laboratory.The simultaneous information on the hydraulic behavior of the well(borehole)that provides on this method,the reservoir and the reservoir boundaries,are important for efficient aquifer and well data management and analysis.The most common in-situ test is pumping test performed on wells,which involves the measurement of the fall and increase of groundwater level with respect to time.The alteration in groundwater level(drawdown/recovery)is caused due to pumping of water from the well.Theis(1935)was first to propose method to evaluate aquifer parameters from the pumping test on a bore well in a confined aquifer.It is essential to know the transmissivity(T=Kb,where b is the aquifer thickness;pumping flow rate,Q=TW(dh/dl)flow through an aquifer)and storativity(confined aquifer:S=bS_s,unconfined:S=S_y),for the characterization of the aquifer parameters in an unknown area so as to predict the rate of drawdown of the groundwater table/potentiometric surface throughout the pumping test of an aquifer.The determination of aquifer's parameters is an important basis for groundwater resources evaluation,numerical simulation,development and protection as well as scientific management.For determining aquifer's parameters,pumping test is a main method.A case study shows that these techniques have been fast speed and high correctness.The results of parameter's determination are optimized so that it has important applied value for scientific research and geology engineering preparation.
基金Financial support from the Sino-Danish Center for Education and Research(SDC)the Hempel Foundation to CoaST(The Hempel Foundation Coatings Science and Technology Centre)Hempel A/S。
文摘The Hansen solubility parameters(HSP)are frequently used for solvent selection and characterization of polymers,and are directly related to the suspension behavior of pigments in solvent mixtures.The performance of currently available group contribution(GC)methods for HSP were evaluated and found to be insufficient for computer-aided product design(CAPD)of paints and coatings.A revised and,for this purpose,improved GC method is presented for estimating HSP of organic compounds,intended for organic pigments.Due to the significant limitations of GC methods,an uncertainty analysis and parameter confidence intervals are provided in order to better quantify the estimation accuracy of the proposed approach.Compared to other applicable GC methods,the prediction error is reduced significantly with average absolute errors of 0.45 MPa^(1/2),1.35 MPa^(1/2),and 1.09 MPa^(1/2) for the partial dispersion(δD),polar(δP)and hydrogen-bonding(δH)solubility parameters respectively for a database of 1106 compounds.The performance for organic pigments is comparable to the overall method performance,with higher average errors forδD and lower average errors forδP andδH.
基金Supported by the National Natural Science Foundation of China(No.52071306)the Natural Science Foundation of Shandong Province(No.ZR2019MEE050)。
文摘The calculation results of marine environmental design parameters obtained from different data sampling methods,model distributions,and parameter estimation methods often vary greatly.To better analyze the uncertainties in the calculation of marine environmental design parameters,a general model uncertainty assessment method is necessary.We proposed a new multivariate model uncertainty assessment method for the calculation of marine environmental design parameters.The method divides the overall model uncertainty into two categories:aleatory uncertainty and epistemic uncertainty.The aleatory uncertainty of the model is obtained by analyzing the influence of the number and the dispersion degree of samples on the information entropy of the model.The epistemic uncertainty of the model is calculated using the information entropy of the model itself and the prediction error.The advantages of this method are that it does not require many-year-observation data for the marine environmental elements,and the method can be used to analyze any specific factors that cause model uncertainty.Results show that by applying the method to the South China Sea,the aleatory uncertainty of the model increases with the number of samples and then stabilizes.A positive correlation was revealed between the dispersion of the samples and the aleatory uncertainty of the model.Both the distribution of the model and the parameter estimation results of the model have significant effects on the epistemic uncertainty of the model.When the goodness-of-fit of the model is relatively close,the best model can be selected according to the criterion of the lowest overall uncertainty of the models,which can both ensure a better model fit and avoid too much uncertainty in the model calculation results.The presented multivariate model uncertainty assessment method provides a criterion to measure the advantages and disadvantages of the marine environmental design parameter calculation model from the aspect of uncertainty,which is of great significance to analyze the uncertainties in the calculation of marine environmental design parameters and improve the accuracy of the calculation results.