Aimed at the problem that the traditional ART-2 neural network can not recognize a gradually changing course, an eternal term memory (ETM) vector is introduced into ART-2 to simulate the function of human brain, i.e. ...Aimed at the problem that the traditional ART-2 neural network can not recognize a gradually changing course, an eternal term memory (ETM) vector is introduced into ART-2 to simulate the function of human brain, i.e. the deep remembrance for the initial impression.. The eternal term memory vector is determined only by the initial vector that establishes category neuron node and is used to keep the remembrance for this vector for ever. Two times of vigilance algorithm are put forward, and the posterior input vector must first pass the first vigilance of this eternal term memory vector, only succeeded has it the qualification to begin the second vigilance of long term memory vector. The long term memory vector can be revised only when both of the vigilances are passed. Results of recognition examples show that the improved ART-2 overcomes the defect of traditional ART-2 and can recognize a gradually changing course effectively.展开更多
To overcome the deficiencies of the existing Verhulst GM(1,1) model, based on the existing grey theory, a non-equal-interval direct optimum Verhulst GM(1,1) model is built which chooses a modified n-th component x(n) ...To overcome the deficiencies of the existing Verhulst GM(1,1) model, based on the existing grey theory, a non-equal-interval direct optimum Verhulst GM(1,1) model is built which chooses a modified n-th component x(n) of X(0) as the starting condition of the grey differential model. It optimizes a modified β value and the background value, and takes two times fitting optimization. The new model extends equal intervals to non-equal-intervals and is suitable for general data modelling and estimating parameters of the direct Verhulst GM(1,1). The new model does not need to pre-process the primitive data, nor accumulate generating operation (AGO) and inverse accumulated generating operation (IAGO). It is not only suitable for equal interval data modelling, but also for non-equal interval data modelling. As the new information is fully used and two times fitting optimization is taken, the fitting accuracy is the highest in all existing models. The example shows that the new model is simple and practical. The new model is worth expanding on and applying in data processing or on-line monitoring for tests, social sciences and other engineering sciences.展开更多
In this paper the concept of first boundary condition (i)(i = 0, 1, 2,…, n) is proposed based on [1], the existence of two times spline interpolant under first boundary condition is proved using constructivity me...In this paper the concept of first boundary condition (i)(i = 0, 1, 2,…, n) is proposed based on [1], the existence of two times spline interpolant under first boundary condition is proved using constructivity method and the uniqueness of the two times spline interpolant under first boundary condition(n) is proved too.展开更多
In this article, some methods are proposed for enhancing the converging velocity of the COA (chaos optimization algorithm) based on using carrier wave two times, which can greatly increase the speed and efficiency of ...In this article, some methods are proposed for enhancing the converging velocity of the COA (chaos optimization algorithm) based on using carrier wave two times, which can greatly increase the speed and efficiency of the first carrier wave’s search for the optimal point in implementing the sophisticated searching during the second carrier wave is faster and more accurate. In addition, the concept of using the carrier wave three times is proposed and put into practice to tackle the multi-variables opti- mization problems, where the searching for the optimal point of the last several variables is frequently worse than the first several ones.展开更多
基金Sponsored by the National Natural Science Foundation of China (Grant No. 50305005)
文摘Aimed at the problem that the traditional ART-2 neural network can not recognize a gradually changing course, an eternal term memory (ETM) vector is introduced into ART-2 to simulate the function of human brain, i.e. the deep remembrance for the initial impression.. The eternal term memory vector is determined only by the initial vector that establishes category neuron node and is used to keep the remembrance for this vector for ever. Two times of vigilance algorithm are put forward, and the posterior input vector must first pass the first vigilance of this eternal term memory vector, only succeeded has it the qualification to begin the second vigilance of long term memory vector. The long term memory vector can be revised only when both of the vigilances are passed. Results of recognition examples show that the improved ART-2 overcomes the defect of traditional ART-2 and can recognize a gradually changing course effectively.
基金The 11th Five-Year Plan for Key Constructing Academic Subject of Hunan Province(No.XJT2006180)Natural Science Foundation of Hunan Province (No.07JJ3093)Hunan Province Foundation Research Program (No.2007FJ3030,2007GK3058)
文摘To overcome the deficiencies of the existing Verhulst GM(1,1) model, based on the existing grey theory, a non-equal-interval direct optimum Verhulst GM(1,1) model is built which chooses a modified n-th component x(n) of X(0) as the starting condition of the grey differential model. It optimizes a modified β value and the background value, and takes two times fitting optimization. The new model extends equal intervals to non-equal-intervals and is suitable for general data modelling and estimating parameters of the direct Verhulst GM(1,1). The new model does not need to pre-process the primitive data, nor accumulate generating operation (AGO) and inverse accumulated generating operation (IAGO). It is not only suitable for equal interval data modelling, but also for non-equal interval data modelling. As the new information is fully used and two times fitting optimization is taken, the fitting accuracy is the highest in all existing models. The example shows that the new model is simple and practical. The new model is worth expanding on and applying in data processing or on-line monitoring for tests, social sciences and other engineering sciences.
文摘In this paper the concept of first boundary condition (i)(i = 0, 1, 2,…, n) is proposed based on [1], the existence of two times spline interpolant under first boundary condition is proved using constructivity method and the uniqueness of the two times spline interpolant under first boundary condition(n) is proved too.
基金Project supported by the National Natural Science Foundation of China (No. 60474064), and the Natural Science Foundation of Zhejiang Province (No. Y105694), China
文摘In this article, some methods are proposed for enhancing the converging velocity of the COA (chaos optimization algorithm) based on using carrier wave two times, which can greatly increase the speed and efficiency of the first carrier wave’s search for the optimal point in implementing the sophisticated searching during the second carrier wave is faster and more accurate. In addition, the concept of using the carrier wave three times is proposed and put into practice to tackle the multi-variables opti- mization problems, where the searching for the optimal point of the last several variables is frequently worse than the first several ones.