期刊文献+
共找到1,663篇文章
< 1 2 84 >
每页显示 20 50 100
An improved interpolating element-free Galerkin method with a nonsingular weight function for two-dimensional potential problems 被引量:15
1
作者 王聚丰 孙凤欣 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期53-59,共7页
In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the II... In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the IIMLS method is nonsingular. Then the IIMLS method can overcome the difficulties caused by the singularity of the weight function in the IMLS method. The number of unknown coefficients in the trial function of the IIMLS method is less than that of the moving least-square (MLS) approximation. Then by combining the IIMLS method with the Galerkin weak form of the potential problem, the improved interpolating element-free Galerkin (IIEFG) method for two-dimensional potential problems is presented. Compared with the conventional element-free Galerkin (EFG) method, the IIEFG method can directly use the essential boundary conditions. Then the IIEFG method has higher accuracy. For demonstration, three numerical examples are solved using the IIEFG method. 展开更多
关键词 meshless method improved interpolating moving least-square method improved inter-polating element-free Galerkin method potential problem
下载PDF
An improved boundary element-free method (IBEFM) for two-dimensional potential problems 被引量:8
2
作者 任红萍 程玉民 张武 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第10期4065-4073,共9页
The interpolating moving least-squares (IMLS) method is discussed first in this paper. And the formulae of the IMLS method obtained by Lancaster are revised. Then on the basis of the boundary element-free method (B... The interpolating moving least-squares (IMLS) method is discussed first in this paper. And the formulae of the IMLS method obtained by Lancaster are revised. Then on the basis of the boundary element-free method (BEFM), combining the boundary integral equation (BIE) method with the IMLS method, the improved boundary element-free method (IBEFM) for two-dimensional potential problems is presented, and the corresponding formulae of the IBEFM are obtained. In the BEFM, boundary conditions are applied directly, but the shape function in the MLS does not satisfy the property of the Kronecker ~ function. This is a problem of the BEFM, and must be solved theoretically. In the IMLS method, when the shape function satisfies the property of the Kronecker 5 function, then the boundary conditions, in the meshless method based on the IMLS method, can be applied directly. Then the IBEFM, based on the IMLS method, is a direct meshless boundary integral equation method in which the basic unknown quantity is the real solution of the nodal variables, and the boundary conditions can be applied directly and easily, thus it gives a greater computational precision. Some numerical examples are presented to demonstrate the method. 展开更多
关键词 moving least-squares approximation interpolating moving least-squares method mesh- less method improved boundary element-free method potential problem
下载PDF
The dimension split element-free Galerkin method for three-dimensional potential problems 被引量:4
3
作者 Z.J.Meng H.Cheng +1 位作者 L.D.Ma Y.M.Cheng 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第3期462-474,共13页
This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-d... This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method. 展开更多
关键词 dimension split method Improved moving least-squares (IMLS) approximation Improved element-free Galerkin (IEFG) method Finite difference method (FDM) dimension split element-free Galerkin (DSEFG) method potential problem
下载PDF
A moving Kriging interpolation-based boundary node method for two-dimensional potential problems 被引量:4
4
作者 李兴国 戴保东 王灵卉 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第12期18-24,共7页
In this paper, a meshfree boundary integral equation (BIE) method, called the moving Kriging interpolation- based boundary node method (MKIBNM), is developed for solving two-dimensional potential problems. This st... In this paper, a meshfree boundary integral equation (BIE) method, called the moving Kriging interpolation- based boundary node method (MKIBNM), is developed for solving two-dimensional potential problems. This study combines the DIE method with the moving Kriging interpolation to present a boundary-type meshfree method, and the corresponding formulae of the MKIBNM are derived. In the present method, the moving Kriging interpolation is applied instead of the traditional moving least-square approximation to overcome Kronecker's delta property, then the boundary conditions can be imposed directly and easily. To verify the accuracy and stability of the present formulation, three selected numerical examples are presented to demonstrate the efficiency of MKIBNM numerically. 展开更多
关键词 meshfree method moving Kriging interpolation method boundary integral equation boundary node method potential problem
下载PDF
A new complex variable element-free Galerkin method for two-dimensional potential problems 被引量:4
5
作者 程玉民 王健菲 白福浓 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期43-52,共10页
In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-f... In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-free Galerkin (ICVEFG) method for two-dimensional potential problems, is presented. In the method, the integral weak form of control equations is employed, and the Lagrange multiplier is used to apply the essential boundary conditions. Then the corresponding formulas of the ICVEFG method for two-dimensional potential problems are obtained. Compared with the complex variable moving least-square (CVMLS) approximation proposed by Cheng, the functional in the ICVMLS approximation has an explicit physical meaning. Furthermore, the ICVEFG method has greater computational precision and efficiency. Three numerical examples are given to show the validity of the proposed method. 展开更多
关键词 meshless method improved complex variable moving least-square approximation im- proved complex variable element-free Galerkin method potential problem
下载PDF
The complex variable meshless local Petrov-Galerkin method of solving two-dimensional potential problems 被引量:1
6
作者 杨秀丽 戴保东 张伟伟 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期49-55,共7页
Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential proble... Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential problems is presented in this paper.In the present formulation,the trial function of a two-dimensional problem is formed with a one-dimensional basis function.The number of unknown coefficients in the trial function of the CVMLS approximation is less than that in the trial function of the moving least-square(MLS) approximation.The essential boundary conditions are imposed by the penalty method.The main advantage of this approach over the conventional meshless local Petrov-Galerkin(MLPG) method is its computational efficiency.Several numerical examples are presented to illustrate the implementation and performance of the present CVMLPG method. 展开更多
关键词 meshless method complex variable moving least-square method complex variable meshless local Petrov-Galerkin method potential problems
下载PDF
Rogue Waves in the(2+1)-Dimensional Nonlinear Schrodinger Equation with a Parity-Time-Symmetric Potential 被引量:1
7
作者 刘芸恺 李彪 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第1期6-9,共4页
The (2+1)-dimension nonlocal nonlinear Schrödinger (NLS) equation with the self-induced parity-time symmetric potential is introduced, which provides spatially two-dimensional analogues of the nonlocal NLS equati... The (2+1)-dimension nonlocal nonlinear Schrödinger (NLS) equation with the self-induced parity-time symmetric potential is introduced, which provides spatially two-dimensional analogues of the nonlocal NLS equation introduced by Ablowitz et al. [Phys. Rev. Lett. 110 (2013) 064105]. General periodic solutions are derived by the bilinear method. These periodic solutions behave as growing and decaying periodic line waves arising from the constant background and decaying back to the constant background again. By taking long wave limits of the obtained periodic solutions, rogue waves are obtained. It is also shown that these line rogue waves arise from the constant background with a line profile and disappear into the constant background again in the plane. 展开更多
关键词 NLS dimensional Nonlinear Schrodinger Equation with a Parity-Time-Symmetric potential Rogue Waves in the
下载PDF
On Solvable Potentials, Supersymmetry, and the One-Dimensional Hydrogen Atom 被引量:1
8
作者 R. P. Martínez-y-Romero H. N. Núnez-Yépez A. L. Salas-Brito 《Communications and Network》 2010年第1期62-64,共3页
The ways for improving on techniques for finding new solvable potentials based on supersymmetry and shape invariance has been discussed by Morales et al. [1] In doing so they address the peculiar system known as the o... The ways for improving on techniques for finding new solvable potentials based on supersymmetry and shape invariance has been discussed by Morales et al. [1] In doing so they address the peculiar system known as the one-dimensional hydrogen atom. In this paper we show that their remarks on such problem are mistaken. We do this by explicitly constructing both the one-dimensional Coulomb potential and the superpotential associated with the problem, objects whose existence are denied in the mentioned paper. 展开更多
关键词 ONE-dimensional hydrogen ATOM ONE-dimensional COULOMB potential SUPERSYMMETRIC quantum mechanics.
下载PDF
Relation Between Dimension and Angular Momentum for Radially Symmetric Potential in N-Dimensional Space
9
作者 ZHAO Wei-Qin 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第3X期429-434,共6页
It is proved that when solving SchrSdinger equations for radially symmetric potentials the effect of higher dimensions on the radial wave function is equivalent to the effect of higher angular momenta in lower-dimensi... It is proved that when solving SchrSdinger equations for radially symmetric potentials the effect of higher dimensions on the radial wave function is equivalent to the effect of higher angular momenta in lower-dimensional cases. This result is applied to giving solutions for several radially symmetric potentials in N dimensions. 展开更多
关键词 N-dimensional Schrodinger equation radially symmetric potential dimension and angular momentum
下载PDF
Symmetry analysis and explicit solutions of the (3+1)-dimensional baroclinic potential vorticity equation 被引量:1
10
作者 胡晓瑞 陈勇 黄菲 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第8期35-45,共11页
This paper investigates an important high-dimensional model in the atmospheric and oceanic dynamics-(3+1)- dimensional nonlinear baroclinic potential vorticity equation by the classical Lie group method. Its symmet... This paper investigates an important high-dimensional model in the atmospheric and oceanic dynamics-(3+1)- dimensional nonlinear baroclinic potential vorticity equation by the classical Lie group method. Its symmetry algebra, symmetry group and group-invariant solutions are analysed. Otherwise, some exact explicit solutions are obtained from the corresponding (2+1)-dimensional equation, the inviscid barotropic nondivergent vorticy equation. To show the properties and characters of these solutions, some plots as well as their possible physical meanings of the atmospheric circulation are given out. 展开更多
关键词 (3+1)-dimensional nonlinear baroclinic potential vorticity equation symmetry group group-invariant solution explicit solution
下载PDF
Characterizing three-dimensional features of Antarctic subglacial lakes from the inversion of hydraulic potential——Lake Vostok as a case study
11
作者 LI Yan LU Yang +2 位作者 ZHANG Zizhan SHI Hongling XI Hui 《Advances in Polar Science》 CSCD 2019年第1期70-75,共6页
To estimate basal water storage beneath the Antarctic ice sheet, it is essential to have data on the three-dimensional characteristics of subglacial lakes. We present a method to estimate the water depth and surface a... To estimate basal water storage beneath the Antarctic ice sheet, it is essential to have data on the three-dimensional characteristics of subglacial lakes. We present a method to estimate the water depth and surface area of Antarctic subglacial lakes from the inversion of hydraulic potential method. Lake Vostok is chosen as a case study because of the diverse and comprehensive measurements that have been obtained over and around the lake. The average depth of Lake Vostok is around 345±4 m. We estimated the surface area of Lake Vostok beneath the ice sheet to be about 13300±594 km^2. The lake consists of two sub-basins separated by a ridge at water depths of about 200–300 m. The surface area of the northern sub-basin is estimated to be about half of that of the southern basin. The maximum depths of the northern and southern sub-basins are estimated to be about 450 and 850 m, respectively. Total water volume is estimated to be about 4658±204 km^3. These estimates are compared with previous estimates obtained from seismic data and inversion of aerogravity data. In general, our estimates are closer to those obtained from the inversion of aerogravity data than those from seismic data, indicating the applicability of our method to the estimation of water depths of other subglacial lakes. 展开更多
关键词 THREE-dimensional FEATURES Lake VOSTOK HYDRAULIC potential SUBGLACIAL water storage
下载PDF
Potential Symmetries, One-Dimensional Optimal System and Invariant Solutions of the Coupled Burgers’ Equations
12
作者 Yuexing Bai Sudao Bilige Temuer Chaolu 《Journal of Applied Mathematics and Physics》 2018年第9期1825-1839,共15页
In this paper, we discuss one-dimensional optimal system and the invariant solutions of Coupled Burgers’ equations. By using Wu-differential characteristic set algorithm with the aid of Mathematica software, the clas... In this paper, we discuss one-dimensional optimal system and the invariant solutions of Coupled Burgers’ equations. By using Wu-differential characteristic set algorithm with the aid of Mathematica software, the classical symmetries of the Coupled Burgers’ equations are calculated, and the one-dimensional optimal system of Lie algebra is constructed. And we obtain the invariant solution of the Coupled Burgers’ equations corresponding to one element in one dimensional optimal system by using the invariant method. The results generalize the exact solutions of the Coupled Burgers’ equations. 展开更多
关键词 potential SYMMETRY ONE-dimensional Optimal System INVARIANT Solution COUPLED Burgers’ Equations
下载PDF
NUMERICAL METHOD OF MIXED FINITE VOLUME-MODIFIED UPWIND FRACTIONAL STEP DIFFERENCE FOR THREE-DIMENSIONAL SEMICONDUCTOR DEVICE TRANSIENT BEHAVIOR PROBLEMS 被引量:5
13
作者 袁益让 杨青 +1 位作者 李长峰 孙同军 《Acta Mathematica Scientia》 SCIE CSCD 2017年第1期259-279,共21页
Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditi... Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditions. The electric potential is defined by an ellip- tic equation and it appears in the following three equations via the electric field intensity. The electron concentration and the hole concentration are determined by convection-dominated diffusion equations and the temperature is interpreted by a heat conduction equation. A mixed finite volume element approximation, keeping physical conservation law, is used to get numerical values of the electric potential and the accuracy is improved one order. Two con- centrations and the heat conduction are computed by a fractional step method combined with second-order upwind differences. This method can overcome numerical oscillation, dispersion and decreases computational complexity. Then a three-dimensional problem is solved by computing three successive one-dimensional problems where the method of speedup is used and the computational work is greatly shortened. An optimal second-order error estimate in L2 norm is derived by using prior estimate theory and other special techniques of partial differential equations. This type of mass-conservative parallel method is important and is most valuable in numerical analysis and application of semiconductor device. 展开更多
关键词 three dimensional transient behavior of heat conduction problem mixed finitevolume element modified upwind fractional step difference second-order error
下载PDF
ANALYTICAL TREATMENT OF BOUNDARY INTEGRALS IN DIRECT BOUNDARY ELEMENT ANALYSIS OF PLAN POTENTIAL AND ELASTICITY PROBLEMS 被引量:1
14
作者 ZHANG Yao-ming(张耀明) +1 位作者 SUN Huan-chun(孙焕纯) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第6期664-673,共10页
An analytical scheme, which avoids using the standard Gaussian approximate quadrature to treat the boundary integrals in direct boundary element method (DBEM) of two-dimensional potential and elastic problems, is esta... An analytical scheme, which avoids using the standard Gaussian approximate quadrature to treat the boundary integrals in direct boundary element method (DBEM) of two-dimensional potential and elastic problems, is established. With some numerical results, it is shown that the better precision and high computational efficiency, especially in the band of the domain near boundary, can be derived by the present scheme. 展开更多
关键词 potential/elasticity problems analytical method boundary element
下载PDF
NOVEL REGULARIZED BOUNDARY INTEGRAL EQUATIONS FOR POTENTIAL PLANE PROBLEMS 被引量:1
15
作者 张耀明 吕和祥 王利民 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第9期1165-1170,共6页
The universal practices have been centralizing on the research of regularization to the direct boundary integal equations (DBIEs). The character is elimination of singularities by using the simple solutions. However... The universal practices have been centralizing on the research of regularization to the direct boundary integal equations (DBIEs). The character is elimination of singularities by using the simple solutions. However, up to now the research of regularization to the first kind integral equations for plane potential problems has never been found in previous literatures. The presentation is mainly devoted to the research on the regularization of the singular boundary integral equations with indirect unknowns. A novel view and idea is presented herein, in which the regularized boundary integral equations with indirect unknowns without including the Cauchy principal value (CPV) and Hadamard-finite-part (HFP) integrals are established for the plane potential problems. With some numerical results, it is shown that the better accuracy and higher efficiency, especially on the boundary, can be achieved by the present system. 展开更多
关键词 potential plane problems boundary integral equations (BIEs) indirect BIEs regularization of BIEs
下载PDF
Guest Review:Potential theory method for 3D crack and contact problems of multi-field coupled media: A survey 被引量:2
16
作者 陈伟球 丁皓江 《Journal of Zhejiang University Science》 CSCD 2004年第9期1009-1021,共13页
This paper presents an overview of the recent progress of potential theory method in the analysis of mixed boundary value problems mainly stemming from three-dimensional crack or contact problems of multi-field couple... This paper presents an overview of the recent progress of potential theory method in the analysis of mixed boundary value problems mainly stemming from three-dimensional crack or contact problems of multi-field coupled media. This method was used to derive a series of exact three dimensional solutions which should be of great theoretical significance because most of them usually cannot be derived by other methods such as the transform method and the trial-and-error method. Further, many solutions are obtained in terms of elementary functions that enable us to treat more complicated problems easily. It is pointed out here that the method is usually only applicable to media characterizing transverse isotropy, from which, however, the results for the isotropic case can be readily obtained. 展开更多
关键词 potential theory method Mixed boundary value problem Multi-field coupled media
下载PDF
Two kinds of contact problems in three-dimensional icosahedral quasicrystals 被引量:11
17
作者 Xuefen ZHAO Xing LI Shenghu DING 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第12期1569-1580,共12页
Two kinds of contact problems, i.e., the frictional contact problem and the adhesive contact problem, in three-dimensional (3D) icosahedral quasicrystals are dis- cussed by a complex variable function method. For th... Two kinds of contact problems, i.e., the frictional contact problem and the adhesive contact problem, in three-dimensional (3D) icosahedral quasicrystals are dis- cussed by a complex variable function method. For the frictional contact problem, the contact stress exhibits power singularities at the edge of the contact zone. For the adhe- sive contact problem, the contact stress exhibits oscillatory singularities at the edge of the contact zone. The numerical examples show that for the two kinds of contact problems, the contact stress exhibits singularities, and reaches the maximum value at the edge of the contact zone. The phonon-phason coupling constant has a significant effect on the contact stress intensity, while has little impact on the contact stress distribution regu- lation. The results are consistent with those of the classical elastic materials when the phonon-phason coupling constant is 0. For the adhesive contact problem, the indentation force has positive correlation with the contact displacement, but the phonon-phason cou- pling constant impact is barely perceptible. The validity of the conclusions is verified. 展开更多
关键词 three-dimensional (3D) icosahedral quasicrystal Riemann-Hilbert problem contact problem SINGULARITY complex variable function method
下载PDF
Recursive super-convergence computation for multi-dimensional problems via one-dimensional element energy pro jection technique 被引量:11
18
作者 Si YUAN Yue WU Qinyan XING 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第7期1031-1044,共14页
This paper presents a strategy for computation of super-convergent solutions of multi-dimensional problems in the finite element method (FEM) by recursive application of the one-dimensional (1D) element energy pro... This paper presents a strategy for computation of super-convergent solutions of multi-dimensional problems in the finite element method (FEM) by recursive application of the one-dimensional (1D) element energy projection (EEP) technique. The main idea is to conceptually treat multi-dimensional problems as generalized 1D problems, based on which the concepts of generalized 1D FEM and its consequent EEP formulae have been developed in a unified manner. Equipped with these concepts, multi-dimensional problems can be recursively discretized in one dimension at each step, until a fully discretized standard finite element (FE) model is reached. This conceptual dimension-by- dimension (D-by-D) discretization procedure is entirely equivalent to a full FE discretization. As a reverse D-by-D recovery procedure, by using the unified EEP formulae together with proper extraction of the generalized nodal solutions, super-convergent displacements and first derivatives for two-dimensional (2D) and three-dimensional (3D) problems can be obtained over the domain. Numerical examples of 3D Poisson's equation and elasticity problem are given to verify the feasibility and effectiveness of the proposed strategy. 展开更多
关键词 three-dimensional(3D)problem generalized one-dimensional(1D)finiteelement method (FEM) dimension-by-dimension(D-by-D) super-convergence elementenergy projection(EEP)
下载PDF
A Dimension-Splitting Variational Multiscale Element-Free Galerkin Method for Three-Dimensional Singularly Perturbed Convection-Diffusion Problems 被引量:1
19
作者 Jufeng Wang Yong Wu +1 位作者 Ying Xu Fengxin Sun 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期341-356,共16页
By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is propose... By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is proposed for three-dimensional(3D)singular perturbed convection-diffusion(SPCD)problems.In the DSVMIEFG method,the 3D problem is decomposed into a series of 2D problems by the DS method,and the discrete equations on the 2D splitting surface are obtained by the VMIEFG method.The improved interpolation-type moving least squares(IIMLS)method is used to construct shape functions in the weak form and to combine 2D discrete equations into a global system of discrete equations for the three-dimensional SPCD problems.The solved numerical example verifies the effectiveness of the method in this paper for the 3D SPCD problems.The numerical solution will gradually converge to the analytical solution with the increase in the number of nodes.For extremely small singular diffusion coefficients,the numerical solution will avoid numerical oscillation and has high computational stability. 展开更多
关键词 dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method interpolating variational multiscale element-free Galerkin(VMIEFG)method dimension splitting method singularly perturbed convection-diffusion problems
下载PDF
TWO-DIMENSIONAL RIEMANN PROBLEMS:FROM SCALAR CONSERVATION LAWS TO COMPRESSIBLE EULER EQUATIONS 被引量:4
20
作者 李杰权 盛万成 +1 位作者 张同 郑玉玺 《Acta Mathematica Scientia》 SCIE CSCD 2009年第4期777-802,共26页
In this paper we survey the authors' and related work on two-dimensional Riemann problems for hyperbolic conservation laws, mainly those related to the compressible Euler equations in gas dynamics. It contains four s... In this paper we survey the authors' and related work on two-dimensional Riemann problems for hyperbolic conservation laws, mainly those related to the compressible Euler equations in gas dynamics. It contains four sections: 1. Historical review. 2. Scalar conservation laws. 3. Euler equations. 4. Simplified models. 展开更多
关键词 two-dimensional Riemann problem compressible Euler equation reflection of shocks interaction of rarefaction waves delta-shocks
下载PDF
上一页 1 2 84 下一页 到第
使用帮助 返回顶部