Monte Carlo simulations are frequently utilized in radiation dose assessments.However,many researchers find the prevailing computing platforms to be intricate.This highlights a pressing need for a specialized framewor...Monte Carlo simulations are frequently utilized in radiation dose assessments.However,many researchers find the prevailing computing platforms to be intricate.This highlights a pressing need for a specialized framework for phantom dose evalua-tion.To address this gap,we developed a user-friendly radiation dose assessment platform using the Monte Carlo toolkit,Geant4.The Tsinghua University Phantom Dose(THUDosePD)augments the flexibility of Monte Carlo simulations in dosi-metric research.Originating from THUDose,a code with generic,functional,and application layers,THUDosePD focuses predominantly on anatomical phantom dose assessment.Additionally,it enables medical exposure simulation,intricate geometry creation,and supports both three-dimensional radiation dose analysis and phantom format transformations.The system operates on a multi-threaded parallel CPU architecture,with some modules enhanced for GPU parallel computing.Benchmark tests on the ICRP reference male illustrated the capabilities of THUDosePD in phantom dose assessment,covering the effective dose,three-dimensional dose distribution,and three-dimensional organ dose.We also conducted a voxelization conversion on the polygon mesh phantom,demonstrating the method’s efficiency and consistency.Extended applications based on THUDosePD further underline its broad adaptability.This intuitive,three-dimensional platform stands out as a valuable tool for phantom radiation dosimetry research.展开更多
Mine safety have top-five disasters,which including the water,gas,fire,dust and geological dynamic disaster.The coal mine water disaster is one of the important factors which restricted the development of China’s coa...Mine safety have top-five disasters,which including the water,gas,fire,dust and geological dynamic disaster.The coal mine water disaster is one of the important factors which restricted the development of China’s coal production.It is showed by statistics that 60%of mine accidents are affected by groundwater,which not only result in the production losses,casualties and a variety of展开更多
A turbulent separation-rcattachment flow in a two-dimensional asymmetrical curved-wall diffuser is studied by a two-dimensional laser doppler velocimeter.The turbulent boundary layer separates on the lower curved wall...A turbulent separation-rcattachment flow in a two-dimensional asymmetrical curved-wall diffuser is studied by a two-dimensional laser doppler velocimeter.The turbulent boundary layer separates on the lower curved wall under strong pressure gradient and then reattaches on a parallel channel.At the inlet of the diffuser,Reynolds number based on the diffuser height is 1.2×10~5 and the velocity is 25.2m/s.The re- sults of experiments are presented and analyzed in new defined streamline-aligned coordinates.The experiment shows that after Transitory Detachment Reynolds shear stress is negative in the near-wall backflow region. Their characteristics are approximately the same as in simple turbulent shear layers near the maximum Reynolds shear stress.A scale is formed using the maximum Reynolds shear stresses.It is found that a Reynolds shear stress similarity exists from separation to reattachment and the Schofield-Perry velocity law ex- ists in the forward shear flow.Both profiles are used in the experimental work that leads to the design of a new eddy-viscosity model.The length scale is taken from that developed by Schofield and Perry.The composite velocity scale is formed by the maximum Reynolds shear stress and the Schofield Perry velocity scale as well as the edge velocity of the boundary layer.The results of these experiments are presented in this paper展开更多
Slope excavation is one of the most crucial steps in the construction of a hydraulic project. Excavation project quality assessment and excavated volume calculation are critical in construction management. The positio...Slope excavation is one of the most crucial steps in the construction of a hydraulic project. Excavation project quality assessment and excavated volume calculation are critical in construction management. The positioning of excavation projects using traditional instruments is inefficient and may cause error. To improve the efficiency and precision of calculation and assessment, three-dimensional laser scanning technology was used for slope excavation quality assessment. An efficient data acquisition, processing, and management workflow was presented in this study. Based on the quality control indices, including the average gradient, slope toe elevation, and overbreak and underbreak,cross-sectional quality assessment and holistic quality assessment methods were proposed to assess the slope excavation quality with laserscanned data. An algorithm was also presented to calculate the excavated volume with laser-scanned data. A field application and a laboratory experiment were carried out to verify the feasibility of these methods for excavation quality assessment and excavated volume calculation. The results show that the quality assessment indices can be obtained rapidly and accurately with design parameters and scanned data, and the results of holistic quality assessment are consistent with those of cross-sectional quality assessment. In addition, the time consumption in excavation quality assessment with the laser scanning technology can be reduced by 70%e90%, as compared with the traditional method. The excavated volume calculated with the scanned data only slightly differs from measured data, demonstrating the applicability of the excavated volume calculation method presented in this study.展开更多
The significance of the fluctuation and randomness of the time series of each pollutant in environmental quality assessment is described for the first time in this paper. A comparative study was made of three differen...The significance of the fluctuation and randomness of the time series of each pollutant in environmental quality assessment is described for the first time in this paper. A comparative study was made of three different computing methods: the same starting point method, the striding averaging method, and the stagger phase averaging method. All of them can be used to calculate the Hurst index, which quantifies fluctuation and randomness. This study used real water quality data from Shazhu monitoring station on Taihu Lake in Wuxi, Jiangsu Province. The results show that, of the three methods, the stagger phase averaging method is best for calculating the Hurst index of a pollutant time series from the perspective of statistical regularity.展开更多
基金This work was supported by the National Natural Science Foundation of China(General Program)(Nos.12175114,U2167209)the Foundation of Key Laboratory of Metrology and Calibration Technology(No.JLKG2022001C001)+2 种基金the Platform Development foundation of China Institute for Radiation Protection(No.YP21030101)the National Key R&D Program of China(No.2021YFF0603600)the Tsinghua University Initiative Scientific Research Program(No.20211080081).
文摘Monte Carlo simulations are frequently utilized in radiation dose assessments.However,many researchers find the prevailing computing platforms to be intricate.This highlights a pressing need for a specialized framework for phantom dose evalua-tion.To address this gap,we developed a user-friendly radiation dose assessment platform using the Monte Carlo toolkit,Geant4.The Tsinghua University Phantom Dose(THUDosePD)augments the flexibility of Monte Carlo simulations in dosi-metric research.Originating from THUDose,a code with generic,functional,and application layers,THUDosePD focuses predominantly on anatomical phantom dose assessment.Additionally,it enables medical exposure simulation,intricate geometry creation,and supports both three-dimensional radiation dose analysis and phantom format transformations.The system operates on a multi-threaded parallel CPU architecture,with some modules enhanced for GPU parallel computing.Benchmark tests on the ICRP reference male illustrated the capabilities of THUDosePD in phantom dose assessment,covering the effective dose,three-dimensional dose distribution,and three-dimensional organ dose.We also conducted a voxelization conversion on the polygon mesh phantom,demonstrating the method’s efficiency and consistency.Extended applications based on THUDosePD further underline its broad adaptability.This intuitive,three-dimensional platform stands out as a valuable tool for phantom radiation dosimetry research.
文摘Mine safety have top-five disasters,which including the water,gas,fire,dust and geological dynamic disaster.The coal mine water disaster is one of the important factors which restricted the development of China’s coal production.It is showed by statistics that 60%of mine accidents are affected by groundwater,which not only result in the production losses,casualties and a variety of
文摘A turbulent separation-rcattachment flow in a two-dimensional asymmetrical curved-wall diffuser is studied by a two-dimensional laser doppler velocimeter.The turbulent boundary layer separates on the lower curved wall under strong pressure gradient and then reattaches on a parallel channel.At the inlet of the diffuser,Reynolds number based on the diffuser height is 1.2×10~5 and the velocity is 25.2m/s.The re- sults of experiments are presented and analyzed in new defined streamline-aligned coordinates.The experiment shows that after Transitory Detachment Reynolds shear stress is negative in the near-wall backflow region. Their characteristics are approximately the same as in simple turbulent shear layers near the maximum Reynolds shear stress.A scale is formed using the maximum Reynolds shear stresses.It is found that a Reynolds shear stress similarity exists from separation to reattachment and the Schofield-Perry velocity law ex- ists in the forward shear flow.Both profiles are used in the experimental work that leads to the design of a new eddy-viscosity model.The length scale is taken from that developed by Schofield and Perry.The composite velocity scale is formed by the maximum Reynolds shear stress and the Schofield Perry velocity scale as well as the edge velocity of the boundary layer.The results of these experiments are presented in this paper
基金supported by the National Natural Science Foundation of China(Grant No.51379109)
文摘Slope excavation is one of the most crucial steps in the construction of a hydraulic project. Excavation project quality assessment and excavated volume calculation are critical in construction management. The positioning of excavation projects using traditional instruments is inefficient and may cause error. To improve the efficiency and precision of calculation and assessment, three-dimensional laser scanning technology was used for slope excavation quality assessment. An efficient data acquisition, processing, and management workflow was presented in this study. Based on the quality control indices, including the average gradient, slope toe elevation, and overbreak and underbreak,cross-sectional quality assessment and holistic quality assessment methods were proposed to assess the slope excavation quality with laserscanned data. An algorithm was also presented to calculate the excavated volume with laser-scanned data. A field application and a laboratory experiment were carried out to verify the feasibility of these methods for excavation quality assessment and excavated volume calculation. The results show that the quality assessment indices can be obtained rapidly and accurately with design parameters and scanned data, and the results of holistic quality assessment are consistent with those of cross-sectional quality assessment. In addition, the time consumption in excavation quality assessment with the laser scanning technology can be reduced by 70%e90%, as compared with the traditional method. The excavated volume calculated with the scanned data only slightly differs from measured data, demonstrating the applicability of the excavated volume calculation method presented in this study.
基金supported by the Eleventh Five-Year Key Technology R and D Program,China(Grant No.2006BAC02A15)the Colleges and Universities in Jiangsu Province Natural Science-Based Research Projects(Grant No.2006BAC02A15)+1 种基金the Jiangsu Province Post-Doctoral Fund Projects(Grant No.0801006C)the China Post-Doctoral Science Foundation(Grant No.20080441032)
文摘The significance of the fluctuation and randomness of the time series of each pollutant in environmental quality assessment is described for the first time in this paper. A comparative study was made of three different computing methods: the same starting point method, the striding averaging method, and the stagger phase averaging method. All of them can be used to calculate the Hurst index, which quantifies fluctuation and randomness. This study used real water quality data from Shazhu monitoring station on Taihu Lake in Wuxi, Jiangsu Province. The results show that, of the three methods, the stagger phase averaging method is best for calculating the Hurst index of a pollutant time series from the perspective of statistical regularity.