In all machining processes, tool wear is a natural phenomenon and it leads to tool failure. The growing demands for high productivity of machining need use of high cutting velocity and feed rate. Such machining inhere...In all machining processes, tool wear is a natural phenomenon and it leads to tool failure. The growing demands for high productivity of machining need use of high cutting velocity and feed rate. Such machining inherently produces high cutting temperature, which not only reduces tool life but also impairs the product quality. Metal cutting fluid changes the performance of machining operations because of their lubrication, cooling and chip flushing functions, but the use of cutting fluid has become more problematic in terms of both employee health and environmental pollution. The minimization of cutting fluid also leads to economical benefits by way of saving lubricant costs and workpiece/tool/machine cleaning cycle time. The concept of minimum quantity lubrication (MQL) has been suggested since a decade ago as a means of addressing the issues of environmental intru- siveness and occupational hazards associated with the airborne cutting fluid particles on factory shop floors. This paper deals with experimental investigation on the role of MQL by vegetable oil on cutting temperature, tool wear, surface roughness and dimen- sional deviation in turning AISI-1060 steel at industrial speed-feed combinations by uncoated carbide insert. The encouraging results include significant reduction in tool wear rate, dimensional inaccuracy and surface roughness by MQL mainly through reduction in the cutting zone temperature and favorable change in the chip-tool and work-tool interaction.展开更多
A turbulent separation-rcattachment flow in a two-dimensional asymmetrical curved-wall diffuser is studied by a two-dimensional laser doppler velocimeter.The turbulent boundary layer separates on the lower curved wall...A turbulent separation-rcattachment flow in a two-dimensional asymmetrical curved-wall diffuser is studied by a two-dimensional laser doppler velocimeter.The turbulent boundary layer separates on the lower curved wall under strong pressure gradient and then reattaches on a parallel channel.At the inlet of the diffuser,Reynolds number based on the diffuser height is 1.2×10~5 and the velocity is 25.2m/s.The re- sults of experiments are presented and analyzed in new defined streamline-aligned coordinates.The experiment shows that after Transitory Detachment Reynolds shear stress is negative in the near-wall backflow region. Their characteristics are approximately the same as in simple turbulent shear layers near the maximum Reynolds shear stress.A scale is formed using the maximum Reynolds shear stresses.It is found that a Reynolds shear stress similarity exists from separation to reattachment and the Schofield-Perry velocity law ex- ists in the forward shear flow.Both profiles are used in the experimental work that leads to the design of a new eddy-viscosity model.The length scale is taken from that developed by Schofield and Perry.The composite velocity scale is formed by the maximum Reynolds shear stress and the Schofield Perry velocity scale as well as the edge velocity of the boundary layer.The results of these experiments are presented in this paper展开更多
The performance of cutting machines in terms of energy consumption and vibration directly affects the production costs. In this work, our aim was to evaluate the performance of cutting machines using hybrid intelligen...The performance of cutting machines in terms of energy consumption and vibration directly affects the production costs. In this work, our aim was to evaluate the performance of cutting machines using hybrid intelligent models. For this purpose, a systematic experimental work was performed. A database of the carbonate and granite rocks was established, in which the physical and mechanical properties of these rocks (i.e., UCS, elastic modulus, Mohs hardness, and Schmiazek abrasivity factor) and the operational parameters (i.e., depth of cut and feed rate) were considered as the input parameters. The predictive models were developed incorporating a combination of the multi-layered perceptron artificial neural networks and genetic algorithm (GANN-BP) and the support vector regression method and Cuckoo optimization algorithm (COA-SVR). The results obtained indicated that the performance of the developed GANN-BP and COA-SVR models was close to each other and that these models had good agreements with the measured values. These results also showed that these proposed models were suitable tools in evaluating the performance of cutting machines.展开更多
According to similarity theory, we carried out a dimensional analysis of the shearer drum correlation parameters and built similarity criteria. Based on these, similarity models of shearer drums were developed. Simult...According to similarity theory, we carried out a dimensional analysis of the shearer drum correlation parameters and built similarity criteria. Based on these, similarity models of shearer drums were developed. Simultaneously, based on an estab- lished cutting testbed of the coal and rock, cutting tests of different pick arrangements of the drum models were carried out, where the compressive strength of the analogous cutting material was 2.48 MPa and the drum rotary speed 67.5 r/min. The variance, the mean values, maxima and mean maxima of the torque load were analyzed for different type drum models. Moreover, the relation-ships between the type of pick arrangements and the cutting lump coal percentage were studied. The results indicate that the load fluctuation of the sequence drum is larger than that of the punnett square drum in the cutting process and the lump coal percentage and economic benefits of the sequence drum are inferior to the punnett square drum. We conclude that the punnett square drum is superior to the sequence drum.展开更多
In high-speed cutting, natural thermocouple, artificial thermocouple and infrared radiation temperature measurement are usually adopted for measuring cutting temperature, but these methods have difficulty in measuring...In high-speed cutting, natural thermocouple, artificial thermocouple and infrared radiation temperature measurement are usually adopted for measuring cutting temperature, but these methods have difficulty in measuring transient temperature accurately of cutting area on account of low response speed and limited cutting condition. In this paper, NiCr/NiSi thin-film thermocouples(TFTCs) are fabricated according to temperature characteristic of cutting area in high-speed cutting by means of advanced twinned microwave electro cyclotron resonance(MW-ECR) plasma source enhanced radio frequency(RF) reaction non-balance magnetron sputtering technique, and can be used for transient cutting temperature measurement. The time constants of the TFTCs with different thermo-junction film width are measured at four kinds of sampling frequency by using Ultra-CFR short pulsed laser system that established. One-dimensional unsteady heat conduction model is constructed and the dynamic performance is analyzed theoretically. It can be seen from the analysis results that the NiCr/NiSi TFTCs are suitable for measuring transient temperature which varies quickly, the response speed of TFTCs can be obviously improved by reducing the thickness of thin-film, and the area of thermo-junction has little influence on dynamic response time. The dynamic calibration experiments are made on the constructed dynamic calibration system, and the experimental results confirm that sampling frequency should be larger than 50 kHz in dynamic measurement for stable response time, and the shortest response time is 0.042 ms. Measurement methods and devices of cutting heat and cutting temperature measurement are developed and improved by this research, which provide practical methods and instruments in monitoring cutting heat and cutting temperature for research and production in high-speed machining.展开更多
基金Project (No. DEARS/CASR/R-01/2001/D-934 (30)) supported by Directorate of Advisory Extension and Research Services (DAERS), Committee for Advanced Studies & Research (CASR), BUET, Dhaka, Bangladesh
文摘In all machining processes, tool wear is a natural phenomenon and it leads to tool failure. The growing demands for high productivity of machining need use of high cutting velocity and feed rate. Such machining inherently produces high cutting temperature, which not only reduces tool life but also impairs the product quality. Metal cutting fluid changes the performance of machining operations because of their lubrication, cooling and chip flushing functions, but the use of cutting fluid has become more problematic in terms of both employee health and environmental pollution. The minimization of cutting fluid also leads to economical benefits by way of saving lubricant costs and workpiece/tool/machine cleaning cycle time. The concept of minimum quantity lubrication (MQL) has been suggested since a decade ago as a means of addressing the issues of environmental intru- siveness and occupational hazards associated with the airborne cutting fluid particles on factory shop floors. This paper deals with experimental investigation on the role of MQL by vegetable oil on cutting temperature, tool wear, surface roughness and dimen- sional deviation in turning AISI-1060 steel at industrial speed-feed combinations by uncoated carbide insert. The encouraging results include significant reduction in tool wear rate, dimensional inaccuracy and surface roughness by MQL mainly through reduction in the cutting zone temperature and favorable change in the chip-tool and work-tool interaction.
文摘A turbulent separation-rcattachment flow in a two-dimensional asymmetrical curved-wall diffuser is studied by a two-dimensional laser doppler velocimeter.The turbulent boundary layer separates on the lower curved wall under strong pressure gradient and then reattaches on a parallel channel.At the inlet of the diffuser,Reynolds number based on the diffuser height is 1.2×10~5 and the velocity is 25.2m/s.The re- sults of experiments are presented and analyzed in new defined streamline-aligned coordinates.The experiment shows that after Transitory Detachment Reynolds shear stress is negative in the near-wall backflow region. Their characteristics are approximately the same as in simple turbulent shear layers near the maximum Reynolds shear stress.A scale is formed using the maximum Reynolds shear stresses.It is found that a Reynolds shear stress similarity exists from separation to reattachment and the Schofield-Perry velocity law ex- ists in the forward shear flow.Both profiles are used in the experimental work that leads to the design of a new eddy-viscosity model.The length scale is taken from that developed by Schofield and Perry.The composite velocity scale is formed by the maximum Reynolds shear stress and the Schofield Perry velocity scale as well as the edge velocity of the boundary layer.The results of these experiments are presented in this paper
基金Project(11039)supported by Shahrood University of Technology,Iran
文摘The performance of cutting machines in terms of energy consumption and vibration directly affects the production costs. In this work, our aim was to evaluate the performance of cutting machines using hybrid intelligent models. For this purpose, a systematic experimental work was performed. A database of the carbonate and granite rocks was established, in which the physical and mechanical properties of these rocks (i.e., UCS, elastic modulus, Mohs hardness, and Schmiazek abrasivity factor) and the operational parameters (i.e., depth of cut and feed rate) were considered as the input parameters. The predictive models were developed incorporating a combination of the multi-layered perceptron artificial neural networks and genetic algorithm (GANN-BP) and the support vector regression method and Cuckoo optimization algorithm (COA-SVR). The results obtained indicated that the performance of the developed GANN-BP and COA-SVR models was close to each other and that these models had good agreements with the measured values. These results also showed that these proposed models were suitable tools in evaluating the performance of cutting machines.
文摘According to similarity theory, we carried out a dimensional analysis of the shearer drum correlation parameters and built similarity criteria. Based on these, similarity models of shearer drums were developed. Simultaneously, based on an estab- lished cutting testbed of the coal and rock, cutting tests of different pick arrangements of the drum models were carried out, where the compressive strength of the analogous cutting material was 2.48 MPa and the drum rotary speed 67.5 r/min. The variance, the mean values, maxima and mean maxima of the torque load were analyzed for different type drum models. Moreover, the relation-ships between the type of pick arrangements and the cutting lump coal percentage were studied. The results indicate that the load fluctuation of the sequence drum is larger than that of the punnett square drum in the cutting process and the lump coal percentage and economic benefits of the sequence drum are inferior to the punnett square drum. We conclude that the punnett square drum is superior to the sequence drum.
基金supported by National Natural Science Foundation of China(Grant No.50775210)Liaoning Provincial Natural Science Foundation of China(Grant No.20062143)Liaoning Provincial Universities Science and Technology Program of China(Grant No.05L023)
文摘In high-speed cutting, natural thermocouple, artificial thermocouple and infrared radiation temperature measurement are usually adopted for measuring cutting temperature, but these methods have difficulty in measuring transient temperature accurately of cutting area on account of low response speed and limited cutting condition. In this paper, NiCr/NiSi thin-film thermocouples(TFTCs) are fabricated according to temperature characteristic of cutting area in high-speed cutting by means of advanced twinned microwave electro cyclotron resonance(MW-ECR) plasma source enhanced radio frequency(RF) reaction non-balance magnetron sputtering technique, and can be used for transient cutting temperature measurement. The time constants of the TFTCs with different thermo-junction film width are measured at four kinds of sampling frequency by using Ultra-CFR short pulsed laser system that established. One-dimensional unsteady heat conduction model is constructed and the dynamic performance is analyzed theoretically. It can be seen from the analysis results that the NiCr/NiSi TFTCs are suitable for measuring transient temperature which varies quickly, the response speed of TFTCs can be obviously improved by reducing the thickness of thin-film, and the area of thermo-junction has little influence on dynamic response time. The dynamic calibration experiments are made on the constructed dynamic calibration system, and the experimental results confirm that sampling frequency should be larger than 50 kHz in dynamic measurement for stable response time, and the shortest response time is 0.042 ms. Measurement methods and devices of cutting heat and cutting temperature measurement are developed and improved by this research, which provide practical methods and instruments in monitoring cutting heat and cutting temperature for research and production in high-speed machining.