This paper presents an analogical study between electromagnetic and elastic wave fields,with a one-to-one correspondence principle established regarding the basic wave equations,the physical quantities and the differe...This paper presents an analogical study between electromagnetic and elastic wave fields,with a one-to-one correspondence principle established regarding the basic wave equations,the physical quantities and the differential operations.Using the electromagnetic-to-elastic substitution,the analogous relations of the conservation laws of energy and momentum are investigated between these two physical fields.Moreover,the energy-based and momentum-based reciprocity theorems for an elastic wave are also derived in the time-harmonic state,which describe the interaction between two elastic wave systems from the perspectives of energy and momentum,respectively.The theoretical results obtained in this analysis can not only improve our understanding of the similarities of these two linear systems,but also find potential applications in relevant fields such as medical imaging,non-destructive evaluation,acoustic microscopy,seismology and exploratory geophysics.展开更多
The long-shore current distribution on a mild slope beach is studied by combining the numerical model and the physical experiment. The experiments of long-shore currents under the action of regular and irregular waves...The long-shore current distribution on a mild slope beach is studied by combining the numerical model and the physical experiment. The experiments of long-shore currents under the action of regular and irregular waves are conducted on mild beaches with different slopes in a wave basin. A numerical model is established, which includes a wave propagation model, a wave breaking model and a long-shore current model. The validity of the numerical model is proved by the comparison of its results with the results of the experimental model. It is concluded that the wave-ioduced long-shore current is influenced significantly by the incident wave height, the wave angle and the beach slope. Its application to the Bohai Bay indicates that the wave-induced currents have the same order of magnitude as the tide currents in the near-shore zone of mill slope beach. In the design of wastewater ouffall locations on a mild-slope beach with shallow water of the Bohai Bay, the position of the outfall should be 10 km away from the shoreline, which is outside of the surf-zone.展开更多
Complex factors including steep slopes, intense wave breaking, large bottom friction and remarkable wave setup should be considered while studying wave propagation over coral reefs, and how to simulate wave propagatio...Complex factors including steep slopes, intense wave breaking, large bottom friction and remarkable wave setup should be considered while studying wave propagation over coral reefs, and how to simulate wave propagation and setup on coral reefs efficiently has become a primary focus. Several wave models can be used on coral reefs as have been published, but further testing and comparison of the reliability and applicability of these models are needed. A comparative study of four numerical wave models (i.e., FUNWAVE-TVD, Coulwave, NHWAVE and ZZL18) is carried out in this paper. These models’ governing equations and numerical methods are compared and analyzed firstly to obtain their differences and connections;then the simulation effects of the four wave models are tested in four representative laboratory experiments. The results show that all four models can reasonably predict the spectrum transformation. Coulwave, NHWAVE and ZZL18 can predict the wave height variation more accurately;Coulwave and FUNWAVE-TVD tend to underestimate wave setup on the reef top induced by spilling breaker, while NHWAVE and ZZL18 can predict wave setup relatively accurately for all types of breakers;NHWAVE and ZZL18 can predict wave reflection by steep reef slope more accurately. This study can provide evidence for choosing suitable models for practical engineering or establishing new models.展开更多
A storm surge is an abnormal sharp rise or fall in the seawater level produced by the strong wind and low pressure field of an approaching storm system.A storm tide is a water level rise or fall caused by the combined...A storm surge is an abnormal sharp rise or fall in the seawater level produced by the strong wind and low pressure field of an approaching storm system.A storm tide is a water level rise or fall caused by the combined effect of the storm surge and an astronomical tide.The storm surge depends on many factors,such as the tracks of typhoon movement,the intensity of typhoon,the topography of sea area,the amplitude of tidal wave,the period during which the storm surge couples with the tidal wave.When coupling with different parts of a tidal wave,the storm surges caused by a typhoon vary widely.The variation of the storm surges is studied.An once-in-a-century storm surge was caused by Typhoon 7203 at Huludao Port in the north of the Liaodong Bay from July 26th to 27th,1972.The maximum storm surge is about 1.90 m.The wind field and pressure field used in numerical simulations in the research were derived from the historical data of the Typhoon 7203 from July 23rd to 28th,1972.DHI Mike21 is used as the software tools.The whole Bohai Sea is defined as the computational domain.The numerical simulation models are forced with sea levels at water boundaries,that is the tide along the Bohai Straits from July 18th to 29th(2012).The tide wave and the storm tides caused by the wind field and pressure field mentioned above are calculated in the numerical simulations.The coupling processes of storm surges and tidal waves are simulated in the following way.The first simulation start date and time are 00:00 July 18th,2012; the second simulation start date and time are 03:00 July 18th,2012.There is a three-hour lag between the start date and time of the simulation and that of the former one,the last simulation start date and time are 00:00 July 25th,2012.All the simulations have a same duration of 5 days,which is same as the time length of typhoon data.With the first day and the second day simulation output,which is affected by the initial field,being ignored,only the 3rd to 5th day simulation results are used to study the rules of the storm surges in the north of the Liaodong Bay.In total,57 cases are calculated and analyzed,including the coupling effects between the storm surge and a tidal wave during different tidal durations and on different tidal levels.Based on the results of the 57 numerical examples,the following conclusions are obtained:For the same location,the maximum storm surges are determined by the primary vibration(the storm tide keeps rising quickly) duration and tidal duration.If the primary vibration duration is a part of the flood tidal duration,the maximum storm surge is lower(1.01,1.05 and 1.37 m at the Huludao Port,the Daling Estuary and the Liaohe Estuary respectively).If the primary vibration duration is a part of the ebb tidal duration,the maximum storm surge is higher(1.92,2.05 and 2.80 m at the Huludao Port,the Daling Estuary and the Liaohe Estuary respectively).In the mean time,the sea level restrains the growth of storm surges.The hour of the highest storm tide has a margin of error of plus or minus 80 min,comparing the high water hour of the astronomical tide,in the north of the Liaodong Bay.展开更多
This paper presents a numerical study on the hydrodynamic behaviours of a round buoyant jet under the effect of JONSWAP random waves. A three-dimensional large eddy simulation (LES) model is developed to simulate th...This paper presents a numerical study on the hydrodynamic behaviours of a round buoyant jet under the effect of JONSWAP random waves. A three-dimensional large eddy simulation (LES) model is developed to simulate the buoyant jet in a stagnant ambient and JONSWAP random waves. By comparison of velocity and concentration fields, it is found that the buoyant jet exhibits faster decay of centerline velocity, wider lateral spreading and larger initial dilution under the wave effect, indicating that wave dynamics improves the jet entrainment and mixing in the near field, and subsequently mitigate the jet impacts in the far field. The effect of buoyancy force on the jet behaviours in the random waves is also numerically investigated. The results show that the wave effect on the jet entrainment and mixing is considerably weakened under the existence of buoyancy force, resulting in a slower decay rate of centerline velocity and a narrower jet width for the jet with initial buoyancy.展开更多
A refined derivation of refraction and absorption of the pure O-mode and X-mode Electron Cyclotron Resonance (ECR) wave in tokamak plasma is carried out. The weakly- relativistic dielectric tensor elements are used an...A refined derivation of refraction and absorption of the pure O-mode and X-mode Electron Cyclotron Resonance (ECR) wave in tokamak plasma is carried out. The weakly- relativistic dielectric tensor elements are used and the results show that the refraction only changes a little, compared to that deduced from the cold-plasma dispersion relation even in the inner re- gion. Refined formulae of the wave damping rate are then obtained for both the O-mode and the X-mode fundamental waves.展开更多
Pilot studies on two dimensional(2-D) wave propagation through single joint or multiple parallel joints were comprehensively conducted, using a suitable data processing method. The possible factors influencing the tra...Pilot studies on two dimensional(2-D) wave propagation through single joint or multiple parallel joints were comprehensively conducted, using a suitable data processing method. The possible factors influencing the transmission ratio in 2-D wave propagation under certain circumstances in rock masses were studied. It is found that in the process of 2-D wave propagation, for any radial line, the amount, the stiffness and the spacing of the joints influence the transmission ratio; by contrast, the transmission ratio at any point is independent of the radial distance from the center of wave source. It is also found that the transmission ratio for every grid-point along a single circle can present the transmission ratio for every grid-point after a certain quantity of joints. For the special radian direction(normal to the joints), it is concluded that the transmission ratio is dominated by the normal stiffness; while the influence of shear stiffness is negligible. The radius of the tunnel or borehole for the source wave does not affect the transmission ratio in 2-D wave propagation.展开更多
Numerical methods can provide extremely powerful tools for analysis and design of engineering systems with complex factors that are not possible or very difficult with the use of the conventional methods. In this pape...Numerical methods can provide extremely powerful tools for analysis and design of engineering systems with complex factors that are not possible or very difficult with the use of the conventional methods. In this paper, we use the 2-D boundary element method (BEM) program to model elastic wave excited by a point explosive source propagating in cracked rocks. As an example, we consider the typical crack distributions in rocks, both models for the real crack structure are also talked about. The elastic wave propagating in rocks with aligned cracks and parallel fractures is assumed. Effects of different crack parameters, such as crack scale length and crack density are analyzed. Numerical results show that the BEM is a powerful interpretive tool for understanding the complicated wave propagation and interaction in cracked solids.展开更多
Starting from vorticity equation, the triggering mechanism and amplitude decay of shear waves in the ocean are discussed in this paper. The theoretical analysis indicates that by the action of stripped external force ...Starting from vorticity equation, the triggering mechanism and amplitude decay of shear waves in the ocean are discussed in this paper. The theoretical analysis indicates that by the action of stripped external force (for examples, the sudden setting of stripped wind, moving stripped wind, etc. ), shear waves can be triggered. This is qualitatively consistent with satellite observations. The amplitude decay process of shear waves by the action of side friction is also discussed in the paper. The theoretical model is quantitatively consistent with satellite observations.展开更多
The launching and recovery process of a human-occupied vehicle(HOV)faces more complex wave effects than other types of submersible operations.However,due to the nonlinearity between the HOV and its mother ship,difficu...The launching and recovery process of a human-occupied vehicle(HOV)faces more complex wave effects than other types of submersible operations.However,due to the nonlinearity between the HOV and its mother ship,difficulties occur in theoretically simulating their coupled motion and hydrodynamics.The coupled motion responses and the load under different regular wave conditions are investigated experimentally in this study.The optimized design of the experimental scheme simulated the launching and recovery process of the mother ship and HOV in regular waves.The attitude sensor performed synchronous real-time measurement of the coupled motion between the mother ship and HOV as well as obtained the load data on the coupled motion under different cable lengths.The results show that models in heading waves mainly lead to the vertical motion of the hoisting point.In beam waves,the transverse and vertical motions of the hoisting point occur in a certain frequency of waves.Under the heading and beam wave conditions,the longer the hoisting cable is,the greater the movement amplitude of the submersible is.Moreover,compared with the condition of the beam waves,the hoisting submersible has less influence on the mother ship under the condition of the heading waves.The findings provide theoretical support for the design optimization of the launching and recovery operation.展开更多
The linear dispersion relation of a trapezoidally corrugated slow wave structure (TCSWS) is analyzed and presented. The size parameters of the TCSWS are chosen in such a way that they operate in the x-band frequency...The linear dispersion relation of a trapezoidally corrugated slow wave structure (TCSWS) is analyzed and presented. The size parameters of the TCSWS are chosen in such a way that they operate in the x-band frequency range. The dispersion relation is solved by utilizing the Rayleigh-Fourier method by expressing the radial function in terms of the Fourier series. A highly accurate synthetic technique is also applied to determine the complete dispersion characteristics from experimentally measured resonances (cold test). Periodic structures resonate at specific frequencies when the terminals are shorted numerical calculation, synthetic technique and cold appropriately. The dispersion characteristics obtained from test are compared, and an excellent agreement is achieved.展开更多
- Starting from satellite remote sensing data, the dynamical processes of shear waves occurring at the boundary between the western boundary current and the shelf slope water are studied and dynamically analyzed in th...- Starting from satellite remote sensing data, the dynamical processes of shear waves occurring at the boundary between the western boundary current and the shelf slope water are studied and dynamically analyzed in this study. The average wavelength is 75 km, and the average amplitude (from crest to trough )17 km. the average phase speed 100 cms-1 for the shear waves along the north wall of the Gulf Stream to the east of Cape Hatteras measured from NOAA satellite IR (infrared ) images. The average wavelength of shear waves along the north wall of the Kuroshio Current is 57 km, and the average amplitude 17 km. For the shear waves occurring along the west wall of the Gulf Stream to the south of Cape Hatteras, the average wavelength is 131 km, and the average amplitude 33 km measured from Seasat SAR (synthetic aperture radar )images. The time for one cycle of shear wave event is about one week.In order to explore the dynamical mechanisms of shear waves, we solved the vorticity equation for a stratified fluid, and obtained an analytical expression of dispersion relation of shear waves. The results indicated that there was a parabolic relation between the phase speed and the wavelength of shear waves, and the mean flow field was an important factor in the dispersion relation. The latter point means that the horizontal tangent variation of velocity is a basic condition for shear wave occurrence. Theoretical analyses are confirmed by satellite remote sensing data.展开更多
Extracting and parameterizing ionospheric waves globally and statistically is a longstanding problem. Based on the multichannel maximum entropy method(MMEM) used for studying ionospheric waves by previous work, we c...Extracting and parameterizing ionospheric waves globally and statistically is a longstanding problem. Based on the multichannel maximum entropy method(MMEM) used for studying ionospheric waves by previous work, we calculate the parameters of ionospheric waves by applying the MMEM to numerously temporally approximate and spatially close global-positioning-system radio occultation total electron content profile triples provided by the unique clustered satellites flight between years 2006 and 2007 right after the constellation observing system for meteorology, ionosphere, and climate(COSMIC) mission launch. The results show that the amplitude of ionospheric waves increases at the low and high latitudes(~0.15 TECU) and decreases in the mid-latitudes(~0.05 TECU). The vertical wavelength of the ionospheric waves increases in the mid-latitudes(e.g., ~50 km at altitudes of 200–250 km) and decreases at the low and high latitudes(e.g., ~35 km at altitudes of 200–250 km).The horizontal wavelength shows a similar result(e.g., ~1400 km in the mid-latitudes and ~800 km at the low and high latitudes).展开更多
By using the linear combination of the AGP(antisymmetrtzed geminat power) and SPG(sequential product of geminats) functions, an attempt has been made to catcutate the ground state of the LiH molecule. The calculated r...By using the linear combination of the AGP(antisymmetrtzed geminat power) and SPG(sequential product of geminats) functions, an attempt has been made to catcutate the ground state of the LiH molecule. The calculated results show that-the AGP or SPG function gives the same ground state result as their linear combination.展开更多
A review on the progress in the research of nonlinear atmospheric waves, especially the nonlinear Rossby waves is made in this paper. Many results reported here have been obtained in Peking University.
The average variational principle was employed in this paper to study the evolution of large-scale and slowly varying Rossby wave packet with basic flow both in barotropic and baroclinic atmospheres. The evolution of ...The average variational principle was employed in this paper to study the evolution of large-scale and slowly varying Rossby wave packet with basic flow both in barotropic and baroclinic atmospheres. The evolution of the structure of Rossby wave packet with both time and space was studied. The results obtained in this paper are similar to the results of by WKBJ method. In addition, the dispersive process of the wave packet was analysed by taking Gaussian type wave packet as an initial disturbance. The valid time scale for application of wave packet theory in the atmosphere was obtained.展开更多
A mesoscale inertia-gravitational wave at 200 hPa is analysed. The reasons of this wave occurring are also discussed. It is indicated that the occurrence of this wave is due to inertia-gravitational instability, and c...A mesoscale inertia-gravitational wave at 200 hPa is analysed. The reasons of this wave occurring are also discussed. It is indicated that the occurrence of this wave is due to inertia-gravitational instability, and closely related to horizontal and vertical shear of wind.展开更多
To investigate the nonlinear properties of wind waves, experiments are carried out in a wind-wave flume with slope bottom at different wind speeds and fetches. Both the internal structure and apparent features of the ...To investigate the nonlinear properties of wind waves, experiments are carried out in a wind-wave flume with slope bottom at different wind speeds and fetches. Both the internal structure and apparent features of the nonlin-earity of wind waves are studied by using bispectral and statistical analysis of surface elevations. The relations between bispectra and nonlinear apparent characteristics of wind waves are established and confirmed.展开更多
Based on MM5,POM,and WW3,a regional atmosphere-ocean-wave coupled system is developed in this work under the environment of Message Passing Interface.The coupled system is applied in a study of two typhoon processes i...Based on MM5,POM,and WW3,a regional atmosphere-ocean-wave coupled system is developed in this work under the environment of Message Passing Interface.The coupled system is applied in a study of two typhoon processes in the South China Sea(SCS).The results show that the coupled model operates steadily and efficiently and exhibits good capability in simulating typhoon processes.It improves the simulation accuracy of the track and intensity of the typhoon.The response of ocean surface to the typhoon is remarkable,especially on the right side of the typhoon track.The sea surface temperature(SST)declines,and the ocean current and wave height are intensified.In the coupling experiment,the decline of SST intensifies and the inertial oscillation amplitude of the ocean current increases when the ocean-wave effect is considered.Therefore,the atmosphere-ocean-wave coupled system can help in the study of air-sea interaction and improve the capability of predicting and preventing weather and oceanic disasters in SCS.展开更多
Steel-concrete composite structures(SCCS)have been widely used as primary load-bearing components in large-scale civil infrastructures.As the basis of the co-working ability of steel plate and concrete,the bonding sta...Steel-concrete composite structures(SCCS)have been widely used as primary load-bearing components in large-scale civil infrastructures.As the basis of the co-working ability of steel plate and concrete,the bonding status plays an essential role in guaranteeing the structural performance of SCCS.Accordingly,efficient non-destructive testing(NDT)on interfacial debondings in SCCS has become a prominent research area.Multi-channel analysis of surface waves(MASW)has been validated as an effective NDT technique for interfacial debonding detection for SCCS.However,the feasibility of MASW must be validated using experimental measurements.This study establishes a high-frequency data synchronous acquisition system with 32 channels to perform comparative verification experiments in depth.First,the current sensing approaches for high-frequency vibration and stress waves are summarized.Secondly,three types of contact sensors,namely,piezoelectric lead-zirconate-titanate(PZT)patches,accelerometers,and ultrasonic transducers,are selected for MASW measurement.Then,the selection and optimization of the force hammer head are performed.Comparative experiments are carried out for the optimal selection of ultrasonic transducers,PZT patches,and accelerometers for MASW measurement.In addition,the influence of different pasting methods on the output signal of the sensor array is discussed.Experimental results indicate that optimized PZT patches,acceleration sensors,and ultrasonic transducers can provide efficient data acquisition for MASW-based non-destructive experiments.The research findings in this study lay a solid foundation for analyzing the recognition accuracy of contact MASW measurement using different sensor arrays.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.12404507)the Natural Science Research of Jiangsu Higher Education Institutions of China(Grant No.24KJB140013)the Scientific Startup Foundation of Nanjing Normal University(Grant No.184080H201B49).
文摘This paper presents an analogical study between electromagnetic and elastic wave fields,with a one-to-one correspondence principle established regarding the basic wave equations,the physical quantities and the differential operations.Using the electromagnetic-to-elastic substitution,the analogous relations of the conservation laws of energy and momentum are investigated between these two physical fields.Moreover,the energy-based and momentum-based reciprocity theorems for an elastic wave are also derived in the time-harmonic state,which describe the interaction between two elastic wave systems from the perspectives of energy and momentum,respectively.The theoretical results obtained in this analysis can not only improve our understanding of the similarities of these two linear systems,but also find potential applications in relevant fields such as medical imaging,non-destructive evaluation,acoustic microscopy,seismology and exploratory geophysics.
文摘The long-shore current distribution on a mild slope beach is studied by combining the numerical model and the physical experiment. The experiments of long-shore currents under the action of regular and irregular waves are conducted on mild beaches with different slopes in a wave basin. A numerical model is established, which includes a wave propagation model, a wave breaking model and a long-shore current model. The validity of the numerical model is proved by the comparison of its results with the results of the experimental model. It is concluded that the wave-ioduced long-shore current is influenced significantly by the incident wave height, the wave angle and the beach slope. Its application to the Bohai Bay indicates that the wave-induced currents have the same order of magnitude as the tide currents in the near-shore zone of mill slope beach. In the design of wastewater ouffall locations on a mild-slope beach with shallow water of the Bohai Bay, the position of the outfall should be 10 km away from the shoreline, which is outside of the surf-zone.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.11572130 and 41106031)
文摘Complex factors including steep slopes, intense wave breaking, large bottom friction and remarkable wave setup should be considered while studying wave propagation over coral reefs, and how to simulate wave propagation and setup on coral reefs efficiently has become a primary focus. Several wave models can be used on coral reefs as have been published, but further testing and comparison of the reliability and applicability of these models are needed. A comparative study of four numerical wave models (i.e., FUNWAVE-TVD, Coulwave, NHWAVE and ZZL18) is carried out in this paper. These models’ governing equations and numerical methods are compared and analyzed firstly to obtain their differences and connections;then the simulation effects of the four wave models are tested in four representative laboratory experiments. The results show that all four models can reasonably predict the spectrum transformation. Coulwave, NHWAVE and ZZL18 can predict the wave height variation more accurately;Coulwave and FUNWAVE-TVD tend to underestimate wave setup on the reef top induced by spilling breaker, while NHWAVE and ZZL18 can predict wave setup relatively accurately for all types of breakers;NHWAVE and ZZL18 can predict wave reflection by steep reef slope more accurately. This study can provide evidence for choosing suitable models for practical engineering or establishing new models.
文摘A storm surge is an abnormal sharp rise or fall in the seawater level produced by the strong wind and low pressure field of an approaching storm system.A storm tide is a water level rise or fall caused by the combined effect of the storm surge and an astronomical tide.The storm surge depends on many factors,such as the tracks of typhoon movement,the intensity of typhoon,the topography of sea area,the amplitude of tidal wave,the period during which the storm surge couples with the tidal wave.When coupling with different parts of a tidal wave,the storm surges caused by a typhoon vary widely.The variation of the storm surges is studied.An once-in-a-century storm surge was caused by Typhoon 7203 at Huludao Port in the north of the Liaodong Bay from July 26th to 27th,1972.The maximum storm surge is about 1.90 m.The wind field and pressure field used in numerical simulations in the research were derived from the historical data of the Typhoon 7203 from July 23rd to 28th,1972.DHI Mike21 is used as the software tools.The whole Bohai Sea is defined as the computational domain.The numerical simulation models are forced with sea levels at water boundaries,that is the tide along the Bohai Straits from July 18th to 29th(2012).The tide wave and the storm tides caused by the wind field and pressure field mentioned above are calculated in the numerical simulations.The coupling processes of storm surges and tidal waves are simulated in the following way.The first simulation start date and time are 00:00 July 18th,2012; the second simulation start date and time are 03:00 July 18th,2012.There is a three-hour lag between the start date and time of the simulation and that of the former one,the last simulation start date and time are 00:00 July 25th,2012.All the simulations have a same duration of 5 days,which is same as the time length of typhoon data.With the first day and the second day simulation output,which is affected by the initial field,being ignored,only the 3rd to 5th day simulation results are used to study the rules of the storm surges in the north of the Liaodong Bay.In total,57 cases are calculated and analyzed,including the coupling effects between the storm surge and a tidal wave during different tidal durations and on different tidal levels.Based on the results of the 57 numerical examples,the following conclusions are obtained:For the same location,the maximum storm surges are determined by the primary vibration(the storm tide keeps rising quickly) duration and tidal duration.If the primary vibration duration is a part of the flood tidal duration,the maximum storm surge is lower(1.01,1.05 and 1.37 m at the Huludao Port,the Daling Estuary and the Liaohe Estuary respectively).If the primary vibration duration is a part of the ebb tidal duration,the maximum storm surge is higher(1.92,2.05 and 2.80 m at the Huludao Port,the Daling Estuary and the Liaohe Estuary respectively).In the mean time,the sea level restrains the growth of storm surges.The hour of the highest storm tide has a margin of error of plus or minus 80 min,comparing the high water hour of the astronomical tide,in the north of the Liaodong Bay.
基金supported by the National Key Basic Research Program of the Ministry of Science and Technology of China(Grant No.2010CB429001)the Special Fund of State Key Laboratory of China(Grant No.2011585812)+2 种基金the Fundamental Research Funds for the Central Universities(Grant No.2011B05614)the 111 Project of the Ministry of Educationthe State Administration of Foreign Experts Affairs,China(Grant No.B12032)
文摘This paper presents a numerical study on the hydrodynamic behaviours of a round buoyant jet under the effect of JONSWAP random waves. A three-dimensional large eddy simulation (LES) model is developed to simulate the buoyant jet in a stagnant ambient and JONSWAP random waves. By comparison of velocity and concentration fields, it is found that the buoyant jet exhibits faster decay of centerline velocity, wider lateral spreading and larger initial dilution under the wave effect, indicating that wave dynamics improves the jet entrainment and mixing in the near field, and subsequently mitigate the jet impacts in the far field. The effect of buoyancy force on the jet behaviours in the random waves is also numerically investigated. The results show that the wave effect on the jet entrainment and mixing is considerably weakened under the existence of buoyancy force, resulting in a slower decay rate of centerline velocity and a narrower jet width for the jet with initial buoyancy.
基金This work is supported by the China Nutional Nature Science Foundation No.19975015
文摘A refined derivation of refraction and absorption of the pure O-mode and X-mode Electron Cyclotron Resonance (ECR) wave in tokamak plasma is carried out. The weakly- relativistic dielectric tensor elements are used and the results show that the refraction only changes a little, compared to that deduced from the cold-plasma dispersion relation even in the inner re- gion. Refined formulae of the wave damping rate are then obtained for both the O-mode and the X-mode fundamental waves.
基金Project(2002CB412703) supported by the National Basic Research Programof China
文摘Pilot studies on two dimensional(2-D) wave propagation through single joint or multiple parallel joints were comprehensively conducted, using a suitable data processing method. The possible factors influencing the transmission ratio in 2-D wave propagation under certain circumstances in rock masses were studied. It is found that in the process of 2-D wave propagation, for any radial line, the amount, the stiffness and the spacing of the joints influence the transmission ratio; by contrast, the transmission ratio at any point is independent of the radial distance from the center of wave source. It is also found that the transmission ratio for every grid-point along a single circle can present the transmission ratio for every grid-point after a certain quantity of joints. For the special radian direction(normal to the joints), it is concluded that the transmission ratio is dominated by the normal stiffness; while the influence of shear stiffness is negligible. The radius of the tunnel or borehole for the source wave does not affect the transmission ratio in 2-D wave propagation.
文摘Numerical methods can provide extremely powerful tools for analysis and design of engineering systems with complex factors that are not possible or very difficult with the use of the conventional methods. In this paper, we use the 2-D boundary element method (BEM) program to model elastic wave excited by a point explosive source propagating in cracked rocks. As an example, we consider the typical crack distributions in rocks, both models for the real crack structure are also talked about. The elastic wave propagating in rocks with aligned cracks and parallel fractures is assumed. Effects of different crack parameters, such as crack scale length and crack density are analyzed. Numerical results show that the BEM is a powerful interpretive tool for understanding the complicated wave propagation and interaction in cracked solids.
文摘Starting from vorticity equation, the triggering mechanism and amplitude decay of shear waves in the ocean are discussed in this paper. The theoretical analysis indicates that by the action of stripped external force (for examples, the sudden setting of stripped wind, moving stripped wind, etc. ), shear waves can be triggered. This is qualitatively consistent with satellite observations. The amplitude decay process of shear waves by the action of side friction is also discussed in the paper. The theoretical model is quantitatively consistent with satellite observations.
基金National Natural Science Foundation of China(Grant No.51909039)Shandong Provincial Key Laboratory of Ocean Engineering(Grant No.201807).
文摘The launching and recovery process of a human-occupied vehicle(HOV)faces more complex wave effects than other types of submersible operations.However,due to the nonlinearity between the HOV and its mother ship,difficulties occur in theoretically simulating their coupled motion and hydrodynamics.The coupled motion responses and the load under different regular wave conditions are investigated experimentally in this study.The optimized design of the experimental scheme simulated the launching and recovery process of the mother ship and HOV in regular waves.The attitude sensor performed synchronous real-time measurement of the coupled motion between the mother ship and HOV as well as obtained the load data on the coupled motion under different cable lengths.The results show that models in heading waves mainly lead to the vertical motion of the hoisting point.In beam waves,the transverse and vertical motions of the hoisting point occur in a certain frequency of waves.Under the heading and beam wave conditions,the longer the hoisting cable is,the greater the movement amplitude of the submersible is.Moreover,compared with the condition of the beam waves,the hoisting submersible has less influence on the mother ship under the condition of the heading waves.The findings provide theoretical support for the design optimization of the launching and recovery operation.
文摘The linear dispersion relation of a trapezoidally corrugated slow wave structure (TCSWS) is analyzed and presented. The size parameters of the TCSWS are chosen in such a way that they operate in the x-band frequency range. The dispersion relation is solved by utilizing the Rayleigh-Fourier method by expressing the radial function in terms of the Fourier series. A highly accurate synthetic technique is also applied to determine the complete dispersion characteristics from experimentally measured resonances (cold test). Periodic structures resonate at specific frequencies when the terminals are shorted numerical calculation, synthetic technique and cold appropriately. The dispersion characteristics obtained from test are compared, and an excellent agreement is achieved.
文摘- Starting from satellite remote sensing data, the dynamical processes of shear waves occurring at the boundary between the western boundary current and the shelf slope water are studied and dynamically analyzed in this study. The average wavelength is 75 km, and the average amplitude (from crest to trough )17 km. the average phase speed 100 cms-1 for the shear waves along the north wall of the Gulf Stream to the east of Cape Hatteras measured from NOAA satellite IR (infrared ) images. The average wavelength of shear waves along the north wall of the Kuroshio Current is 57 km, and the average amplitude 17 km. For the shear waves occurring along the west wall of the Gulf Stream to the south of Cape Hatteras, the average wavelength is 131 km, and the average amplitude 33 km measured from Seasat SAR (synthetic aperture radar )images. The time for one cycle of shear wave event is about one week.In order to explore the dynamical mechanisms of shear waves, we solved the vorticity equation for a stratified fluid, and obtained an analytical expression of dispersion relation of shear waves. The results indicated that there was a parabolic relation between the phase speed and the wavelength of shear waves, and the mean flow field was an important factor in the dispersion relation. The latter point means that the horizontal tangent variation of velocity is a basic condition for shear wave occurrence. Theoretical analyses are confirmed by satellite remote sensing data.
基金Supported by the National Natural Science Foundation of China under Grant Nos 41774158,41474129 and 41704148the Chinese Meridian Projectthe Youth Innovation Promotion Association of the Chinese Academy of Sciences under Grant No2011324
文摘Extracting and parameterizing ionospheric waves globally and statistically is a longstanding problem. Based on the multichannel maximum entropy method(MMEM) used for studying ionospheric waves by previous work, we calculate the parameters of ionospheric waves by applying the MMEM to numerously temporally approximate and spatially close global-positioning-system radio occultation total electron content profile triples provided by the unique clustered satellites flight between years 2006 and 2007 right after the constellation observing system for meteorology, ionosphere, and climate(COSMIC) mission launch. The results show that the amplitude of ionospheric waves increases at the low and high latitudes(~0.15 TECU) and decreases in the mid-latitudes(~0.05 TECU). The vertical wavelength of the ionospheric waves increases in the mid-latitudes(e.g., ~50 km at altitudes of 200–250 km) and decreases at the low and high latitudes(e.g., ~35 km at altitudes of 200–250 km).The horizontal wavelength shows a similar result(e.g., ~1400 km in the mid-latitudes and ~800 km at the low and high latitudes).
基金Supported by the National Natural Science Foundation of China
文摘By using the linear combination of the AGP(antisymmetrtzed geminat power) and SPG(sequential product of geminats) functions, an attempt has been made to catcutate the ground state of the LiH molecule. The calculated results show that-the AGP or SPG function gives the same ground state result as their linear combination.
文摘A review on the progress in the research of nonlinear atmospheric waves, especially the nonlinear Rossby waves is made in this paper. Many results reported here have been obtained in Peking University.
文摘The average variational principle was employed in this paper to study the evolution of large-scale and slowly varying Rossby wave packet with basic flow both in barotropic and baroclinic atmospheres. The evolution of the structure of Rossby wave packet with both time and space was studied. The results obtained in this paper are similar to the results of by WKBJ method. In addition, the dispersive process of the wave packet was analysed by taking Gaussian type wave packet as an initial disturbance. The valid time scale for application of wave packet theory in the atmosphere was obtained.
基金Project supported by the National Science Foundation of China
文摘A mesoscale inertia-gravitational wave at 200 hPa is analysed. The reasons of this wave occurring are also discussed. It is indicated that the occurrence of this wave is due to inertia-gravitational instability, and closely related to horizontal and vertical shear of wind.
基金This study was supported in part by the National Natural Science Fundation of China
文摘To investigate the nonlinear properties of wind waves, experiments are carried out in a wind-wave flume with slope bottom at different wind speeds and fetches. Both the internal structure and apparent features of the nonlin-earity of wind waves are studied by using bispectral and statistical analysis of surface elevations. The relations between bispectra and nonlinear apparent characteristics of wind waves are established and confirmed.
基金National Natural Science Foundation of China(40675040)National Key Basic Research Program of China(2006CB400505)
文摘Based on MM5,POM,and WW3,a regional atmosphere-ocean-wave coupled system is developed in this work under the environment of Message Passing Interface.The coupled system is applied in a study of two typhoon processes in the South China Sea(SCS).The results show that the coupled model operates steadily and efficiently and exhibits good capability in simulating typhoon processes.It improves the simulation accuracy of the track and intensity of the typhoon.The response of ocean surface to the typhoon is remarkable,especially on the right side of the typhoon track.The sea surface temperature(SST)declines,and the ocean current and wave height are intensified.In the coupling experiment,the decline of SST intensifies and the inertial oscillation amplitude of the ocean current increases when the ocean-wave effect is considered.Therefore,the atmosphere-ocean-wave coupled system can help in the study of air-sea interaction and improve the capability of predicting and preventing weather and oceanic disasters in SCS.
基金National Natural Science Foundation of China under Grant (Nos.52192662,52020105005,51908320)the Beijing Nova Program under Grant No.20220484012+1 种基金the Interdisciplinary Research Project for Young Teachers of USTB (Fundamental Research Funds for the Central Universities,FRF-IDRY-22-013)the Key Laboratory for Intelligent Infrastructure and Monitoring of Fujian Province (Huaqiao University,IIM-01-05)。
文摘Steel-concrete composite structures(SCCS)have been widely used as primary load-bearing components in large-scale civil infrastructures.As the basis of the co-working ability of steel plate and concrete,the bonding status plays an essential role in guaranteeing the structural performance of SCCS.Accordingly,efficient non-destructive testing(NDT)on interfacial debondings in SCCS has become a prominent research area.Multi-channel analysis of surface waves(MASW)has been validated as an effective NDT technique for interfacial debonding detection for SCCS.However,the feasibility of MASW must be validated using experimental measurements.This study establishes a high-frequency data synchronous acquisition system with 32 channels to perform comparative verification experiments in depth.First,the current sensing approaches for high-frequency vibration and stress waves are summarized.Secondly,three types of contact sensors,namely,piezoelectric lead-zirconate-titanate(PZT)patches,accelerometers,and ultrasonic transducers,are selected for MASW measurement.Then,the selection and optimization of the force hammer head are performed.Comparative experiments are carried out for the optimal selection of ultrasonic transducers,PZT patches,and accelerometers for MASW measurement.In addition,the influence of different pasting methods on the output signal of the sensor array is discussed.Experimental results indicate that optimized PZT patches,acceleration sensors,and ultrasonic transducers can provide efficient data acquisition for MASW-based non-destructive experiments.The research findings in this study lay a solid foundation for analyzing the recognition accuracy of contact MASW measurement using different sensor arrays.